Skip to content
2000
image of The Multifaceted Role of Neuroprotectin D1: Physiological, Pathophysiological, and Pharmacological Insights in Neurodegenerative Diseases

Abstract

Neuroprotectin D1 (NPD1) has emerged as an integral lipid mediator with significant implications for maintaining neurological health. Being derived from docosahexaenoic acid (DHA), NPD1 is a specialized pro-resolving lipid mediator (SPM), consisting of a unique structure that attributes potent anti-inflammatory and neuroprotective properties crucial for maintaining nervous system homeostasis. It exerts its actions through diverse mechanisms, including the inhibition of proinflammatory cytokines, modulation of apoptosis, and promotion of cellular survival pathways. The dysregulation or deficiency of NPD1 has been implicated in the onset and progression of several neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and stroke, underscoring its critical role in maintaining neuronal health and disease prevention. Abnormal NPD1 signalling is associated with neuroinflammation, oxidative stress, and neuronal apoptosis, which in turn contribute significantly to the progression of neurological disorders. Understanding these pathways offers insights into potential therapeutic strategies aimed at targeting NPD1 to mitigate neurodegenerative processes and facilitate neural repair. The efforts in developing NPD1 analogs or mimetics are focused on enhancing endogenous NPD1 levels, attenuating neuroinflammation, and preserving neuronal integrity in disease contexts. This review provides a comprehensive exploration of NPD1, encompassing its structural characteristics, biochemical pathways, physiological roles, pathophysiological implications, and potential therapeutic applications in neurological disorders. Further, research into elucidating the precise mechanisms of NPD1 reveals that its clinical efficacy is crucial for harnessing its full potential as a therapeutic tool for neuroprotection and neural repair.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X365720250225080257
2025-04-07
2025-04-25
Loading full text...

Full text loading...

References

  1. Miyazawa K. Alzheimer's disease and specialized pro-resolving lipid mediators: Ao MaR1, RvD1, and NPD1 show promise for prevention and treatment? Int J Mol Sci 2020 Aug 12 21 16 5783 10.3390/ijms21165783
    [Google Scholar]
  2. Mukherjee P.K. Marcheselli V.L. Serhan C.N. Bazan N.G. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 2004 101 22 8491 8496 10.1073/pnas.0402531101 15152078
    [Google Scholar]
  3. Calder P.C. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2006 75 3 197 202 10.1016/j.plefa.2006.05.012 16828270
    [Google Scholar]
  4. Serhan C.N. Yacoubian S. Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol Mech Dis 2008 3 279 312 10.1146/annurev.pathmechdis.3.121806.151409
    [Google Scholar]
  5. Levy B.D. Clish C.B. Schmidt B. Gronert K. Serhan C.N. Lipid mediator class switching during acute inflammation: Aignals in resolution. Nat. Immunol. 2001 2 7 612 619 10.1038/89759 11429545
    [Google Scholar]
  6. Samuelsson B. Dahlén S.E. Lindgren J.Å. Rouzer C.A. Serhan C.N. Leukotrienes and lipoxins: Atructures, biosynthesis, and biological effects. Science 1987 237 4819 1171 1176 10.1126/science.2820055 2820055
    [Google Scholar]
  7. Buckley C.D. Gilroy D.W. Serhan C.N. Stockinger B. Tak P.P. The resolution of inflammation. Nat. Rev. Immunol. 2013 13 1 59 66 10.1038/nri3362 23197111
    [Google Scholar]
  8. Morris T. Rajakariar R. Stables M. Gilroy D.W. Not all eicosanoids are bad. Trends Pharmacol. Sci. 2006 27 12 609 611 10.1016/j.tips.2006.10.001 17055068
    [Google Scholar]
