Skip to content
2000
Volume 23, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder that is characterized by both motor and non-motor symptoms. Although dopamine agonists have been demonstrated to be efficacious in the treatment of motor symptoms, their capacity to enhance non-motor symptoms remains constrained. This suggests that additional neurotransmitter systems may be involved in the pathogenesis of PD-related symptoms. The cholinergic nervous system plays a pivotal role in the central nervous system, with various projection systems associated with diverse functions, including but not limited to learning, memory, attention, posture, balance, eye movement control, and adaptation. Nevertheless, the role of the cholinergic nervous system in the motor and non-motor impairments associated with PD remains uncertain. This review elucidates the location, projection, receptors, and effects of central cholinergic systems, as well as their role in both the motor symptoms and non-motor symptoms of PD. Additionally, it examines the crosstalk between cholinergic systems and dopaminergic systems in PD pathology. A deeper comprehension of the fundamental mechanisms of the cholinergic system in PD may facilitate the development of novel therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X368923250313045859
2025-03-18
2025-09-06
Loading full text...

Full text loading...

References

  1. ContiM.M. ChambersN. BishopC. A new outlook on cholinergic interneurons in Parkinson’s disease and L-DOPA-induced dyskinesia.Neurosci. Biobehav. Rev.201892678210.1016/j.neubiorev.2018.05.02129782883
    [Google Scholar]
  2. JingX.Z. YuanX.Z. LuoX. ZhangS.Y. WangX.P. An update on nondopaminergic treatments for motor and non-motor symptoms of Parkinson’s disease.Curr. Neuropharmacol.20232181806182610.2174/1570159X2066622022215081135193486
    [Google Scholar]
  3. JiangY. QiZ. ZhuH. ShenK. LiuR. FangC. LouW. JiangY. YuanW. CaoX. ChenL. ZhuangQ. Role of the globus pallidus in motor and non-motor symptoms of Parkinson’s disease.Neural Regen. Res.20252061628164310.4103/NRR.NRR‑D‑23‑0166038845220
    [Google Scholar]
  4. BohnenN.I. KanelP. KoeppeR.A. Sanchez-CatasusC.A. FreyK.A. ScottP. ConstantineG.M. AlbinR.L. MüllerM.L.T.M. Regional cerebral cholinergic nerve terminal integrity and cardinal motor features in Parkinson’s disease.Brain Commun.202132fcab10910.1093/braincomms/fcab10934704022
    [Google Scholar]
  5. PengJ.Y. QiZ.X. YanQ. FanX.J. ShenK.L. HuangH.W. LuJ.H. WangX.Q. FangX.X. MaoL. NiJ. ChenL. ZhuangQ.X. Ameliorating parkinsonian motor dysfunction by targeting histamine receptors in entopeduncular nucleus–thalamus circuitry.Proc. Natl. Acad. Sci. USA202312017e221624712010.1073/pnas.221624712037068253
    [Google Scholar]
  6. QiZ.X. YanQ. FanX.J. PengJ.Y. ZhuH.X. JiangY.M. ChenL. ZhuangQ.X. Role of HCN channels in the functions of basal ganglia and Parkinson’s disease.Cell. Mol. Life Sci.202481113510.1007/s00018‑024‑05163‑w38478096
    [Google Scholar]
  7. ShinotohH. NambaH. YamaguchiM. FukushiK. NagatsukaS.I. IyoM. AsahinaM. HattoriT. TanadaS. IrieT. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy.Ann. Neurol.1999461626910.1002/1531‑8249(199907)46:1<62::AID‑ANA10>3.0.CO;2‑P10401781
    [Google Scholar]
  8. FangQ. XicoyH. ShenJ. LuchettiS. DaiD. ZhouP. QiX.R. MartensG.J.M. HuitingaI. SwaabD.F. LiuC. ShanL. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum.Brain Behav. Immun.20219212713810.1016/j.bbi.2020.11.03633249171
    [Google Scholar]
  9. WuJ. ZhouC. GuoT. GuanX. GaoT. BaiX. WuH. ChenJ. WenJ. LiuX. GuL. SongZ. XuanM. GuQ. HuangP. PuJ. ZhangB. XuX. ZhangM. Cholinergic relevant functional reactivity is associated with dopamine responsiveness of tremor in Parkinson’s disease.Brain Imaging Behav.20221631234124510.1007/s11682‑021‑00610‑934973120
    [Google Scholar]
  10. BohnenN.I. YarnallA.J. WeilR.S. MoroE. MoehleM.S. BorghammerP. BedardM.A. AlbinR.L. Cholinergic system changes in Parkinson’s disease: Emerging therapeutic approaches.Lancet Neurol.202221438139210.1016/S1474‑4422(21)00377‑X35131038
    [Google Scholar]
  11. ChenX. ZhangY. A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson’s disease.Neural Regen. Res.202419232433010.4103/1673‑5374.37904237488885
    [Google Scholar]
  12. PowellA. IrelandC. LewisS.J.G. Visual hallucinations and the role of medications in Parkinson’s disease: Triggers, pathophysiology, and management.J. Neuropsychiat. Clin. Neurosci.202032433434310.1176/appi.neuropsych.1911031632374649
    [Google Scholar]
  13. ZhangP. RongS. HeC. LiY. LiX. ChenZ. NieK. WangL. WangL. ZhangY. Cortical connectivity of cholinergic basal forebrain in Parkinson’s disease with mild cognitive impairment.Quant. Imaging Med. Surg.20231342167218210.21037/qims‑22‑58237064391
    [Google Scholar]
  14. HeG. LiY. DengH. ZuoH. Advances in the study of cholinergic circuits in the central nervous system.Ann. Clin. Transl. Neurol.202310122179219110.1002/acn3.5192037846148
    [Google Scholar]
