Skip to content
2000
Volume 23, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The dysfunction of different cells lies in the pathogenesis of neurological diseases and is usually associated with cellular stress. Various stressors trigger the integrated stress response (ISR) signaling, whose highly conserved mechanism is primarily aimed at protecting a stress-exposed cell to cope as safely as possible with such stressful conditions. On the contrary, if a cell is unable to cope with excessive stress, the ISR can induce apoptosis. The ISR mechanism, whose main stage is the inhibition of translation machinery in favor of the synthesis of specific proteins, including the transcription factors ATF3, ATF4, CEBPA, and CEBPB, which function only as dimers and determine the uniqueness of the ISR response in each individual case, thus ensures different outcomes of the ISR. Inhibition of global protein synthesis is achieved through phosphorylation of eIF2α by PERK, HRI, PKR, or GCN2. To date, a number of compounds have been developed that modulate the ISR, including activators and inhibitors of the abovementioned ISR kinases as well as modulators of p-eIF2α dephosphorylation. They target different ISR stages, allowing a broad ISR modulation strategy. At the same time, there are no drugs that are both exceptionally safe and effective for the treatment of several neurological diseases, so there is an urgent need for new approaches to the treatment of these disorders. In this review, we represent ISR signaling as an important participant in the pathogenesis of neurological diseases. We also describe how various ISR modulators may become a part of future therapies for these diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X361653250213114821
2025-02-24
2025-10-23
Loading full text...

Full text loading...

References

  1. SteinmetzJ.D. SeeherK.M. SchiessN. NicholsE. CaoB. ServiliC. CavalleraV. CousinE. HaginsH. MobergM.E. MehlmanM.L. AbateY.H. AbbasJ. AbbasiM.A. AbbasianM. AbbastabarH. AbdelmassehM. AbdollahiM. AbdollahiM. AbdollahifarM-A. Abd-RabuR. AbdulahD.M. AbdullahiA. AbediA. AbediV. ZuńigaA.R.A. AbidiH. AbiodunO. AboagyeR.G. AbolhassaniH. AboyansV. AbrhaW.A. AbualhasanA. Abu-GharbiehE. AburuzS. AdamuL.H. AddoI.Y. AdebayoO.M. AdekanmbiV. AdekiyaT.A. AdikusumaW. AdnaniQ.E.S. AdraS. AfeworkT. AfolabiA.A. AfrazA. AfzalS. AghamiriS. AgodiA. Agyemang-DuahW. AhinkorahB.O. AhmadA. AhmadD. AhmadS. AhmadzadeA.M. AhmedA. AhmedA. AhmedH. AhmedJ.Q. AhmedL.A. AhmedM.B. AhmedS.A. AjamiM. AjiB. AjumobiO. AkadeS.E. AkbariM. AkbarialiabadH. AkhlaghiS. AkinosoglouK. AkinyemiR.O. AkondeM. HasanA.S.M. AlahdabF. AL-AhdalT.M.A. Al-amerR.M. AlbashtawyM. AlBatainehM.T. AldawsariK.A. AlemiH. AlemiS. AlgammalA.M. Al-GheethiA.A.S. AlhalaiqaF.A.N. AlhassanR.K. AliA. AliE.A. AliL. AliM.U. AliM.M. AliR. AliS. AliS.S.S. AliZ. AlifS.M. AlimohamadiY. AliyiA.A. AljofanM. AljunidS.M. AlladiS. AlmazanJ.U. AlmustanyirS. Al-OmariB. AlqahtaniJ.S. AlqasmiI. AlqutaibiA.Y. Al-Shahi SalmanR. AltaanyZ. Al-TawfiqJ.A. AltirkawiK.A. Alvis-GuzmanN. Al-WorafiY.M. AlyH. AlyS. AlzoubiK.H. AmaniR. AmindarolzarbiA. AmiriS. Amirzade-IranaqM.H. AmuH. AmugsiD.A. AmusaG.A. AmzatJ. AncuceanuR. AnderliniD. AndersonD.B. AndreiC.L. AndroudiS. AngappanD. AngesomT.W. AnilA. Ansari-MoghaddamA. AnwerR. ArafatM. AravkinA.Y. AredaD. AriffinH. ArifinH. ArkewM. ÄrnlövJ. AroojM. ArtamonovA.A. ArtantiK.D. ArulebaR.T. Asadi-PooyaA.A. AsenaT.F. Asghari-JafarabadiM. AshrafM. AshrafT. AtalellK.A. AthariS.S. AtinafuB.T.T. AtorkeyP. AtoutM.M.W. AtreyaA. AujayebA. AvanA. QuintanillaA.B.P. AyatollahiH. AyindeO.O. AyyoubzadehS.M. AzadnajafabadS. AziziZ. AzizianK. AzzamA.Y. BabaeiM. BadarM. BadiyeA.D. BaghdadiS. BagheriehS. BaiR. BaigA.A. BalakrishnanS. BalallaS. BaltatuO.C. BanachM. BandyopadhyayS. BanerjeeI. BaranM.F. BarbozaM.A. BarchittaM. BardhanM. Barker-ColloS.L. BärnighausenT.W. BarrowA. BashashD. BashiriH. BashiruH.A. BasiruA. BassoJ.D. BasuS. BatihaA-M.M. BatraK. BauneB.T. BediN. BegdeA. BegumT. BehnamB. BehnoushA.H. BeiranvandM. BéjotY. BekeleA. BeleteM.A. BelgaumiU.I. BemanalizadehM. BenderR.G. BenforB. BennettD.A. BensenorI.M. BericeB. BettencourtP.J.G. BeyeneK.A. BhadraA. BhagatD.S. BhangdiaK. BhardwajN. BhardwajP. BhargavaA. BhaskarS. BhatA.N. BhatV. BhattiG.K. BhattiJ.S. BhattiR. BijaniA. BikbovB. BilalagaM.M. BiswasA. BitarafS. BitraV.R. BjørgeT. BodolicaV. BodunrinA.O. BoloorA. BraithwaiteD. BrayneC. BrennerH. BrikoA. VegaB.M.L. BrownJ. BudkeC.M. BuonsensoD. BurkartK. BurnsR.A. BustanjiY. ButtM.H. ButtN.S. ButtZ.A. CabralL.S. Caetano dos SantosF.L. CalinaD. Campos-NonatoI.R. CaoC. CarabinH. CárdenasR. CarrerasG. CarvalhoA.F. Castańeda-OrjuelaC.A. CasulliA. Catalá-LópezF. CatapanoA.L. CayeA. CegolonL. CenderadewiM. CerinE. Chacón-UscamaitaP.R. ChanJ.S.K. ChanieG.S. CharanJ. ChattuV.K. AbebeC.E. ChenH. ChenJ. ChiG. ChichagiF. ChidambaramS.B. ChimoriyaR. ChingP.R. ChitheerA. ChongY.Y. ChopraH. ChoudhariS.G. ChowdhuryE.K. ChowdhuryR. ChristensenH. ChuD-T. ChukwuI.S. ChungE. CoberlyK. ColumbusA. ComachioJ. CondeJ. CortesiP.A. CostaV.M. CoutoR.A.S. CriquiM.H. Cruz-MartinsN. OhadiD.M.A. DadanaS. DadrasO. DaiX. DaiZ. D’AmicoE. DanawiH.A. DandonaL. DandonaR. DarwishA.H. DasS. DasS. DascaluA.M. DashN.R. DashtiM. Hozl.D.F.P. la