  9. Marcheselli V.L. Hong S. Lukiw W.J. Tian X.H. Gronert K. Musto A. Hardy M. Gimenez J.M. Chiang N. Serhan C.N. Bazan N.G. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 2003 278 44 43807 43817 10.1074/jbc.M305841200 12923200
    [Google Scholar]
  10. Stark D.T. Bazan N.G. Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer’s disease cellular models. Mol. Neurobiol. 2011 43 2 131 138 10.1007/s12035‑011‑8174‑4 21431475
    [Google Scholar]
  11. Bazan H.E.P. Birkle D.L. Beuerman R.W. Bazan N.G. Inflammation-induced stimulation of the synthesis of prostaglandins and lipoxygenase-reaction products in rabbit cornea. Curr. Eye Res. 1985 4 3 175 179 10.3109/02713688509000847 3926383
    [Google Scholar]
  12. Hong S. Gronert K. Devchand P.R. Moussignac R.L. Serhan C.N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 2003 278 17 14677 14687 10.1074/jbc.M300218200 12590139
    [Google Scholar]
  13. Ariel A. Li P.L. Wang W. Tang W.X. Fredman G. Hong S. Gotlinger K.H. Serhan C.N. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem. 2005 280 52 43079 43086 10.1074/jbc.M509796200 16216871
    [Google Scholar]
  14. Serhan C.N. Gotlinger K. Hong S. Lu Y. Siegelman J. Baer T. Yang R. Colgan S.P. Petasis N.A. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: Assignments of dihydroxy-containing docosatrienes. J. Immunol. 2006 176 3 1848 1859 10.4049/jimmunol.176.3.1848 16424216
    [Google Scholar]
  15. Tungen J.E. Aursnes M. Vik A. Ramon S. Colas R.A. Dalli J. Serhan C.N. Hansen T.V. Synthesis and anti-inflammatory and pro-resolving activities of 22-OH-PD1, a monohydroxylated metabolite of protectin D1. J. Nat. Prod. 2014 77 10 2241 2247 10.1021/np500498j 25247845
    [Google Scholar]
  16. Calandria J.M. Marcheselli V.L. Mukherjee P.K. Uddin J. Winkler J.W. Petasis N.A. Bazan N.G. Selective survival rescue in 15-lipoxygenase-1-deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. J. Biol. Chem. 2009 284 26 17877 17882 10.1074/jbc.M109.003988 19403949
    [Google Scholar]
  17. Sapieha P. 5-lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids. Sci Transl Med 2011 3 69 69ra12 10.1126/scitranslmed.3001571
    [Google Scholar]
  18. Aveldaño M.I. Sprecher H. Synthesis of hydroxy fatty acids from 4, 7, 10, 13, 16, 19-[1-14C] docosahexaenoic acid by human platelets. J. Biol. Chem. 1983 258 15 9339 9343 10.1016/S0021‑9258(17)44672‑2 6223928
    [Google Scholar]
  19. González-Périz A. Planagumà A. Gronert K. Miquel R. López-Parra M. Titos E. Horrillo R. Ferré N. Deulofeu R. Arroyo V. Rodés J. Clària J. González-Périz A. Planagumà A. Gronert K. Miquel R. López-Parra M. Titos E. Horrillo R. Ferré N. Deulofeu R. Arroyo V. Rodés J. Clària J. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: Arotectin D1 and 17S‐hydroxy‐DHA. FASEB J. 2006 20 14 2537 2539 10.1096/fj.06‑6250fje 17056761
    [Google Scholar]
  20. Lagarde M. Véricel E. Liu M. Chen P. Guichardant M. Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: Aoxytrins as a class of bioactive derivatives. Biochimie 2014 107 Pt A 91 94 10.1016/j.biochi.2014.09.008 25223888
    [Google Scholar]
  21. Haeggström J.Z. Funk C.D. Lipoxygenase and leukotriene pathways: Aiochemistry, biology, and roles in disease. Chem. Rev. 2011 111 10 5866 5898 10.1021/cr200246d 21936577
    [Google Scholar]
  22. Brash A.R. Investigation of a second 15s-lipoxygenase in humans and its expression in epithelial tissues. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 4. Honn K.V. Marnett L.J. Nigam S. Dennis E.A. Boston, MA Springer US 1999 83 89 10.1007/978‑1‑4615‑4793‑8_13
    [Google Scholar]
  23. Serhan C.N. Petasis N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011 111 10 5922 5943 10.1021/cr100396c 21766791
    [Google Scholar]
  24. Serhan C.N. Hong S. Gronert K. Colgan S.P. Devchand P.R. Mirick G. Moussignac R.L. Resolvins. J. Exp. Med. 2002 196 8 1025 1037 10.1084/jem.20020760 12391014