  15. Gersel StokholmM. IranzoA. ØstergaardK. SerradellM. OttoM. Bacher SvendsenK. GarridoA. VilasD. FedorovaT.D. SantamariaJ. MøllerA. GaigC. HiraokaK. BrooksD.J. OkamuraN. BorghammerP. TolosaE. PaveseN. Cholinergic denervation in patients with idiopathic rapid eye movement sleep behaviour disorder.Eur. J. Neurol.202027464465210.1111/ene.1412731725927
    [Google Scholar]
  16. Perez-LloretS. BarrantesF.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease.NPJ Parkinsons Dis.2016211600110.1038/npjparkd.2016.128725692
    [Google Scholar]
  17. MorrisR. MartiniD.N. MadhyasthaT. KellyV.E. GrabowskiT.J. NuttJ. HorakF. Overview of the cholinergic contribution to gait, balance and falls in Parkinson’s disease.Parkinsonism Relat. Disord.201963203010.1016/j.parkreldis.2019.02.01730796007
    [Google Scholar]
  18. AlbinR.L. van der ZeeS. van LaarT. SarterM. LustigC. MullerM.L.T.M. BohnenN.I. Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson’s disease.Prog. Brain Res.2022269134537110.1016/bs.pbr.2022.01.01135248201
    [Google Scholar]
  19. RunyonK. BuiT. MazanekS. HartleA. MarschalkoK. HoweW.M. Distinct cholinergic circuits underlie discrete effects of reward on attention.Front. Mol. Neurosci.202417142931610.3389/fnmol.2024.142931639268248
    [Google Scholar]
  20. KlinkenbergI. SambethA. BloklandA. Acetylcholine and attention.Behav. Brain Res.2011221243044210.1016/j.bbr.2010.11.03321108972
    [Google Scholar]
  21. PasquiniJ. BrooksD.J. PaveseN. The cholinergic brain in parkinson’s disease.Mov. Disord. Clin. Pract. (Hoboken)2021871012102610.1002/mdc3.1331934631936
    [Google Scholar]
  22. CaiY. NielsenB.E. BoxerE.E. AotoJ. FordC.P. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments.Neuron2021109711371149.e510.1016/j.neuron.2021.01.02833600762
    [Google Scholar]
  23. NelsonA.B. HammackN. YangC.F. ShahN.M. SealR.P. KreitzerA.C. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.Neuron2014821637010.1016/j.neuron.2014.01.02324613418
    [Google Scholar]
  24. van der ZeeS. KanelP. GerritsenM.J.J. BoertienJ.M. SlompA.C. MüllerM.L.T.M. BohnenN.I. SpikmanJ.M. van LaarT. Altered cholinergic innervation in de novo parkinson’s disease with and without cognitive impairment.Mov. Disord.202237471372310.1002/mds.2891335037719
    [Google Scholar]
  25. LiuC. Targeting the cholinergic system in Parkinson’s disease.Acta Pharmacol. Sin.202041445346310.1038/s41401‑020‑0380‑z32132659
    [Google Scholar]
  26. DobryakovaY.V. GerasimovK. SpivakY.S. KorotkovaT. KoryaginaA. DeryabinaA. MarkevichV.A. BolshakovA.P. The induction of long-term potentiation by medial septum activation under urethane anesthesia can alter gene expression in the hippocampus.Int. J. Mol. Sci.202324161297010.3390/ijms24161297037629149
    [Google Scholar]
  27. CrittendenJ.R. ZhaiS. SauvageM. KitsukawaT. BurguièreE. ThomsenM. ZhangH. CostaC. MartellaG. GhiglieriV. PicconiB. PescatoreK.A. UnterwaldE.M. JacksonW.S. HousmanD.E. CaineS.B. SulzerD. CalabresiP. SmithA.C. SurmeierD.J. GraybielA.M. CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors.Neurobiol. Dis.202115810547310.1016/j.nbd.2021.10547334371144
    [Google Scholar]
  28. WolfeC.I.C. HwangE.K. IjomorE.C. ZapataA. HoffmanA.F. LupicaC.R. Muscarinic acetylcholine M2 receptors regulate lateral habenula neuron activity and control cocaine seeking behavior.J. Neurosci.202242285552556310.1523/JNEUROSCI.0645‑22.202235764382
    [Google Scholar]
  29. MateraC. FlamminiL. RiefoloF. DomenichiniG. De AmiciM. BarocelliE. DallanoceC. BertoniS. Novel analgesic agents obtained by molecular hybridization of orthosteric and allosteric ligands.Eur. J. Pharmacol.202087617306110.1016/j.ejphar.2020.17306132179086
    [Google Scholar]
  30. NascimentoF. BroadheadM.J. TetringaE. TsapeE. ZagoraiouL. MilesG.B. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons.eLife20209e5417010.7554/eLife.5417032081133
    [Google Scholar]
  31. OrjatsaloM. PartinenE. WallukatG. AlakuijalaA. PartinenM. Activating autoantibodies against G protein-coupled receptors in narcolepsy type 1.Sleep Med.202177828710.1016/j.sleep.2020.11.03833341642
    [Google Scholar]
  32. PatelA.V. CodeluppiS.A. ErvinK.S.J. St-DenisM.B. CholerisE. BaileyC.D.C. Developmental age and biological sex influence muscarinic receptor function and neuron morphology within layer VI of the medial prefrontal cortex.Cereb. Cortex202232153137315810.1093/cercor/bhab40634864929
    [Google Scholar]
  33. CoppiE. CherchiF. SarchielliE. FuscoI. GuarnieriG. GallinaP. CorradettiR. PedataF. VannelliG.B. PuglieseA.M. MorelliA. Acetylcholine modulates K + and Na + currents in human basal forebrain cholinergic neuroblasts through an autocrine/paracrine mechanism.J. Neurochem.202115741182119510.1111/jnc.1520933030215
    [Google Scholar]
  34. BenoyA. Bin IbrahimM.Z. BehnischT. SajikumarS. Metaplastic reinforcement of long-term potentiation in hippocampal area CA2 by cholinergic receptor activation.J. Neurosci.202141449082909810.1523/JNEUROSCI.2885‑20.202134561235
    [Google Scholar]
  35. RobertV. TherreauL. DavatolhaghM.F. Bernardo-GarciaF.J. ClementsK.N. ChevaleyreV. PiskorowskiR.A. The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation.J. Gen. Physiol.20201524e20191246210.1085/jgp.20191246232069351