Torre-Luqued.A. LeoD.D. DeanF.E. DehghanA. DehghanA. DejeneH. DemantD. DemetriadesA.K. DemissieS. DengX. DesaiH.D. DevanbuV.G.C. DhamaK. DharmaratneS.D. DhimalM. Dias da SilvaD. DiazD. DibasM. DingD.D. DinuM. DiracM.A. DiressM. DoT.C. DoT.H.P. DoanK.D.K. DodangehM. DoheimM.F. DokovaK.G. DongarwarD. DsouzaH.L. DubeJ. DuraisamyS. DurojaiyeO.C. DuttaS. DziedzicA.M. EdinurH.A. EissazadeN. EkholuenetaleM. EkundayoT.C. NahasE.N. SayedE.I. NajafiE.M.A. ElbaraziI. ElemamN.M. ElgarF.J. ElgendyI.Y. ElhabashyH.R. ElhadiM. EliloL.T. EllenbogenR.G. ElmeligyO.A.A. ElmonemM.A. ElshaerM. ElsohabyI. EmamverdiM. EmetoT.I. EndresM. EsezoborC.I. EskandariehS. FadaeiA. FagbamigbeA.F. FahimA. FaramarziA. FaresJ. KouhanjaniF.M. FaroA. FarzadfarF. FatehizadehA. FathiM. FathiS. FatimaS.A.F. FeizkhahA. FereshtehnejadS-M. FerrariA.J. FerreiraN. FetensaG. FirouraghiN. FischerF. FonsecaA.C. ForceL.M. FornariA. ForoutanB. FukumotoT. GadanyaM.A. GaidhaneA.M. GalaliY. GalehdarN. GanQ. GandhiA.P. GanesanB. GardnerW.M. GargN. GauS-Y. GautamR.K. GebreT. GebrehiwotM. GebremeskelG.G. GebreslassieH.G. GetacherL. YazdiG.B. GhadirianF. GhaffarpasandF. GhanbariR. GhasemiM.R. GhazyR.M. GhimireS. GholamiA. GholamrezanezhadA. GhotbiE. GhozyS. GialluisiA. GillP.S. GlasstetterL.M. GnedovskayaE.V. GolchinA. GolechhaM. GoleijP. GolinelliD. Gomes-NetoM. GoulartA.C. GoyalA. GrayR.J. GrivnaM. GuadieH.A. GuanB. GuarducciG. GuicciardiS. GunawardaneD.A. GuoH. GuptaB. GuptaR. GuptaS. GuptaV.B. GuptaV.K. GutiérrezR.A. HabibzadehF. HachinskiV. HaddadiR. HadeiM. HadiN.R. HaepN. HaileT.G. Haj-MirzaianA. HallB.J. HalwaniR. HameedS. HamiduzzamanM. HammoudA. HanH. HanifiN. HankeyG.J. HannanM.A. HaoJ. HarapanH. HareruH.E. HargonoA. HarliantoN.I. HaroJ.M. HartmanN.N. HasaballahA.I. HasanF. HasaniH. HasanianM. HassanA. HassanS. HassanipourS. HassankhaniH. HassenM.B. HauboldJ. HayS.I. HayatK. HegazyM.I. HeidariG. HeidariM. Heidari-SoureshjaniR. HesamiH. HezamK. HiraikeY. HoffmanH.J. HollaR. HopfK.P. HoritaN. HossainM.M. HossainM.B. HossainS. HosseinzadehH. HosseinzadehM. HostiucS. HuC. HuangJ. HudaM.N. HussainJ. HusseinN.R. HuynhH-H. HwangB-F. IbitoyeS.E. IlaghiM. IlesanmiO.S. IlicI.M. IlicM.D. ImmuranaM. IravanpourF. IslamS.M.S. IsmailF. IsoH. IsolaG. IwagamiM. IwuC.C.D. IyerM. JaanA. JacobL. Jadidi-NiaraghF. JafariM. JafariniaM. JafarzadehA. JahankhaniK. JahanmehrN. JahramiH. JaiswalA. JakovljevicM. JamoraR.D.G. JanaS. JavadiN. JavedS. JaveedS. JayapalS.K. JayaramS. JiangH. JohnsonC.O. JohnsonW.D. JokarM. JonasJ.B. JosephA. JosephN. JoshuaC.E. JürissonM. KabirA. KabirZ. KabitoG.G. KadashettiV. KafiF. KalaniR. KalantarF. KaliyadanF. KamathA. KamathS. KanchanT. KandelA. KandelH. KanmodiK.K. KarajizadehM. KaramiJ. KaranthS.D. KarayeI.M. KarchA. KarimiA. KarimiH. BehnaghK.A. KasraeiH. KassebaumN.J. KauppilaJ.H. KaurH. KaurN. KayodeG.A. KazemiF. Keikavoosi-AraniL. KellerC. KeykhaeiM. KhadembashiriM.A. KhaderY.S. KhafaieM.A. KhajuriaH. KhalajiA. KhamesipourF. KhammarniaM. KhanM. KhanM.A.B. KhanY.H. SuhebK.M.Z. KhanmohammadiS. KhannaT. KhatabK. KhatatbehH. KhatatbehM.M. KhateriS. KhatibM.N. KashaniK.H.R. KhonjiM.S. khorashadizadehF. KhormaliM. KhubchandaniJ. KianS. KimG. KimJ. KimM.S. KimY.J. KimokotiR.W. KisaA. KisaS. KivimäkiM. KochharS. KolahiA-A. KolyK.N. KompaniF. KoroshetzW.J. KosenS. AramiK.M. KoyanagiA. KravchenkoM.A. KrishanK. KrishnamoorthyV. DefoK.B. KuddusM.A. KumarA. KumarG.A. KumarM. KumarN. KumsaN.B. KunduS. KurniasariM.D. KusumaD. KuttikkattuA. KyuH.H. VecchiaL.C. LadanM.A. LahariyaC. LaksonoT. LalD.K. LallukkaT. LámJ. LamiF.H. LandiresI. LangguthB. LasradoS. LatiefK. LatifinaibinK. LauK.M-M. LaurensM.B. LawalB.K. LeL.K.D. LeT.T.T. LeddaC. LeeM. LeeS. LeeS.W. LeeW-C. LeeY.H. LeonardiM. LerangoT.L. LiM-C. LiW. LigadeV.S. LimS.S. LinehanC. LiuC. LiuJ. LiuW. LoC-H. LoW.D. LoboS.W. LogroscinoG. LopesG. LopukhovP.D. LorenzoviciL. LorkowskiS. LoureiroJ.A. LubindaJ. LucchettiG. SauteL.R. MaZ.F. MabrokM. MachoyM. MadadizadehF. Magdy Abd El RazekM. MaghazachiA.A. MaghbouliN. MahjoubS. MahmoudiM. MajeedA. Malagón-RojasJ.N. RadM.E. MalhotraK. MalikA.A. MalikI. MallhiT.H. MaltaD.C. ManilalA. MansouriV. MansourniaM.A. MarasiniB.P. MaratebH.R. MaroufiS.F. Martinez-RagaJ. MartiniS. Martins-MeloF.R. MartorellM. MärzW. MarzoR.R. MassanoJ. MathangasingheY. MathewsE. MaudeR.J. MaugeriA. MaulikP.K. MayeliM. MazaheriM. McAlindenC. McGrathJ.J. MeenaJ.K. MehndirattaM.M. Mendez-LopezM.A.M. MendozaW. Mendoza-CanoO. MenezesR.G. MeratiM. MeretojaA. MerkinA. MershaA.M. MestrovicT. MiT. MiazgowskiT. MichalekI.M. MihretieE.T. MinhL.H.N. MirfakhraieR. MiricaA. MirrakhimovE.M. MirzaeiM. MisganawA. MisraS. MithraP. MizanaB.A. MohamadkhaniA. MohamedN.S. MohammadiE. MohammadiH. MohammadiS. MohammadiS. MohammadshahiM. MohammedM. MohammedS. MohammedS. MohanS. Mojiri-forushaniH. MokaN. MokdadA.H. MolinaroS. MöllerH. MonastaL. MoniruzzamanM. MontazeriF. MoradiM. MoradiY. Moradi-LakehM. MoragaP. MorovatdarN. MorrisonS.D. MosapourA. MosserJ.F. MossialosE. MotaghinejadM. MousaviP. MousaviS.E. MubarikS. MuccioliL. MughalF. MukoroG.D. MulitaA. MulitaF. MusaigwaF. MustafaA. MustafaG. MuthuS. NagarajanA.J. NaghaviP. NaikG.R. NainuF. NairT.S. NajmuldeenH.H.R. AnsariN.N. NambiG. AreshtanabN.H. NargusS. NascimentoB.R. NaserA.Y. NashwanA.J.J. NasooriH. NasreldeinA. NattoZ.S. NaumanJ. NayakB.P. Nazri-PanjakiA. NegareshM. NegashH. NegoiI. NegoiR.I. NegruS.M. NejadghaderiS.A. NematollahiM.H. NesbitO.D. NewtonC.R.J. NguyenD.H. NguyenH.T.H. NguyenH.Q. NguyenN-T.T. NguyenP.T. NguyenV.T. NiaziR.K. NikolouzakisT.K. NiranjanV. NnyanziL.A. NomanE.A. NorooziN. NorrvingB. NoubiapJ.J. Nri-EzediC.A. NtaiosG. Nuńez-SamudioV. NurrikaD. OanceaB. OdetokunI.A. O’DonnellM.J. OgunsakinR.E. OgutaJ.O. OhI-H. Okati-AliabadH. OkekeS.R. OkekunleA.P. OkonjiO.C. OkwuteP.G. OlagunjuA.T. OlaiyaM.T. OlanaM.D. OlatubiM.I. OliveiraG.M.M. OlufadewaI.I. OlusanyaB.O. BaliO.A. OngS. OnwujekweO.E. OrdakM. OrjiA.U. Ortega-AltamiranoD.V. OsuagwuU.L. OtstavnovN. OtstavnovS.S. OuyahiaA. OwolabiM.O. AP.M.P. Pacheco-BarriosK. PadubidriJ.R. PalP.K. PalangeP.N. PalladinoC. PalladinoR. Palma-AlvarezR.F. PanF. PanagiotakosD. Panda-JonasS. PandeyA. PandeyA. PandianJ.D. PangaribuanH.U. PantazopoulosI. PardhanS. ParijaP.P. ParikhR.R. ParkS. ParthasarathiA. PashaeiA. PatelJ. PatilS. PatouliasD. PawarS. PedersiniP. PensatoU. PereiraD.M. PereiraJ. PereiraM.O. PeresM.F.P. PericoN. PernaS. PetcuI-R. Petermann-RochaF.E. PhamH.T. PhillipsM.R. Pinilla-MonsalveG.D. PiradovM.A. PlotnikovE. PoddigheD. PolatB. PoluruR. PondC.D. PoudelG.R. PouraminiA. Pourbagher-ShahriA.M. PourfridoniM. PourtaheriN. PrakashP.Y. PrakashS. PrakashV. PratesE.J.S. PritchettN. PurnobasukiH. QasimN.H. QatteaI. QianG. RadhakrishnanV. RaeeP. ShahrakiR.H. RafiqueI. RaggiA. RaghavP.R. RahatiM.M. RahimF. RahimiZ. RahimifardM. RahmanM.O. RahmanM.H.U. RahmanM. RahmanM.A. RahmaniA.M. RahmaniS. YoushanloueiR.H. RahmatiM. MoolamballyR.S. Rajabpour-SanatiA. RamadanH. RamasamyS.K. RamasubramaniP. RamazanuS. RancicN. RaoI.R. RaoS.J. RapakaD. RashediV. RashidA.M. RashidiM-M. AlavijehR.M. Rasouli-SaravaniA. RawafS. RazoC. RedwanE.M.M. BanaR.A. RemuzziG. RezaeiN. RezaeiN. RezaeiN. RezaeianM. RheeT.G. RiadA. RobinsonS.R. RodriguesM. RodriguezJ.A.B. RoeverL. RogowskiE.L.B. RomoliM. RonfaniL. RoyP. PramanikR.K. RubagottiE. RuizM.A. RussT.C. SunnerhagenS.K. SaadA.M.A. SaadatianZ. SaberK. SaberiKamarposhtiM. SaccoS. SaddikB. SadeghiE. SadeghianS. SaeedU. SaeedU. SafdarianM. SafiS.Z. SagarR. SagoeD. Saheb Sharif-AskariF. Saheb