Skip to content
2000
image of Resilience and Recalibration of Bibliometric Indicators in Neurosciences and Neuropharmacology Journals After COVID-19: A Longitudinal Rate of Change Analysis Using Mixed-Effects Models

Abstract

Introduction

The COVID-19 pandemic triggered unprecedented changes in the scholarly publishing landscape, particularly in biomedical fields such as Neurosciences and Neuropharmacology. Several journals experienced steep, short-term increases in citation metrics during 2020-2022. However, it remains uncertain whether these surges reflected a sustainable impact or temporary inflation. This study aimed to analyze post-pandemic bibliometric behavior by evaluating the Rate of Change (RoC) in key journal-level indicators from 2013 to 2023.

Methods

A retrospective longitudinal study was conducted on 233 neuroscience journals indexed in the Journal Citation Reports. Six indicators were analyzed: Journal Impact Factor (JIF), Eigenfactor Score, Immediacy Index, Article Influence Score, Cited Half-Life, and Total Citations. RoC was calculated for each metric on an annual basis. Mixed-effects models with random intercepts and slopes were constructed to evaluate longitudinal trajectories and identify changes associated with three defined periods: pre-pandemic (2013-2019), pandemic (2020-2022), and post-pandemic (2023). Subgroup analyses assessed journal quartiles and categories to explore variations in impact resilience.

Results

The pandemic period (2020-2022) showed significant increases in RoC for JIF (mean β = +4.85, = 0.004), Immediacy Index (β = +6.22, = 0.002), and Total Citations (β = +5.88, < 0.001). These changes were more prominent in top-quartile journals and those classified under Neuropharmacology. In contrast, alternative metrics such as the Eigenfactor Score and Article Influence Score remained relatively stable across the same period. In 2023, most indicators exhibited a normalization trend, with JIF and Immediacy Index showing marked deceleration in RoC, suggesting a post-pandemic recalibration. Journals with sustained positive trajectories were primarily concentrated in high-impact clusters, with Current Neuropharmacology ranking among the top performers by RoC slope.

Discussion

The findings demonstrate that the surge in citations during the pandemic was primarily transitory and varied across bibliometric indicators. Traditional metrics like JIF and Immediacy Index were more sensitive to systemic shocks, while influence-based indicators (Eigenfactor and Article Influence Score) showed higher temporal resilience. The application of RoC allowed for a nuanced interpretation of metric trajectories and minimized misinterpretation of short-term spikes. Limitations include reliance on publicly available data and potential lag effects in citation behavior not fully captured within the 10-year window.

Conclusion

This study reveals that pandemic-era citation inflation in Neuroscience journals was largely temporary and metric-dependent. RoC-based modeling offers a reproducible and adaptable approach for assessing the sustainability of bibliometric trends. These insights can help editors, funders, and academic institutions better understand journal performance, make informed decisions about research dissemination, and refine metrics-based evaluation frameworks in the post-pandemic publishing environment.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X384613250702110845
2025-07-21
2025-09-13
Loading full text...

Full text loading...