    [Google Scholar]
  36. SzczurowskaE. Szánti-PintérE. ChetverikovN. RandákováA. KudováE. JakubíkJ. Modulation of muscarinic signalling in the central nervous system by steroid hormones and neurosteroids.Int. J. Mol. Sci.202224150710.3390/ijms2401050736613951
    [Google Scholar]
  37. QuikM. ZhangD. McGregorM. BordiaT. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease.Biochem. Pharmacol.201597439940710.1016/j.bcp.2015.06.01426093062
    [Google Scholar]
  38. VallésA.S. BarrantesF.J. Nicotinic acetylcholine receptor dysfunction in addiction and in some neurodegenerative and neuropsychiatric diseases.Cells20231216205110.3390/cells1216205137626860
    [Google Scholar]
  39. GottiC. ClementiF. Neuronal nicotinic receptors: From structure to pathology.Prog. Neurobiol.200474636339610.1016/j.pneurobio.2004.09.00615649582
    [Google Scholar]
  40. PapkeR.L. HorensteinN.A. Therapeutic targeting of α7 nicotinic acetylcholine receptors.Pharmacol. Rev.20217331118114910.1124/pharmrev.120.00009734301823
    [Google Scholar]
  41. PirkerW. KatzenschlagerR. HallettM. PoeweW. Pharmacological treatment of tremor in Parkinson’s disease revisited.J. Parkinsons Dis.202313212714410.3233/JPD‑22506036847017
    [Google Scholar]
  42. FreiK. TruongD.D. Medications used to treat tremors.J. Neurol. Sci.202243512019410.1016/j.jns.2022.12019435279634
    [Google Scholar]
  43. MasciaM.M. OrofinoG. CiminoP. CadedduG. ErcoliT. DefazioG. Writing tremor in Parkinson’s disease: Frequency and associated clinical features.J. Neural Transm. (Vienna)2022129121481148510.1007/s00702‑022‑02551‑z36289110
    [Google Scholar]
  44. ZachH. DirkxM.F. RothD. PasmanJ.W. BloemB.R. HelmichR.C. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease.Neurology20209511e1461e147010.1212/WNL.000000000001031632651292
    [Google Scholar]
  45. AcharyaS. KimK.M. Roles of the functional interaction between brain cholinergic and dopaminergic systems in the pathogenesis and treatment of schizophrenia and Parkinson’s disease.Int. J. Mol. Sci.2021229429910.3390/ijms2209429933919025
    [Google Scholar]
  46. KoganemaruG. AbeH. KuramashiA. EbiharaK. MatsuoH. FunahashiH. YasudaK. IkedaT. NishimoriT. IshidaY. Effects of cabergoline and rotigotine on tacrine-induced tremulous jaw movements in rats.Pharmacol. Biochem. Behav.201412610310810.1016/j.pbb.2014.09.01525265240
    [Google Scholar]
  47. PaganoG. RengoG. PasqualettiG. FemminellaG.D. MonzaniF. FerraraN. TagliatiM. Cholinesterase inhibitors for Parkinson’s disease: A systematic review and meta-analysis.J. Neurol. Neurosurg. Psychiatry201586776777310.1136/jnnp‑2014‑30876425224676
    [Google Scholar]
  48. OertelW. PoeweW. WoltersE. De DeynP.P. EmreM. KirschC. HsuC. TekinS. LaneR. Effects of rivastigmine on tremor and other motor symptoms in patients with Parkinson’s disease dementia: A retrospective analysis of a double-blind trial and an open-label extension.Drug Saf.2008311799410.2165/00002018‑200831010‑0000718095748
    [Google Scholar]
  49. GurevichT.Y. ShabtaiH. KorczynA.D. SimonE.S. GiladiN. Effect of rivastigmine on tremor in patients with Parkinson’s disease and dementia.Mov. Disord.200621101663166610.1002/mds.2097116941467
    [Google Scholar]
  50. Gonzalez-LatapiP. BhowmickS.S. SaranzaG. FoxS.H. Non-dopaminergic treatments for motor control in Parkinson’s disease: An update.CNS Drugs202034101025104410.1007/s40263‑020‑00754‑032785890
    [Google Scholar]
  51. BhatS. AcharyaU.R. HagiwaraY. DadmehrN. AdeliH. Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis.Comput. Biol. Med.201810223424110.1016/j.compbiomed.2018.09.00830253869
    [Google Scholar]
  52. BohnenN. KanelP. ScottP. KoeppeR. van Emde BoasM. AlbinR. KerberK. MullerM. Cholinergic brain network deficits associated with vestibular sensory conflict deficits in Parkinson’s disease: Correlation with postural and gait deficits.Parkinsonism Relat. Disord.2023113151610.1016/j.parkreldis.2023.105558
    [Google Scholar]
  53. RoytmanS. PaalanenR. GriggsA. DavidS. PongmalaC. KoeppeR.A. ScottP.J.H. MarusicU. KanelP. BohnenN.I. Cholinergic system correlates of postural control changes in Parkinson’s disease freezers.Brain202314683243325710.1093/brain/awad13437086478
    [Google Scholar]
  54. BohnenN.I. KanelP. ZhouZ. KoeppeR.A. FreyK.A. DauerW.T. AlbinR.L. MüllerM.L.T.M. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease.Ann. Neurol.201985453854910.1002/ana.2543030720884
    [Google Scholar]
  55. PengJ.Y. ShenK.L. FanX.J. QiZ.X. HuangH.W. JiangJ.L. LuJ.H. WangX.Q. FangX.X. YuanW.R. DengQ.X. ChenS. ChenL. ZhuangQ.X. Receptor and ionic mechanism of histamine on mouse dorsolateral striatal neurons.Mol. Neurobiol.202360118320210.1007/s12035‑022‑03076‑y36245064
    [Google Scholar]
  56. TanimuraA. DuY. KondapalliJ. WokosinD.L. SurmeierD.J. Cholinergic interneurons amplify thalamostriatal excitation of striatal indirect pathway neurons in parkinson’s disease models.Neuron20191013444458.e610.1016/j.neuron.2018.12.00430658860