    [Google Scholar]
  25. Bannenberg G.L. Chiang N. Ariel A. Arita M. Tjonahen E. Gotlinger K.H. Hong S. Serhan C.N. Molecular circuits of resolution: Aormation and actions of resolvins and protectins. J. Immunol. 2005 174 7 4345 4355 10.4049/jimmunol.174.7.4345 15778399
    [Google Scholar]
  26. Aursnes M. Tungen J.E. Colas R.A. Vlasakov I. Dalli J. Serhan C.N. Hansen T.V. Synthesis of the 16 S, 17 S -epoxyprotectin intermediate in the biosynthesis of protectins by human macrophages. J. Nat. Prod. 2015 78 12 2924 2931 10.1021/acs.jnatprod.5b00574 26580578
    [Google Scholar]
  27. Stenvik Haatveit Å. Hansen T.V. The biosynthetic pathways of the protectins. Prostaglandins Other Lipid Mediat. 2023 169 106787 10.1016/j.prostaglandins.2023.106787 37806439
    [Google Scholar]
  28. Freedman C. Tran A. Tourdot B.E. Kalyanaraman C. Perry S. Holinstat M. Jacobson M.P. Holman T.R. Biosynthesis of the maresin intermediate, 13S,14S-Epoxy-DHA, by human 15-lipoxygenase and 12-lipoxygenase and its regulation through negative allosteric modulators. Biochemistry 2020 59 19 1832 1844 10.1021/acs.biochem.0c00233 32324389
    [Google Scholar]
  29. Kutzner L. Goloshchapova K. Heydeck D. Stehling S. Kuhn H. Schebb N.H. Mammalian ALOX15 orthologs exhibit pronounced dual positional specificity with docosahexaenoic acid. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017 1862 7 666 675 10.1016/j.bbalip.2017.04.001 28400162
    [Google Scholar]
  30. Chen P. Fenet B. Michaud S. Tomczyk N. Véricel E. Lagarde M. Guichardant M. Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett. 2009 583 21 3478 3484 10.1016/j.febslet.2009.10.004 19818771
    [Google Scholar]
  31. Tsai W.C. Kalyanaraman C. Yamaguchi A. Holinstat M. Jacobson M.P. Holman T.R. In vitro biosynthetic pathway investigations of Neuroprotectin D1 (NPD1) and Protectin DX (PDX) by human 12-Lipoxygenase, 15-Lipoxygenase-1, and 15-Lipoxygenase-2. Biochemistry 2021 60 22 1741 1754 10.1021/acs.biochem.0c00931 34029049
    [Google Scholar]
  32. Zhao Y. Calon F. Julien C. Winkler J.W. Petasis N.A. Lukiw W.J. Bazan N.G. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One 2011 6 1 e15816 10.1371/journal.pone.0015816 21246057
    [Google Scholar]
  33. Campbell I.L. Transgenic mice and cytokine actions in the brain: Aridging the gap between structural and functional neuropathology1Published on the World Wide Web on 21 October 1997.1. Brain Res. Brain Res. Rev. 1998 26 2-3 327 336 10.1016/S0165‑0173(97)00038‑6 9651549
    [Google Scholar]
  34. Campbell I.L. Abraham C.R. Masliah E. Kemper P. Inglis J.D. Oldstone M.B. Mucke L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. USA 1993 90 21 10061 10065 10.1073/pnas.90.21.10061 7694279
    [Google Scholar]
  35. Leveugle B. Fillit H. Proteoglycans and the acute-phase response in Alzheimer’s disease brain. Mol. Neurobiol. 1994 9 1-3 25 32 10.1007/BF02816102 7888102
    [Google Scholar]
  36. Griffin W.S.T. Sheng J.G. Royston M.C. Gentleman S.M. McKenzie J.E. Graham D.I. Roberts G.W. Mrak R.E. Glial-neuronal interactions in Alzheimer’s disease: Ahe potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol. 1998 8 1 65 72 10.1111/j.1750‑3639.1998.tb00136.x 9458167
    [Google Scholar]
  37. Sarnico I. Lanzillotta A. Boroni F. Benarese M. Alghisi M. Schwaninger M. Inta I. Battistin L. Spano P. Pizzi M. NF‐κB p50/RelA and c‐Rel‐containing dimers: Apposite regulators of neuron vulnerability to ischaemia. J. Neurochem. 2009 108 2 475 485 10.1111/j.1471‑4159.2008.05783.x 19094066
    [Google Scholar]
  38. Lukiw W.J. Alexandrov P.N. Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol. Neurobiol. 2012 46 1 11 19 10.1007/s12035‑012‑8234‑4 22302353
    [Google Scholar]