References

  1. Garfield E. The history and meaning of the journal impact factor. JAMA 2006 295 1 90 93 10.1001/jama.295.1.90
    [Google Scholar]
  2. Rivera-Sotelo N. Vargas-Del-Angel R.G. Ternovoy S.K. Roldan-Valadez E. Global research trends in COVID-19 with MRI and PET/CT: A scoping review with bibliometric and network analyses. Clin. Transl. Imaging 2021 9 6 625 639 10.1007/s40336‑021‑00460‑x
    [Google Scholar]
  3. Donnan G.A. IJS impact factor jumps to 2.871 in only five years! Int. J. Stroke 2010 5 5 341 10.1111/j.1747‑4949.2010.00474.x
    [Google Scholar]
  4. Garcia-Blanco M.C. Valdez-Valdes A. Ternovoy S.K. Bueno-Hernandez N. Roldan-Valadez E. Impact factor jumps after the 2020 COVID-19 pandemic. Ultrasound Q. 2022 38 3 202 207 10.1097/RUQ.0000000000000615
    [Google Scholar]
  5. Mendoza-Lopez A.C. Gonzalez-Hermosillo L.M. Roldan-Valadez E. Sechenov I.M. Impact factor jumps after the 2020 covid-19 pandemic: A retrospective study in rheumatology journals. J. Rheumatol. 2023 50 3 452 453
    [Google Scholar]
  6. González-Hermosillo L.M. Roldan-Valadez E. Impact factor JUMPS after the 2020 COVID-19 pandemic: A retrospective study in Dermatology journals. Ir. J. Med. Sci. 2023 192 4 1711 1717 10.1007/s11845‑022‑03179‑4
    [Google Scholar]
  7. Castro-Merida D. Garcia-Lezama M. Gonzalez-Hermosillo L.M. Garduño-Espinosa J. Roldan-Valadez E. Two-years consecutive impact factor jumps after the COVID-19 pandemic (2020–2021): A retrospective study in pediatrics journals. Indian J. Pediatr. 2023 90 2 211 10.1007/s12098‑022‑04446‑z
    [Google Scholar]
  8. Brennan P.A. Editorial – JOPM impact factor jumps to a record high. J. Oral Pathol. Med. 2021 50 7 631 10.1111/jop.13223
    [Google Scholar]
  9. Wszolek Z.K. Stolarczyk, Ł.; Sławek, J. Latest bibliometrics of polish journal of neurology and neurosurgery. Neurol. Neurochir. Pol. 2023 57 4 329 331 10.5603/pjnns.97095
    [Google Scholar]
  10. Kianifar H. Sadeghi R. Zarifmahmoudi L. Comparison between impact factor, eigenfactor metrics, and scimago journal rank indicator of pediatric neurology journals. Acta Inform. Med. 2014 22 2 103 106 10.5455/aim.2014.22.103‑106
    [Google Scholar]
  11. Howard B. Scott J.T. Blubaugh M. Roepke B. Scheckel C. Vassar M. Systematic review: Outcome reporting bias is a problem in high impact factor neurology journals. PLoS One 2017 12 7 0180986 10.1371/journal.pone.0180986
    [Google Scholar]
  12. Xu D. Wang Y.L. Wang K.T. Wang Y. Dong X-R. Tang J. Cui Y-L. A scientometrics analysis and visualization of depressive disorder. Curr. Neuropharmacol. 2021 19 6 766 786 10.2174/1570159X18666200905151333
    [Google Scholar]
  13. Kenkel W.M. Corpus colossal: A bibliometric analysis of neuroscience abstracts and impact factor. Front. Integr. Nuerosci. 2019 13 18 10.3389/fnint.2019.00018
    [Google Scholar]
  14. Lindsley C.W. 2015: A new impact factor for acs chemical neuroscience and new topline data for global pharmaceutical products. ACS Chem. Neurosci. 2016 7 7 842 843 10.1021/acschemneuro.6b00177
    [Google Scholar]
  15. Roldan-Valadez E. Diaz-Ruiz A. Orbe-Arteaga U. Rios C. Alternative bibliometrics from the web of knowledge surpasses the impact factor in a 2-year ahead annual citation calculation: Linear mixed-design models’ analysis of neuroscience journals. Neurol. India 2018 66 1 96 104 10.4103/0028‑3886.222880
    [Google Scholar]
  16. Varki A. Rename the impact factor. Nature 2017 548 7668 393 10.1038/548393c
    [Google Scholar]
  17. Tregoning J. How will you judge me if not by impact factor? Nature 2018 558 7710 345 10.1038/d41586‑018‑05467‑5
    [Google Scholar]
  18. Woolston C. Impact factor abandoned by Dutch university in hiring and promotion decisions. Nature 2021 595 7867 462 10.1038/d41586‑021‑01759‑5
    [Google Scholar]
  19. Moher D. Naudet F. Cristea I.A. Miedema F. Ioannidis J.P.A. Goodman S.N. Assessing scientists for hiring, promotion, and tenure. PLoS Biol. 2018 16 3 2004089 10.1371/journal.pbio.2004089
    [Google Scholar]
  20. Hicks D. Wouters P. Waltman L. de Rijcke S. Rafols I. Bibliometrics: The leiden manifesto for research metrics. Nature 2015 520 7548 429 431 10.1038/520429a
    [Google Scholar]