    [Google Scholar]
  57. QiZ.X. ShenK.L. PengJ.Y. FanX.J. HuangH.W. JiangJ.L. LuJ.H. WangX.Q. FangX.X. ChenL. ZhuangQ.X. Histamine bidirectionally regulates the intrinsic excitability of parvalbumin‐positive neurons in the lateral globus pallidus and promotes motor behaviour.Br. J. Pharmacol.2023180101379140710.1111/bph.1601036512485
    [Google Scholar]
  58. CransR.A.J. WoutersE. Valle-LeónM. TauraJ. MassariC.M. Fernández-DueñasV. StoveC.P. CiruelaF. Striatal dopamine D2-muscarinic acetylcholine M1 receptor-receptor interaction in a model of movement disorders.Front. Pharmacol.20221119410.3389/fphar.2020.0019432231561
    [Google Scholar]
  59. LiuL. HuangY. HuangQ. ZhaoZ. YuJ. WangL. Muscarinic acetylcholine M4 receptors play a critical role in oxotremorine-induced DARPP-32 phosphorylation at threonine 75 in isolated medium spiny neurons.Neuropharmacology201711737638610.1016/j.neuropharm.2017.02.02628257887
    [Google Scholar]
  60. GuoM.L. MaoL.M. WangJ.Q. Modulation of M4 muscarinic acetylcholine receptors by interacting proteins.Neurosci. Bull.201026646947310.1007/s12264‑010‑0933‑021113197
    [Google Scholar]
  61. PancaniT. BolarinwaC. SmithY. LindsleyC.W. ConnP.J. XiangZ. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses.ACS Chem. Neurosci.20145431832410.1021/cn500003z24528004
    [Google Scholar]
  62. LaverneG. PesceJ. ReyndersA. CombrissonE. GasconE. MelonC. Kerkerian-Le GoffL. MauriceN. BeurrierC. Cholinergic interneuron inhibition potentiates corticostriatal transmission in direct medium spiny neurons and rescues motor learning in parkinsonism.Cell Rep.202240111103410.1016/j.celrep.2022.11103435793632
    [Google Scholar]
  63. CalabresiP. CentonzeD. GubelliniP. PisaniA. BernardiG. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation.Eur. J. Neurosci.1998109288728959758158
    [Google Scholar]
  64. MoehleM.S. PancaniT. ByunN. YohnS.E. WilsonG.H.III DickersonJ.W. RemkeD.H. XiangZ. NiswenderC.M. WessJ. JonesC.K. LindsleyC.W. RookJ.M. ConnP.J. Cholinergic projections to the substantia Nigra pars reticulata inhibit dopamine modulation of basal ganglia through the M4 muscarinic receptor.Neuron201796613581372.e410.1016/j.neuron.2017.12.00829268098
    [Google Scholar]
  65. ZtaouS. MauriceN. CamonJ. Guiraudie-CaprazG. Kerkerian-Le GoffL. BeurrierC. LibergeM. AmalricM. Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of parkinson’s disease.J. Neurosci.201636359161917210.1523/JNEUROSCI.0873‑16.201627581457
    [Google Scholar]
  66. QianH. KangX. HuJ. ZhangD. LiangZ. MengF. ZhangX. XueY. MaimonR. DowdyS.F. DevarajN.K. ZhouZ. MobleyW.C. ClevelandD.W. FuX.D. Reversing a model of Parkinson’s disease with in situ converted nigral neurons.Nature2020582781355055610.1038/s41586‑020‑2388‑432581380
    [Google Scholar]
  67. WangS. CaiH. CaoZ. LiC. WuT. XuF. QianY. ChenX. YuY. More than just static: Dynamic functional connectivity changes of the thalamic nuclei to cortex in Parkinson’s disease with freezing of gait.Front. Neurol.20211273599910.3389/fneur.2021.73599934721266
    [Google Scholar]
  68. KimK. MüllerM.L.T.M. BohnenN.I. SarterM. LustigC. Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson’s disease patients with defined cholinergic losses.Neuroimage201714929530410.1016/j.neuroimage.2017.02.00628167350
    [Google Scholar]
  69. KarachiC. GrabliD. BernardF.A. TandéD. WattiezN. BelaidH. BardinetE. PrigentA. NothackerH.P. HunotS. HartmannA. LehéricyS. HirschE.C. FrançoisC. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease.J. Clin. Invest.201012082745275410.1172/JCI4264220628197
    [Google Scholar]
  70. RayN.J. LawsonR.A. MartinS.L. SigurdssonH.P. WilsonJ. GalnaB. LordS. AlcockL. DuncanG.W. KhooT.K. O’BrienJ.T. BurnD.J. TaylorJ.P. ReaR.C. BergaminoM. RochesterL. YarnallA.J. Free-water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson’s disease.Brain202314631053106410.1093/brain/awac12735485491
    [Google Scholar]
  71. RuanY. LiK.Y. ZhengR. YanY.Q. WangZ.X. ChenY. LiuY. TianJ. ZhuL.Y. LouH.F. YuY.Q. PuJ.L. ZhangB.R. Cholinergic neurons in the pedunculopontine nucleus guide reversal learning by signaling the changing reward contingency.Cell Rep.202238911043710.1016/j.celrep.2022.11043735235804
    [Google Scholar]
  72. MüllerM.L.T.M. AlbinR.L. KotagalV. KoeppeR.A. ScottP.J.H. FreyK.A. BohnenN.I. Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease.Brain2013136113282328910.1093/brain/awt24724056537
    [Google Scholar]
  73. BohnenN.I. FreyK.A. StudenskiS. KotagalV. KoeppeR.A. ConstantineG.M. ScottP.J.H. AlbinR.L. MüllerM.L.T.M. Extra‐nigral pathological conditions are common in Parkinson’s disease with freezing of gait: An in vivo positron emission tomography study.Mov. Disord.20142991118112410.1002/mds.2592924909584
    [Google Scholar]
  74. WeathersS.P.S. KotagalV. BohnenN.I. ChouK.L. Risky driving and pedunculopontine nucleus-thalamic cholinergic denervation in Parkinson disease.Parkinsonism Relat. Disord.2014201131610.1016/j.parkreldis.2013.08.02124070538
    [Google Scholar]