  39. Zhao Y. Bhattacharjee S. Jones B.M. Hill J. Dua P. Lukiw W.J. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol. Neurobiol. 2014 50 1 97 106 10.1007/s12035‑013‑8595‑3 24293102
    [Google Scholar]
  40. Feoktistova M. Geserick P. Kellert B. Dimitrova D.P. Langlais C. Hupe M. Cain K. MacFarlane M. Häcker G. Leverkus M. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 2011 43 3 449 463 10.1016/j.molcel.2011.06.011 21737330
    [Google Scholar]
  41. Tenev T. Bianchi K. Darding M. Broemer M. Langlais C. Wallberg F. Zachariou A. Lopez J. MacFarlane M. Cain K. Meier P. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 2011 43 3 432 448 10.1016/j.molcel.2011.06.006 21737329
    [Google Scholar]
  42. Calandria J.M. Asatryan A. Balaszczuk V. Knott E.J. Jun B.K. Mukherjee P.K. Belayev L. Bazan N.G. NPD1-mediated stereoselective regulation of BIRC3 expression through cREL is decisive for neural cell survival. Cell Death Differ. 2015 22 8 1363 1377 10.1038/cdd.2014.233 25633199
    [Google Scholar]
  43. Feng C. He J. Zhang Y. Lan M. Yang M. Liu H. Huang B. Pan Y. Zhou Y. Collagen-derived N-acetylated proline-glycine-proline upregulates the expression of pro-inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF-κB and MAPK signaling pathways. Int. J. Mol. Med. 2017 40 1 164 174 10.3892/ijmm.2017.3005 28560408
    [Google Scholar]
  44. Sun E. Motolani A. Campos L. Lu T. The pivotal role of NF-kB in the pathogenesis and therapeutics of alzheimer’s disease. Int. J. Mol. Sci. 2022 23 16 8972 10.3390/ijms23168972 36012242
    [Google Scholar]
  45. Kettenmann H. Kirchhoff F. Verkhratsky A. Microglia: Aew roles for the synaptic stripper. Neuron 2013 77 1 10 18 10.1016/j.neuron.2012.12.023 23312512
    [Google Scholar]
  46. Clausen B.H. Lambertsen K.L. Babcock A.A. Holm T.H. Dagnaes-Hansen F. Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J. Neuroinflammation 2008 5 1 46 10.1186/1742‑2094‑5‑46 18947400
    [Google Scholar]
  47. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  48. Gómez-Galán M. De Bundel D. Van Eeckhaut A. Smolders I. Lindskog M. Dysfunctional astrocytic regulation of glutamate transmission in a rat model of depression. Mol. Psychiatry 2013 18 5 582 594 10.1038/mp.2012.10 22371047
    [Google Scholar]
  49. Zhou Y. Wang J. Li X. Li K. Chen L. Zhang Z. Peng M. Neuroprotectin D1 protects against postoperative delirium-like behavior in aged mice. Front. Aging Neurosci. 2020 12 582674 10.3389/fnagi.2020.582674 33250764
    [Google Scholar]
  50. Chiang N. Fredman G. Bäckhed F. Oh S.F. Vickery T. Schmidt B.A. Serhan C.N. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 2012 484 7395 524 528 10.1038/nature11042 22538616
    [Google Scholar]
  51. Cheng Y. Rong J. Pro-resolving lipid mediators as therapeutic leads for cardiovascular diseases. Expert Opin. Ther. Targets 2019 23 5 423 436 10.1080/14728222.2019.1599360 30917700
    [Google Scholar]
  52. Antony R. Lukiw W.J. Bazan N.G. Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J. Biol. Chem. 2010 285 24 18301 18308 10.1074/jbc.M109.095232 20363734
    [Google Scholar]
  53. Serhan C.N. Dalli J. Colas R.A. Winkler J.W. Chiang N. Protectins and maresins: Aew pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 4 397 413 10.1016/j.bbalip.2014.08.006 25139562
    [Google Scholar]
  54. Belayev L. Mukherjee P.K. Balaszczuk V. Calandria J.M. Obenaus A. Khoutorova L. Hong S.H. Bazan N.G. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ. 2017 24 6 1091 1099 10.1038/cdd.2017.55 28430183
    [Google Scholar]
  55. Fattori V. Zaninelli T.H. Rasquel-Oliveira F.S. Casagrande R. Verri W.A. Jr Specialized pro-resolving lipid mediators: A new class of non-immunosuppressive and non-opioid analgesic drugs. Pharmacol. Res. 2020 151 104549 10.1016/j.phrs.2019.104549 31743775