  21. Seglen P.O. Why the impact factor of journals should not be used for evaluating research. BMJ 1997 314 7079 497 10.1136/bmj.314.7079.497
    [Google Scholar]
  22. O’Connor S. The San francisco declaration on research assessment (dora) in nursing science. Nurs. Sci. Q. 2022 35 2 275 276 10.1177/08943184211070602
    [Google Scholar]
  23. Gagliardi A.R. Chen R.H.C. Boury H. Albert M. Chow J. DaCosta R.S. Hoffman M. Keshavarz B. Kontos P. Liu J. McAndrews M.P. Protze S. DORA-compliant measures of research quality and impact to assess the performance of researchers in biomedical institutions: Review of published research, international best practice and Delphi survey. PLoS One 2023 18 5 0270616 10.1371/journal.pone.0270616
    [Google Scholar]
  24. Garg K. Chaurasia B. Gienapp A. Splavski B. Arnautovic K. Bibliometric analysis of major neurosurgical publications 2011, Part 2: Journal, author, yearly publication trends, and citation related metrics. Acta Inform. Med. 2022 30 1 11 17 10.5455/aim.2022.30.11‑17
    [Google Scholar]
  25. Garg K. Chaurasia B. Gienapp A. Splavski B. Arnautovic K. Bibliometric analysis of 6 major european neurosurgical publications from 2011-2020 (part 3): A comparative metrics review. Acta Inform. Med. 2023 31 1 9 19 10.5455/aim.2023.31.9‑19
    [Google Scholar]
  26. Al-Habsi J. Al-Hatmi A. Al-Saadi T. The top 100 most cited neurosurgical articles on covid-19: A bibliometric analysis. World Neurosurg. 2023 170 22 27.e21 10.1016/j.wneu.2022.11.133
    [Google Scholar]
  27. Gupta R. Prasad A. Babu S. Yadav G. Impact of coronavirus outbreaks on science and society: Insights from temporal bibliometry of SARS and COVID-19. Entropy 2021 23 5 626 10.3390/e23050626
    [Google Scholar]
  28. Haghani M. Bliemer M.C.J. COVID-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCoV literature. Scientometrics 2020 125 3 2695 2726 10.1007/s11192‑020‑03706‑z
    [Google Scholar]
  29. Roldan-Valadez E. Salazar-Ruiz S.Y. Ibarra-Contreras R. Rios C. Current concepts on bibliometrics: A brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Ir. J. Med. Sci. 2019 188 3 939 951 10.1007/s11845‑018‑1936‑5
    [Google Scholar]
  30. Villaseñor-Almaraz M. Islas-Serrano J. Murata C. Roldan-Valadez E. Impact factor correlations with scimago journal rank, source normalized impact per paper, eigenfactor score, and the citescore in radiology, nuclear medicine & medical imaging journals. Radiol. Med. (Torino) 2019 124 6 495 504 10.1007/s11547‑019‑00996‑z
    [Google Scholar]
  31. Martínez-Greiser P. Garcia-Lezama M. Rivera-Ibarguen S. Roldan-Valadez E. Comparison of the rate of change (slopes) in impact factor of medical imaging journals unveils journals with organic growth: An observational study (2016-2022). J. Cardiovasc. Comput. Tomogr. 2023 17 5 365 366 10.1016/j.jcct.2023.08.005
    [Google Scholar]
  32. Roldan-Valadez E. Orbe-Arteaga U. Rios C. Eigenfactor score and alternative bibliometrics surpass the impact factor in a 2-years ahead annual-citation calculation: A linear mixed design model analysis of radiology, nuclear medicine and medical imaging journals. Radiol. Med. 2018 123 7 524 534 10.1007/s11547‑018‑0870‑y
    [Google Scholar]
  33. Roldan-Valadez E. Rios C. Alternative bibliometrics from impact factor improved the esteem of a journal in a 2-year-ahead annual-citation calculation. Eur. J. Gastroenterol. Hepatol. 2015 27 2 115 122 10.1097/MEG.0000000000000253
    [Google Scholar]
  34. Serrano-Pozo A. Aldridge G.M. Zhang Q. Four decades of research in Alzheimer’s disease (1975-2014): A bibliometric and scientometric analysis. J. Alzheimers Dis. 2017 59 2 763 783 10.3233/JAD‑170184
    [Google Scholar]
  35. Zhou J. Qu J. Ji S. Bu Y. Hu Y. Sun H. Xue M. Zhou T. Qu J. Liu Y. Research trends in college students’ sleep from 2012 to 2021: A bibliometric analysis. Front. Psychiatry 2022 13 1005459 10.3389/fpsyt.2022.1005459
    [Google Scholar]
  36. Asampana Asosega K. Adebanji A.O. Aidoo E.N. Owusu-Dabo E. Application of hierarchical/multilevel models and quality of reporting (2010-2020): A systematic review. Sci. World J. 2024 2024 1 9 10.1155/2024/4658333
    [Google Scholar]