  75. MottsS.D. SchofieldB.R. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in guinea pigs.Front. Neuroanat.2010413710.3389/fnana.2010.0013721060717
    [Google Scholar]
  76. ShengW. GuoT. ZhouC. WuJ. GaoT. PuJ. ZhangB. ZhangM. YangY. GuanX. XuX. Altered cortical cholinergic network in parkinson’s disease at different stage: A resting-state fMRI study.Front. Aging Neurosci.20211372394810.3389/fnagi.2021.72394834566625
    [Google Scholar]
  77. PooladgarP. SakhabakhshM. TaghvaA. Soleiman-MeigooniS. Donepezil beyond Alzheimer’s disease? A narrative review of therapeutic potentials of donepezil in different diseases.Iran. J. Pharm. Res.2022211e12840810.5812/ijpr‑12840836942075
    [Google Scholar]
  78. MoehleM.S. ConnP.J. Roles of the M4 acetylcholine receptor in the basal ganglia and the treatment of movement disorders.Mov. Disord.20193481089109910.1002/mds.2774031211471
    [Google Scholar]
  79. JellingerK.A. Morphological basis of Parkinson disease-associated cognitive impairment: An update.J. Neur. Transm. (Vienna)2022129897799910.1007/s00702‑022‑02522‑435726096
    [Google Scholar]
  80. AarslandD. BatzuL. HallidayG.M. GeurtsenG.J. BallardC. ChaudhuriK.R. WeintraubD. Parkinson disease-associated cognitive impairment.Nat. Rev. Dis. Primers2021714710.1038/s41572‑021‑00280‑334210995
    [Google Scholar]
  81. JellingerK.A. KorczynA.D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease?BMC Med.20181613410.1186/s12916‑018‑1016‑829510692
    [Google Scholar]
  82. OizumiH. YamasakiK. SuzukiH. OhshiroS. SaitoY. MurayamaS. SugimuraY. HasegawaT. FukunagaK. TakedaA. Phosphorylated alpha‐synuclein in Iba1‐positive macrophages in the skin of patients with Parkinson’s disease.Ann. Clin. Transl. Neurol.2022981136114610.1002/acn3.5161035750465
    [Google Scholar]
  83. BetrouniN. DevignesQ. BayotM. DerambureP. DefebvreL. LeentjensA.F.G. DelvalA. DujardinK. The frontostriatal subtype of mild cognitive impairment in Parkinson’s disease, but not the posterior cortical one, is associated with specific EEG alterations.Cortex202215316617710.1016/j.cortex.2022.04.01535667287
    [Google Scholar]
  84. DevignesQ. BordierC. ViardR. DefebvreL. KuchcinskiG. LeentjensA.F.G. LopesR. DujardinK. Resting‐state functional connectivity in frontostriatal and posterior cortical subtypes in parkinson’s disease‐mild cognitive impairment.Mov. Disord.202237350251210.1002/mds.2888834918782
    [Google Scholar]
  85. KimK. BohnenN.I. MüllerM.L.T.M. LustigC. Compensatory dopaminergic-cholinergic interactions in conflict processing: Evidence from patients with Parkinson’s disease.Neuroimage20191909410610.1016/j.neuroimage.2018.01.02129337277
    [Google Scholar]
  86. BohnenN.I. KanelP. MüllerM.L.T.M. Molecular imaging of the cholinergic system in Parkinson’s disease.Int. Rev. Neurobiol.201814121125010.1016/bs.irn.2018.07.02730314597
    [Google Scholar]
  87. PetrouM. KotagalV. BohnenN.I. An update on brain imaging in parkinsonian dementia.Imaging Med.20124220121310.2217/iim.12.1022768021
    [Google Scholar]
  88. OkkelsN. HorsagerJ. Labrador-EspinosaM. KjeldsenP.L. DamholdtM.F. MortensenJ. VestergårdK. KnudsenK. AndersenK.B. FedorovaT.D. SkjærbækC. GottrupH. HansenA.K. GrotheM.J. BorghammerP. Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies.Brain202314693690370410.1093/brain/awad19237279796
    [Google Scholar]
  89. KucinskiA. PhillipsK.B. Koshy CherianA. SarterM. Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071.Psychopharmacology (Berl.)2020237113715310.1007/s00213‑019‑05354‑531620809
    [Google Scholar]
  90. NazmuddinM. van DalenJ.W. BorraR.J.H. StormezandG.N. van der HornH.J. van der ZeeS. BoertienJ. van LaarT. Postural and gait symptoms in de novo Parkinson’s disease patients correlate with cholinergic white matter pathology.Parkinsonism Relat. Disord.202193434910.1016/j.parkreldis.2021.11.01034784526
    [Google Scholar]
  91. van der ZeeS. MüllerM.L.T.M. KanelP. van LaarT. BohnenN.I. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease.Mov. Disord.202136364265033137238
    [Google Scholar]
  92. ZhangQ. AldridgeG.M. NarayananN.S. AndersonS.W. UcE.Y. Approach to cognitive impairment in Parkinson’s disease.Neurotherapeutics20201741495151010.1007/s13311‑020‑00963‑x33205381
    [Google Scholar]
  93. RadmardS. ZesiewiczT.A. KuoS.H. Evaluation of cerebellar ataxic patients.Neurol. Clin.2023411214410.1016/j.ncl.2022.05.00236400556
    [Google Scholar]
  94. Hünerli-GündüzD. Özbek İşbitirenY. UzunlarH. ÇavuşoğluB. ÇolakoğluB.D. AdaE. GüntekinB. YenerG.G. Reduced power and phase-locking values were accompanied by thalamus, putamen, and hippocampus atrophy in Parkinson’s disease with mild cognitive impairment: An event-related oscillation study.Neurobiol. Agi.20231218810610.1016/j.neurobiolaging.2022.10.00136395544
    [Google Scholar]
  95. AnanthM.R. RajebhosaleP. KimR. TalmageD.A. RoleL.W. Basal forebrain cholinergic signalling: Development, connectivity and roles in cognition.Nat. Rev. Neurosci.202324423325110.1038/s41583‑023‑00677‑x36823458
    [Google Scholar]