    [Google Scholar]
  56. Lim J.Y. Park C.K. Hwang S.W. Biological roles of resolvins and related substances in the resolution of pain. BioMed Res. Int. 2015 2015 1 14 10.1155/2015/830930 26339646
    [Google Scholar]
  57. Fang X.X. Zhai M.N. Zhu M. He C. Wang H. Wang J. Zhang Z.J. Inflammation in pathogenesis of chronic pain: Aoe and friend. Mol. Pain 2023 19 17448069231178176 10.1177/17448069231178176 37220667
    [Google Scholar]
  58. Serhan C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014 510 7503 92 101 10.1038/nature13479 24899309
    [Google Scholar]
  59. Serhan C.N. de la Rosa X. Jouvene C. Novel mediators and mechanisms in the resolution of infectious inflammation: Avidence for vagus regulation. J. Intern. Med. 2019 286 3 240 258 10.1111/joim.12871 30565762
    [Google Scholar]
  60. Balas L. Risé P. Gandrath D. Rovati G. Bolego C. Stellari F. Trenti A. Buccellati C. Durand T. Sala A. Rapid metabolization of protectin D1 by β-Oxidation of its polar head chain. J. Med. Chem. 2019 62 21 9961 9975 10.1021/acs.jmedchem.9b01463 31626541
    [Google Scholar]
  61. Lukiw W.J. Cui J.G. Marcheselli V.L. Bodker M. Botkjaer A. Gotlinger K. Serhan C.N. Bazan N.G. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 2005 115 10 2774 2783 10.1172/JCI25420 16151530
    [Google Scholar]
  62. Qu L. Caterina M.J. Accelerating the reversal of inflammatory pain with NPD1 and its receptor GPR37. J. Clin. Invest. 2018 128 8 3246 3249 10.1172/JCI122203 30010628
    [Google Scholar]
  63. Bang S. Xie Y.K. Zhang Z.J. Wang Z. Xu Z.Z. Ji R.R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J. Clin. Invest. 2018 128 8 3568 3582 10.1172/JCI99888 30010619
    [Google Scholar]
  64. Cahoy J.D. Emery B. Kaushal A. Foo L.C. Zamanian J.L. Christopherson K.S. Xing Y. Lubischer J.L. Krieg P.A. Krupenko S.A. Thompson W.J. Barres B.A. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 2008 28 1 264 278 10.1523/JNEUROSCI.4178‑07.2008 18171944
    [Google Scholar]
  65. Zhou J. He X. Dai W. Li Q. Xiang Z. Wang Y. Zhang T. Xu W. Wang L. Mao A. GPR37 promotes colorectal cancer against ferroptosis by reprogramming lipid metabolism via p38-SCD1 axis. Apoptosis 2024 29 11-12 1988 2001 10.1007/s10495‑024‑02018‑4 39306652
    [Google Scholar]
  66. Liang K. Guo Z. Zhang S. Chen D. Zou R. Weng Y. Peng C. Xu Z. Zhang J. Liu X. Pang X. Ji Y. Liao D. Lai M. Peng H. Ke Y. Wang Z. Wang Y. GPR37 expression as a prognostic marker in gliomas: A bioinformatics-based analysis. Aging (Albany NY) 2023 15 19 10146 10167 10.18632/aging.205063 37837549
    [Google Scholar]
  67. Robertson K. Gpr37 modulates the severity of inflammation-induced GI dysmotility by regulating enteric reactive gliosis bioRxiv 2024 10.1101/2024.04.09.588619
    [Google Scholar]
  68. Chiang N. de la Rosa X. Libreros S. Serhan C.N. Novel resolvin D2 receptor axis in infectious inflammation. J. Immunol. 2017 198 2 842 851 10.4049/jimmunol.1601650 27994074
    [Google Scholar]
  69. Halapin N.A. Bazan N.G. NPD1 induction of retinal pigment epithelial cell survival involves PI3K/Akt phosphorylation signaling. Neurochem. Res. 2010 35 12 1944 1947 10.1007/s11064‑010‑0351‑8 21136150
    [Google Scholar]
  70. Msweli S. Pakala S.B. Syed K. NF-κB transcription factors: Aheir distribution, family expansion, structural conservation, and evolution in animals. Int. J. Mol. Sci. 2024 25 18 9793 10.3390/ijms25189793 39337282
    [Google Scholar]
  71. Markus R.P. Fernandes P.A. Kinker G.S. da Silveira Cruz-Machado S. Marçola M. Immune‐pineal axis – Acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br. J. Pharmacol. 2018 175 16 3239 3250 10.1111/bph.14083 29105727
    [Google Scholar]