  37. Gadd S.C. Comber A. Tennant P. Gilthorpe M.S. Heppenstall A.J. The utility of multilevel models for continuous-time feature selection of spatio-temporal networks. Comput. Environ. Urban Syst. 2022 91 101728 10.1016/j.compenvurbsys.2021.101728
    [Google Scholar]
  38. McKiernan E.C. Schimanski L.A. Munoz Nieves C. Matthias L. Niles M.T. Alperin J.P. Use of the journal impact factor in academic review, promotion, and tenure evaluations. eLife 2019 8
    [Google Scholar]
  39. Cagan R. San francisco declaration on research assessment. Dis. Model Mech. 2013 6 4 dmm.012955 10.1242/dmm.012955
    [Google Scholar]
  40. Srisawad S. Lertsittiphan K. Tunsirirut S. Saenkla P. Predicting the time to first citation for medical articles using survival analysis and the association between this time and citation counts. Scientometrics 2025 130 2 861 880 10.1007/s11192‑025‑05237‑x
    [Google Scholar]
  41. Piwowar H. Priem J. Larivière V. Alperin J.P. Matthias L. Norlander B. Farley A. West J. Haustein S. The state of OA: A large-scale analysis of the prevalence and impact of open access articles. PeerJ 2018 6 4375 10.7717/peerj.4375
    [Google Scholar]
  42. Palayew A. Norgaard O. Safreed-Harmon K. Andersen T.H. Rasmussen L.N. Lazarus J.V. Pandemic publishing poses a new COVID-19 challenge. Nat. Hum. Behav. 2020 4 7 666 669 10.1038/s41562‑020‑0911‑0
    [Google Scholar]
  43. Afzal M. Hussain M. Hussain J. Bang J. Lee S. COVID-19 knowledge resource categorization and tracking: Conceptual framework study. J. Med. Internet Res. 2021 23 6 29730 10.2196/29730
    [Google Scholar]
  44. Ioannidis J.P.A. Salholz-Hillel M. Boyack K.W. Baas J. The rapid, massive growth of COVID-19 authors in the scientific literature. R. Soc. Open Sci. 2021 8 9 210389 10.1098/rsos.210389
    [Google Scholar]
  45. Quincho-Lopez A. Comparison of journal and top publisher self-citation rates in COVID-19 research. PLoS One 2024 19 12 0314976 10.1371/journal.pone.0314976
    [Google Scholar]
  46. Kanchan T. Krishan K. The leiden manifesto and research assessment. Sci. Eng. Ethics 2019 25 2 643 644 10.1007/s11948‑017‑0012‑2
    [Google Scholar]
  47. Kelleni M.T. SARS CoV-2 viral load might not be the right predictor of COVID-19 mortality. J. Infect. 2021 82 2 35 10.1016/j.jinf.2020.08.018
    [Google Scholar]
  48. Ellul M.A. Benjamin L. Singh B. Lant S. Michael B.D. Easton A. Kneen R. Defres S. Sejvar J. Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020 19 9 767 783 10.1016/S1474‑4422(20)30221‑0
    [Google Scholar]
  49. Song E. Zhang C. Israelow B. Lu-Culligan A. Prado A.V. Skriabine S. Lu P. Weizman O-E. Liu F. Dai Y. Szigeti-Buck K. Yasumoto Y. Wang G. Castaldi C. Heltke J. Ng E. Wheeler J. Alfajaro M.M. Levavasseur E. Fontes B. Ravindra N.G. Van Dijk D. Mane S. Gunel M. Ring A. Kazmi S.A.J. Zhang K. Wilen C.B. Horvath T.L. Plu I. Haik S. Thomas J-L. Louvi A. Farhadian S.F. Huttner A. Seilhean D. Renier N. Bilguvar K. Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021 218 3 20202135 10.1084/jem.20202135
    [Google Scholar]
  50. Tyagi K. Rai P. Gautam A. Kaur H. Kapoor S. Suttee A. Jaiswal P.K. Sharma A. Singh G. Barnwal R.P. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur. J. Med. Res. 2023 28 1 307 10.1186/s40001‑023‑01293‑2
    [Google Scholar]
  51. Mayer B. Kringel D. Lötsch J. Artificial intelligence and machine learning in clinical pharmacological research. Expert Rev. Clin. Pharmacol. 2024 17 1 79 91 10.1080/17512433.2023.2294005
    [Google Scholar]
  52. Al-Jabir A. Kerwan A. Nicola M. Alsafi Z. Khan M. Sohrabi C. O’Neill N. Iosifidis C. Griffin M. Mathew G. Agha R. Impact of the coronavirus (COVID-19) pandemic on surgical practice - part 1. Int. J. Surg. 2020 79 168 179 10.1016/j.ijsu.2020.05.022
    [Google Scholar]
  53. Teixeira da Silva J.A. Tsigaris P. Erfanmanesh M. Publishing volumes in major databases related to COVID-19. Scientometrics 2021 126 1 831 842 10.1007/s11192‑020‑03675‑3
    [Google Scholar]
  54. Kaur A.W. Podcasting neuroscience: A science communication assignment. J. Undergrad. Neurosci. Educ. 2022 20 2 A120 A45
    [Google Scholar]
/content/journals/cn/10.2174/011570159X384613250702110845
Loading
/content/journals/cn/10.2174/011570159X384613250702110845
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test