  96. GargouriF. GalleaC. MonginM. PyatigorskayaN. ValabregueR. EwenczykC. SarazinM. Yahia-CherifL. VidailhetM. LehéricyS. Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease.Mov. Disord.201934451652510.1002/mds.2756130536444
    [Google Scholar]
  97. BarrettM.J. SperlingS.A. BlairJ.C. FreemanC.S. FlaniganJ.L. SmolkinM.E. ManningC.A. DruzgalT.J. Lower volume, more impairment: Reduced cholinergic basal forebrain grey matter density is associated with impaired cognition in Parkinson disease.J. Neurol. Neurosurg. Psychiat.201990111251125610.1136/jnnp‑2019‑32045031175168
    [Google Scholar]
  98. BarrettM.J. MurphyJ.M. ZhangJ. BlairJ.C. FlaniganJ.L. NawazH. DalrympleW.A. SperlingS.A. PatrieJ. DruzgalT.J. Olfaction, cholinergic basal forebrain degeneration, and cognition in early Parkinson disease.Parkins. Relat. Disord.202190273210.1016/j.parkreldis.2021.07.02434348192
    [Google Scholar]
  99. RongS. LiY. LiB. NieK. ZhangP. CaiT. MeiM. WangL. ZhangY. Meynert nucleus-related cortical thinning in Parkinson’s disease with mild cognitive impairment.Quant. Imag. Med. Surg.20211141554156610.21037/qims‑20‑44433816191
    [Google Scholar]
  100. SchulzJ. PaganoG. Fernández BonfanteJ.A. WilsonH. PolitisM. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease.Brain201814151501151610.1093/brain/awy07229701787
    [Google Scholar]
  101. BerlotR. PirtošekZ. BrezovarS. KoritnikB. TeipelS.J. GrotheM.J. RayN.J. Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson’s disease.Brain Imaging Behav.202216111812910.1007/s11682‑021‑00481‑034176042
    [Google Scholar]
  102. SinclairL. BrentonJ. LiuA.K.L. MacLachlanR. GentlemanS.M. LoveS. Possible contribution of altered cholinergic activity in the visual cortex in visual hallucinations in Parkinson’s disease.J. Neuropsychiat. Clin. Neurosci.202234216817610.1176/appi.neuropsych.2104010334961331
    [Google Scholar]
  103. LenkaA. HerathP. ChristopherR. PalP.K. Psychosis in Parkinson’s disease: From the soft signs to the hard science.J. Neurol. Sci.201737916917610.1016/j.jns.2017.06.01128716235
    [Google Scholar]
  104. O’CallaghanC. LewisS.J.G. Cognition in Parkinson’s disease.Int. Rev. Neurobiol.201713355758310.1016/bs.irn.2017.05.00228802933
    [Google Scholar]
  105. FrancisP.T. PerryE.K. Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies.Mov. Disord.200722Suppl. 17S351S35710.1002/mds.2168318175396
    [Google Scholar]
  106. ManganelliF. VitaleC. SantangeloG. PisciottaC. IodiceR. CozzolinoA. DubbiosoR. PicilloM. BaroneP. SantoroL. Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson’s disease.Brain200913292350235510.1093/brain/awp16619584099
    [Google Scholar]
  107. RussoM. CarrariniC. DonoF. RispoliM.G. Di PietroM. Di StefanoV. FerriL. BonanniL. SensiS.L. OnofrjM. The pharmacology of visual hallucinations in synucleinopathies.Front. Pharmacol.201910137910.3389/fphar.2019.0137931920635
    [Google Scholar]
  108. d’AngremontE. van der ZeeS. SlingerlandS. SlompA.C. de VriesE.F.J. van LaarT. SommerI.E. Cholinergic deficiency in Parkinson’s disease patients with visual hallucinations.Brain2024147103370337810.1093/brain/awae18638864492
    [Google Scholar]
  109. CancelliI. MarconG. BalestrieriM. Factors associated with complex visual hallucinations during antidepressant treatment.Hum. Psychopharmacol.200419857758410.1002/hup.64015495200
    [Google Scholar]
  110. VolginA.D. YakovlevO.A. DeminK.A. AlekseevaP.A. KyzarE.J. CollinsC. NicholsD.E. KalueffA.V. Understanding central nervous system effects of deliriant hallucinogenic drugs through experimental animal models.ACS Chem. Neurosci.201910114315410.1021/acschemneuro.8b0043330252437
    [Google Scholar]
  111. ZarkaliA. McColganP. LeylandL.A. LeesA.J. WeilR.S. Longitudinal thalamic white and grey matter changes associated with visual hallucinations in Parkinson’s disease.J. Neurol. Neurosurg. Psychiat.202293216917910.1136/jnnp‑2021‑32663034583941
    [Google Scholar]
  112. SchumacherJ. RayN.J. HamiltonC.A. BergaminoM. DonaghyP.C. FirbankM. WatsonR. RobertsG. AllanL. BarnettN. O’BrienJ.T. ThomasA.J. TaylorJ.P. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer’s disease.Alzheimers Dement.202319104549456310.1002/alz.1303436919460
    [Google Scholar]
  113. FactorS.A. McDonaldW.M. GoldsteinF.C. The role of neurotransmitters in the development of Parkinson’s disease‐related psychosis.Eur. J. Neurol.201724101244125410.1111/ene.1337628758318
    [Google Scholar]
  114. SinforianiE. PacchettiC. ZangagliaR. PasottiC. ManniR. NappiG. REM behavior disorder, hallucinations and cognitive impairment in Parkinson’s disease: A two‐year follow up.Mov. Disord.200823101441144510.1002/mds.2212618512749
    [Google Scholar]
  115. JanzenJ. van ’t EntD. LemstraA.W. BerendseH.W. BarkhofF. FonckeE.M.J. The pedunculopontine nucleus is related to visual hallucinations in Parkinson’s disease: Preliminary results of a voxel-based morphometry study.J. Neurol.2012259114715410.1007/s00415‑011‑6149‑z21717194
    [Google Scholar]
  116. RemyP. DoderM. LeesA. TurjanskiN. BrooksD. Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system.Brain200512861314132210.1093/brain/awh44515716302
    [Google Scholar]