  72. Muxel S.M. Pires-Lapa M.A. Monteiro A.W.A. Cecon E. Tamura E.K. Floeter-Winter L.M. Markus R.P. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 2012 7 12 e52010 10.1371/journal.pone.0052010 23284853
    [Google Scholar]
  73. Zimmerman S. Reiter R.J. Melatonin and the optics of the human body. Melatonin Res. 2019 2 1 138 160 10.32794/mr11250016
    [Google Scholar]
  74. Anderson G. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions. Melatonin Res. 2024 7 1 20 46 10.32794/mr112500167
    [Google Scholar]
  75. Asatryan A. Bazan N. G. Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. J Biol Chem 2017 292 30 12390 12397 10.1074/jbc.R117.783076
    [Google Scholar]
  76. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  77. Glabe C. Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J. Mol. Neurosci. 2001 17 2 137 145 10.1385/JMN:17:2:137 11816787
    [Google Scholar]
  78. Oddo S. Caccamo A. Shepherd J.D. Murphy M.P. Golde T.E. Kayed R. Metherate R. Mattson M.P. Akbari Y. LaFerla F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Antracellular Abeta and synaptic dysfunction. Neuron 2003 39 3 409 421 10.1016/S0896‑6273(03)00434‑3 12895417
    [Google Scholar]
  79. Lustbader J.W. Cirilli M. Lin C. Xu H.W. Takuma K. Wang N. Caspersen C. Chen X. Pollak S. Chaney M. Trinchese F. Liu S. Gunn-Moore F. Lue L.F. Walker D.G. Kuppusamy P. Zewier Z.L. Arancio O. Stern D. Yan S.S. Wu H. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004 304 5669 448 452 10.1126/science.1091230 15087549
    [Google Scholar]
  80. Dickson D.W. Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: Aause or effect? J. Clin. Invest. 2004 114 1 23 27 10.1172/JCI22317 15232608
    [Google Scholar]
  81. Bluthe´ R.M. Dantzer R. Kelley K.W. Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Res. 1992 573 2 318 320 10.1016/0006‑8993(92)90779‑9 1387028
    [Google Scholar]
  82. Coria F. Moreno A. Rubio I. García M.A. Morato E. Jr F.M. The cellular pathology associated with Alzheimer β‐amyloid deposits in non‐demented aged individuals. Neuropathol. Appl. Neurobiol. 1993 19 3 261 268 10.1111/j.1365‑2990.1993.tb00436.x 8355812
    [Google Scholar]
  83. Coria F. Castaño E. Prelli F. Larrondo-Lillo M. van Duinen S. Shelanski M.L. Frangione B. Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab. Invest. 1988 58 4 454 458 2965774
    [Google Scholar]
  84. Akbar M. Calderon F. Wen Z. Kim H.Y. Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 2005 102 31 10858 10863 10.1073/pnas.0502903102 16040805
    [Google Scholar]
  85. Bertram L. Lill C.M. Tanzi R.E. The genetics of Alzheimer disease: Aack to the future. Neuron 2010 68 2 270 281 10.1016/j.neuron.2010.10.013 20955934
    [Google Scholar]
  86. Goedert M. Clavaguera F. Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 2010 33 7 317 325 10.1016/j.tins.2010.04.003 20493564
    [Google Scholar]
  87. Akiyama H. Barger S. Barnum S. Bradt B. Bauer J. Cole G.M. Cooper N.R. Eikelenboom P. Emmerling M. Fiebich B.L. Finch C.E. Frautschy S. Griffin W.S. Hampel H. Hull M. Landreth G. Lue L. Mrak R. Mackenzie I.R. McGeer P.L. O’Banion M.K. Pachter J. Pasinetti G. Plata-Salaman C. Rogers J. Rydel R. Shen Y. Streit W. Strohmeyer R. Tooyoma I. Van Muiswinkel F.L. Veerhuis R. Walker D. Webster S. Wegrzyniak B. Wenk G. Wyss-Coray T. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000 21 3 383 421 10.1016/S0197‑4580(00)00124‑X 10858586
    [Google Scholar]
  88. Marion-Letellier R. Butler M. Déchelotte P. Playford R.J. Ghosh S. Comparison of cytokine modulation by natural peroxisome proliferator–activated receptor γ ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells—potential for dietary modulation of peroxisome proliferator–activated receptor γ in intestinal inflammation. Am. J. Clin. Nutr. 2008 87 4 939 948 10.1093/ajcn/87.4.939 18400717
    [Google Scholar]
  89. Luna-Medina R. Cortes-Canteli M. Alonso M. Santos A. Martínez A. Perez-Castillo A. Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor γ activation. J. Biol. Chem. 2005 280 22 21453 21462 10.1074/jbc.M414390200 15817469
    [Google Scholar]
  90. Rees D. Miles E.A. Banerjee T. Wells S.J. Roynette C.E. Wahle K.W.J. Calder P.C. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am. J. Clin. Nutr. 2006 83 2 331 342 10.1093/ajcn/83.2.331 16469992
    [Google Scholar]
  91. Zhu M. Wang X. Hjorth E. Colas R.A. Schroeder L. Granholm A.C. Serhan C.N. Schultzberg M. Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol. Neurobiol. 2016 53 4 2733 2749 10.1007/s12035‑015‑9544‑0 26650044
    [Google Scholar]
  92. Serhan C.N. Chiang N. Van Dyke T.E. Resolving inflammation: Aual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008 8 5 349 361 10.1038/nri2294 18437155
    [Google Scholar]
  93. Arita M. Yoshida M. Hong S. Tjonahen E. Glickman J.N. Petasis N.A. Blumberg R.S. Serhan C.N. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 2005 102 21 7671 7676 10.1073/pnas.0409271102 15890784
    [Google Scholar]
  94. McGeer P.L. Itagaki S. Tago H. McGeer E.G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 1987 79 1-2 195 200 10.1016/0304‑3940(87)90696‑3 3670729
    [Google Scholar]
  95. McGeer P.L. Itagaki S. Boyes B.E. McGeer E.G. Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988 38 8 1285 1291 10.1212/WNL.38.8.1285 3399080
    [Google Scholar]
  96. Jiang H. Burdick D. Glabe C.G. Cotman C.W. Tenner A.J. beta-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q A chain. J. Immunol. 1994 152 10 5050 5059 10.4049/jimmunol.152.10.5050 8176223
    [Google Scholar]
  97. Veerhuis R. Janssen I. De Groot C.J.A. Van Muiswinkel F.L. Hack C.E. Eikelenboom P. Cytokines associated with amyloid plaques in Alzheimer’s disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp. Neurol. 1999 160 1 289 299 10.1006/exnr.1999.7199 10630213
    [Google Scholar]
  98. Haga S. Aizawa T. Ishii T. Ikeda K. Complement gene expression in mouse microglia and astrocytes in culture: Aomparisons with mouse peritoneal macrophages. Neurosci. Lett. 1996 216 3 191 194 10.1016/0304‑3940(96)13040‑8 8897490
    [Google Scholar]
  99. Walker D.G. Expression and regulation of complement C1q by human THP-1-derived macrophages. Mol. Chem. Neuropathol. 1998 34 2-3 197 218 10.1007/BF02815080 10327418
    [Google Scholar]
  100. Gasque P. Chan P. Fontaine M. Ischenko A. Lamacz M. Götze O. Morgan B.P. Identification and characterization of the complement C5a anaphylatoxin receptor on human astrocytes. J. Immunol. 1995 155 10 4882 4889 10.4049/jimmunol.155.10.4882 7594492
    [Google Scholar]
  101. Goldgaber D. Harris H.W. Hla T. Maciag T. Donnelly R.J. Jacobsen J.S. Vitek M.P. Gajdusek D.C. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. USA 1989 86 19 7606 7610 10.1073/pnas.86.19.7606 2508093
    [Google Scholar]
  102. Deb S. Gottschall P.E. Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochem. 1996 66 4 1641 1647 10.1046/j.1471‑4159.1996.66041641.x 8627321
    [Google Scholar]
  103. Louis J.C. Magal E. Takayama S. Varon S. CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 1993 259 5095 689 692 10.1126/science.8430320 8430320
    [Google Scholar]
  104. McKee A.C. Kawall N.W. Schumacher J.S. Beal M.F. The neurotoxicity of amyloid beta protein in aged primates. Amyloid 1998 5 1 1 9 10.3109/13506129809007283 9546999
    [Google Scholar]
  105. Antel J.P. Becher B. Owens T. Immunotherapy for multiple sclerosis: Arom theory to practice. Nat. Med. 1996 2 10 1074 1075 10.1038/nm1096‑1074 8837599
    [Google Scholar]
  106. Good P.F. Werner P. Hsu A. Olanow C.W. Perl D.P. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol. 1996 149 1 21 28 8686745