  117. IshikawaK.I. MotoiY. MizunoY. KuboS.I. HattoriN. Effects of donepezil dose escalation in Parkinson’s patients with dementia receiving long‐term donepezil treatment: An exploratory study.Psychogeriatrics20141429310010.1111/psyg.1204524661498
    [Google Scholar]
  118. WuJ. PistolozziM. LiuS.Y. TanW. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase.Bioorg. Med. Chem.202028511532410.1016/j.bmc.2020.11532432008882
    [Google Scholar]
  119. WeintraubD. MoralesK.H. MobergP.J. BilkerW.B. BalderstonC. DudaJ.E. KatzI.R. SternM.B. Antidepressant studies in Parkinson’s disease: A review and meta‐analysis.Mov. Disord.20052091161116910.1002/mds.2055515954137
    [Google Scholar]
  120. RenJ. DingX. GreerJ.J. Countering opioid-induced respiratory depression in male rats with nicotinic acetylcholine receptor partial agonists varenicline and ABT 594.Anesthesiology202013251197121110.1097/ALN.000000000000312832294065
    [Google Scholar]
  121. YangC. NiH.Y. YinJ.J. ZhouT. GuQ.X. ChenT.T. CaiC.Y. Atorvastatin ameliorates depressive behaviors via regulation of α7nAChR expression by PI3K/Akt-BDNF pathway in mice.Biochem. Biophys. Res. Commun.2022593576410.1016/j.bbrc.2022.01.03435063770
    [Google Scholar]
  122. MeyerP.M. StreckerK. KendziorraK. BeckerG. HesseS. WoelplD. HenselA. PattM. SorgerD. WegnerF. LobsienD. BarthelH. BrustP. GertzH.J. SabriO. SchwarzJ. Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease.Arch. Gen. Psychiatry200966886687710.1001/archgenpsychiatry.2009.10619652126
    [Google Scholar]
  123. SchapiraA.H.V. ChaudhuriK.R. JennerP. Non-motor features of Parkinson disease.Nat. Rev. Neurosci.201718743545010.1038/nrn.2017.6228592904
    [Google Scholar]
  124. GibbonsA.S. ScarrE. McLeanC. SundramS. DeanB. Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects.J. Affect. Disord.2009116318419110.1016/j.jad.2008.11.01519103464
    [Google Scholar]
  125. ScarrE. Muscarinic receptors: Their roles in disorders of the central nervous system and potential as therapeutic targets.CNS Neurosci. Ther.201218536937910.1111/j.1755‑5949.2011.00249.x22070219
    [Google Scholar]
  126. MeleB. VanS. Holroyd-LeducJ. IsmailZ. PringsheimT. GoodarziZ. Diagnosis, treatment and management of apathy in Parkinson’s disease: A scoping review.BMJ Open2020109e03763210.1136/bmjopen‑2020‑03763232907903
    [Google Scholar]
  127. ZhangH. ShanA. GanC. ZhangL. WangL. SunH. YuanY. ZhangK. Impaired interhemispheric synchrony in Parkinson’s disease patients with apathy.J. Affect. Disord.202231828329010.1016/j.jad.2022.09.00636096372
    [Google Scholar]
  128. PollokT.M. KaiserA. KraaijenvangerE.J. MonningerM. BrandeisD. BanaschewskiT. EickhoffS.B. HolzN.E. Neurostructural traces of early life adversities: A meta-analysis exploring age- and adversity-specific effects.Neurosci. Biobehav. Rev.202213510458910.1016/j.neubiorev.2022.10458935189164
    [Google Scholar]
  129. UnderwoodR. KumariV. PetersE. Cognitive and neural models of threat appraisal in psychosis: A theoretical integration.Psychiatry Res.201623913113810.1016/j.psychres.2016.03.01627137974
    [Google Scholar]
  130. SperlingS.A. DruzgalJ. BlairJ.C. FlaniganJ.L. StohlmanS.L. BarrettM.J. Cholinergic nucleus 4 grey matter density is associated with apathy in Parkinson’s disease.Clin. Neuropsychol.202337367669410.1080/13854046.2022.206536235443870
    [Google Scholar]
  131. GraceA.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression.Nat. Rev. Neurosci.201617852453210.1038/nrn.2016.5727256556
    [Google Scholar]
  132. TaylorW.D. ZaldD.H. FelgerJ.C. ChristmanS. ClaassenD.O. HorgaG. MillerJ.M. GiffordK. RogersB. SzymkowiczS.M. RutherfordB.R. Influences of dopaminergic system dysfunction on late-life depression.Mol. Psychiatry202227118019110.1038/s41380‑021‑01265‑034404915
    [Google Scholar]
  133. Perez-LloretS. PeraltaM.C. BarrantesF.J. Pharmacotherapies for Parkinson’s disease symptoms related to cholinergic degeneration.Expert Opin. Pharmacother.201617182405241510.1080/14656566.2016.125418927785919
    [Google Scholar]
  134. XuanM. GuanX. HuangP. ShenZ. GuQ. YuX. XuX. LuoW. ZhangM. Different patterns of gray matter density in early- and middle-late-onset Parkinson’s disease: A voxel-based morphometry study.Brain Imaging Behav.201913117217910.1007/s11682‑017‑9745‑428667375
    [Google Scholar]
  135. Lucas-JiménezO. OjedaN. PeñaJ. Cabrera-ZubizarretaA. Díez-CirardaM. Gómez-EstebanJ.C. Gómez-BeldarrainM.Á. Ibarretxe-BilbaoN. Apathy and brain alterations in Parkinson’s disease: A multimodal imaging study.Ann. Clin. Transl. Neurol.20185780381410.1002/acn3.57830009198
    [Google Scholar]
  136. WenM.C. ThieryA. TsengW.Y.I. KokT. XuZ. ChuaS.T. TanL.C.S. Apathy is associated with white matter network disruption and specific cognitive deficits in Parkinson’s disease.Psychol. Med.202252226427310.1017/S003329172000190732524922
    [Google Scholar]
  137. BohnenN.I. HuM.T.M. Sleep disturbance as potential risk and progression factor for Parkinson’s disease.J. Parkinsons Dis.20199360361410.3233/JPD‑19162731227656
    [Google Scholar]
  138. BedardM.A. AghourianM. Legault-DenisC. PostumaR.B. SoucyJ.P. GagnonJ.F. PelletierA. MontplaisirJ. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: A PET imaging study with 18F-FEOBV.Sleep Med.201958354110.1016/j.sleep.2018.12.02031078078
    [Google Scholar]
  139. MüllerM.L.T.M. BohnenN.I. KotagalV. ScottP.J.H. KoeppeR.A. FreyK.A. AlbinR.L. Clinical markers for identifying cholinergic deficits in Parkinson’s disease.Mov. Disord.201530226927310.1002/mds.2606125393613
    [Google Scholar]
  140. KotagalV. AlbinR.L. MüllerM.L.T.M. KoeppeR.A. ChervinR.D. FreyK.A. BohnenN.I. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease.Ann. Neurol.201271456056810.1002/ana.2269122522445
    [Google Scholar]
  141. SamizadehM.A. FallahH. ToomarisahzabiM. RezaeiF. Rahimi-DaneshM. AkhondzadehS. VaseghiS. Parkinson’s disease: A narrative review on potential molecular mechanisms of sleep disturbances, rem behavior disorder, and melatonin.Brain Sci.202313691410.3390/brainsci1306091437371392
    [Google Scholar]
  142. DuggerB.N. MurrayM.E. BoeveB.F. ParisiJ.E. BenarrochE.E. FermanT.J. DicksonD.W. Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder.Neuropathol. Appl. Neurobiol.201238214215210.1111/j.1365‑2990.2011.01203.x21696423
    [Google Scholar]
  143. HorsagerJ. OkkelsN. HansenA.K. DamholdtM.F. AndersenK.H. FedorovaT.D. MunkO.L. DanielsenE.H. PaveseN. BrooksD.J. BorghammerP. Mapping cholinergic synaptic loss in parkinson’s disease: An [18F]FEOBV pet case-control study.J. Parkinsons Dis.20221282493250610.3233/JPD‑22348936336941
    [Google Scholar]
  144. VersaceV. LangthalerP.B. SebastianelliL. HöllerY. BrigoF. OrioliA. SaltuariL. NardoneR. Impaired cholinergic transmission in patients with Parkinson’s disease and olfactory dysfunction.J. Neurol. Sci.2017377556110.1016/j.jns.2017.03.04928477708
    [Google Scholar]
  145. ZhangW.F. SunC.C. ShaoY.F. ZhouZ. HouY.P. LiA.A. Partial depletion of dopaminergic neurons in the Substantia nigra impairs olfaction and alters neural activity in the olfactory bulb.Sci. Rep.20199125410.1038/s41598‑018‑36538‑230670747
    [Google Scholar]
  146. HöglingerG.U. Alvarez-FischerD. Arias-CarriónO. DjufriM. WindolphA. KeberU. BortaA. RiesV. SchwartingR.K.W. SchellerD. OertelW.H. A new dopaminergic nigro-olfactory projection.Acta Neuropathol.2015130333334810.1007/s00401‑015‑1451‑y26072303
    [Google Scholar]
  147. LauM.Y.H. GadiwallaS. JonesS. GallianoE. Different electrophysiological profiles of genetically labelled dopaminergic neurons in the mouse midbrain and olfactory bulb.Eur. J. Neurosci.20245971480149910.1111/ejn.1623938169095
    [Google Scholar]
  148. YuanY. MaX. MiX. QuL. LiangM. LiM. WangY. SongN. XieJ. Dopaminergic neurodegeneration in the substantia nigra is associated with olfactory dysfunction in mice models of Parkinson’s disease.Cell Death Discov.20239138810.1038/s41420‑023‑01684‑837865662
    [Google Scholar]
  149. De VirgilioA. GrecoA. FabbriniG. InghilleriM. RizzoM.I. GalloA. ConteM. RosatoC. Ciniglio AppianiM. de VincentiisM. Parkinson’s disease: Autoimmunity and neuroinflammation.Autoimmun. Rev.201615101005101110.1016/j.autrev.2016.07.02227497913
    [Google Scholar]
  150. Ibarra-GutiérrezM.T. Serrano-GarcíaN. Orozco-IbarraM. Rotenone-induced model of parkinson’s disease: Beyond mitochondrial complex I inhibition.Mol. Neurobiol.20236041929194810.1007/s12035‑022‑03193‑836593435
    [Google Scholar]
  151. ZhangS. XiaoQ. LeW. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein.PLoS One2015103e011992810.1371/journal.pone.011992825799501
    [Google Scholar]
  152. CampoloJ. De MariaR. CozziL. ParoliniM. BernardiS. ProserpioP. NobiliL. GelosaG. PiccoloI. AgostoniE.C. TrivellaM.G. MarracciniP. Antioxidant and inflammatory biomarkers for the identification of prodromal Parkinson’s disease.J. Neurol. Sci.201637016717210.1016/j.jns.2016.09.05027772753
    [Google Scholar]
  153. LiR. LuY. ZhangQ. LiuW. YangR. JiaoJ. LiuJ. GaoG. YangH. Piperine promotes autophagy flux by P2RX4 activation in SNCA /α-synuclein-induced Parkinson disease model.Autophagy202218355957510.1080/15548627.2021.193789734092198
    [Google Scholar]
  154. TremblayC. FrasnelliJ. Olfactory–trigeminal interactions in patients with Parkinson’s disease.Chem. Senses202146bjab01810.1093/chemse/bjab01833835144
    [Google Scholar]
  155. GeorgiopoulosC. WarntjesM. DizdarN. ZachrissonH. EngströmM. HallerS. LarssonE.M. Olfactory impairment in Parkinson’s disease studied with diffusion tensor and magnetization transfer imaging.J. Parkinsons Dis.20177230131110.3233/JPD‑16106028482644
    [Google Scholar]
  156. CopeZ.A. LavadiaM.L. JoosenA.J.M. van de CappelleC.J.A. LaraJ.C. HuvalA. KwiatkowskiM.K. PicciottoM.R. MineurY.S. DulcisD. YoungJ.W. Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus.Cogn. Affect. Behav. Neurosci.20202061173118310.3758/s13415‑020‑00824‑232794101
    [Google Scholar]
/content/journals/cn/10.2174/011570159X368923250313045859
Loading
/content/journals/cn/10.2174/011570159X368923250313045859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test