    [Google Scholar]
  107. Mogi M. Harada M. Riederer P. Narabayashi H. Fujita K. Nagatsu T. Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 1994 165 1-2 208 210 10.1016/0304‑3940(94)90746‑3 8015728
    [Google Scholar]
  108. Markesbery W.R. Carney J.M. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999 9 1 133 146 10.1111/j.1750‑3639.1999.tb00215.x 9989456
    [Google Scholar]
  109. Su J.H. Deng G. Cotman C.W. Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer’s disease brain. Brain Res. 1997 774 1-2 193 199 10.1016/S0006‑8993(97)81703‑9 9452208
    [Google Scholar]
  110. Van Muiswinkel F.L. Raupp S.F.A. de Vos N.M. Smits H.A. Verhoef J. Eikelenboom P. Nottet H.S.L.M. The amino-terminus of the amyloid-β protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages. J. Neuroimmunol. 1999 96 1 121 130 10.1016/S0165‑5728(99)00019‑3 10227431
    [Google Scholar]
  111. Chao C.C. Hu S. Sheng W.S. Bu D. Bukrinsky M.I. Peterson P.K. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia 1996 16 3 276 284 10.1002/(SICI)1098‑1136(199603)16:3<276::AID‑GLIA10>3.0.CO;2‑X 8833198
    [Google Scholar]
  112. Lee S.C. Dickson D.W. Liu W. Brosnan C.F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1β and interferon-γ. J. Neuroimmunol. 1993 46 1-2 19 24 10.1016/0165‑5728(93)90229‑R 7689587
    [Google Scholar]
  113. Reynolds W.F. Rhees J. Maciejewski D. Paladino T. Sieburg H. Maki R.A. Masliah E. Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease. Exp. Neurol. 1999 155 1 31 41 10.1006/exnr.1998.6977 9918702
    [Google Scholar]
  114. Chen P. Vãricel E. Lagarde M. Guichardant M. Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J. 2011 25 1 382 388 10.1096/fj.10‑161836 20833872
    [Google Scholar]
  115. Nesman J.I. Gangestad Primdahl K. Tungen J.E. Palmas F. Dalli J. Hansen T.V. Synthesis, structural confirmation, and biosynthesis of 22-OH-PD1n-3 DPA. Molecules 2019 24 18 3228 10.3390/molecules24183228 31491851
    [Google Scholar]
  116. Nesman J.I. Chen O. Luo X. Ji R.R. Serhan C.N. Hansen T.V. A new synthetic protectin D1 analog 3-oxa-PD1 n-3 DPA reduces neuropathic pain and chronic itch in mice. Org. Biomol. Chem. 2021 19 12 2744 2752 10.1039/D0OB02136A 33687402
    [Google Scholar]
  117. Tungen J.E. Aursnes M. Ramon S. Colas R.A. Serhan C.N. Olberg D.E. Nuruddin S. Willoch F. Hansen T.V. Synthesis of protectin D1 analogs: Aovel pro-resolution and radiotracer agents. Org. Biomol. Chem. 2018 16 36 6818 6823 10.1039/C8OB01232F 30204204
    [Google Scholar]
  118. Balas L. Durand T. Dihydroxylated E,E,Z-docosatrienes. An overview of their synthesis and biological significance. Prog. Lipid Res. 2016 61 1 18 10.1016/j.plipres.2015.10.002 26545300
    [Google Scholar]
  119. Dayaker G. Durand T. Balas L. A versatile and stereocontrolled total synthesis of dihydroxylated docosatrienes containing a conjugated E,E,Z-triene. Chemistry 2014 20 10 2879 2887 10.1002/chem.201304526 24520010
    [Google Scholar]
  120. Liu M. Boussetta T. Makni-Maalej K. Fay M. Driss F. El-Benna J. Lagarde M. Guichardant M. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. Lipids 2014 49 1 49 57 10.1007/s11745‑013‑3863‑6 24254970
    [Google Scholar]
  121. Hamidzadeh K. Westcott J. Wourms N. Shay A.E. Panigrahy A. Martin M.J. Nshimiyimana R. Serhan C.N. A newly synthesized 17-epi-NeuroProtectin D1/17-epi-Protectin D1: Authentication and functional regulation of inflammation-resolution. Biochem. Pharmacol. 2022 203 115181 10.1016/j.bcp.2022.115181 35850309
    [Google Scholar]
/content/journals/cn/10.2174/011570159X365720250225080257
Loading
/content/journals/cn/10.2174/011570159X365720250225080257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test