Sharif-AskariN. SahebkarA. SahooS.S. SahraianM.A. SajediS.A. SakshaugJ.W. SalehM.A. OmranS.H. SalemM.R. SalimiS. KafilS.H. SamadzadehS. SamargandyS. SamodraY.L. SamuelV.P. SamyA.M. SanadgolN. SanjeevR.K. SanmarchiF. SantomauroD.F. SantriI.N. Santric-MilicevicM.M. SaravananA. SarveazadA. SatpathyM. SaylanM. SayyahM. ScarmeasN. SchlaichM.P. SchuermansA. SchwarzingerM. SchwebelD.C. SelvarajS. SendekieA.K. SenguptaP. SenthilkumaranS. SerbanD. SergindoM.T. SethiY. SeyedAlinaghiS.A. SeylaniA. ShabaniM. ShabanyM. ShafieM. ShahabiS. ShahbandiA. ShahidS. Shahraki-SanaviF. ShahsavariH.R. ShahwanM.J. ShaikhM.A. ShajiK.S. ShamS. ShamaA.T.T. ShamimM.A. Shams-BeyranvandM. ShamsiM.A. ShanawazM. SharathM. SharfaeiS. SharifanA. SharmaM. SharmaR. ShashamoB.B. ShayanM. SheikhiR.A. ShekharS. ShenJ. ShenoyS.M. ShettyP.H. ShiferawD.S. ShigematsuM. ShiriR. ShittuA. ShivakumarK.M. ShokriF. ShoolS. ShorofiS.A. ShresthaS. TankwanchiS.A.B. SiddigE.E. SigfusdottirI.D. SilvaJ.P. SilvaL.M.L.R. SinaeiE. SinghB.B. SinghG. SinghP. SinghS. SirotaS.B. SivakumarS. SohagA.A.M. SolankiR. SoleimaniH. SolikhahS. SolomonY. SolomonY. SongS. SongY. SotoudehH. SpartalisM. StarkB.A. StarnesJ.R. StarodubovaA.V. SteinD.J. SteinerT.J. StovnerL.J. SulemanM. AbdulkaderS.R. SultanaA. SunJ. SunkersingD. SunnyA. SusiantiH. SwainC.K. SzetoM.D. Tabarés-SeisdedosR. TabatabaeiS.M. TabatabaiS. TabishM. TaheriM. TahvildariA. TajbakhshA. TampaM. TamuziJ.J.L.L. TanK-K. TangH. TarekeM. TariganI.U. TatN.Y. TatV.Y. OliaeeT.R. TavangarS.M. TavasolA. TeferaY.M. Tehrani-BanihashemiA. TemesgenW.A. TemsahM-H. TeramotoM. TesfayeA.H. TesfayeE.G. TeslerR. ThakaliO. ThangarajuP. ThapaR. ThaparR. ThomasN.K. ThriftA.G. TicoaluJ.H.V. TillawiT. ToghroliR. TonelliM. Tovani-PaloneM.R. TrainiE. TranN.M. TranN-H. TranP.V. TromansS.J. TruelsenT.C. TruyenT.T.T.T. TsatsakisA. TsegayG.M. TsermpiniE.E. TualekaA.R. TufaD.G. UbahC.S. UdoakangA.J. UlhaqI. UmairM. UmakanthanS. UmapathiK.K. UnimB. UnnikrishnanB. VaithinathanA.G. VakilianA. TahbazV.S. ValizadehR. Van den EyndeJ. VartP. VarthyaS.B. VasankariT.J. VaziriS. VellingiriB. VenketasubramanianN. VerrasG-I. VervoortD. VillafańeJ.H. VillaniL. VelozV.A.F. ViskadourouM. VladimirovS.K. VlassovV. VolovatS.R. VuL.T. VujcicI.S. WagayeB. WaheedY. WahoodW. WaldeM.T. WangF. WangS. WangY. WangY-P. WaqasM. WarisA. WeerakoonK.G. WeintraubR.G. WeldemariamA.H. WestermanR. WhisnantJ.L. WickramasingheD.P. WickramasingheN.D. WillekensB. WilnerL.B. WinklerA.S. WolfeC.D.A. WuA-M. HansonW.S. XuS. XuX. YadollahpourA. YaghoubiS. YahyaG. YamagishiK. YangL. YanoY. YaoY. YehualashetS.S. YeshanehA. YesiltepeM. YiS. YiğitA. YiğitV. YonD.K. YonemotoN. YouY. YounisM.Z. YuC. YusufH. ZadeyS. ZahediM. ZakhamF. ZakiN. ZaliA. ZamagniG. ZandR. ZandiehG.G.Z. ZangiabadianM. ZarghamiA. ZastrozhinM.S. ZeariyaM.G.M. ZegeyeZ.B. ZeukengF. ZhaiC. ZhangC. ZhangH. ZhangY. ZhangZ-J. ZhaoH. ZhaoY. ZhengP. ZhouH. ZhuB. ZhumagaliulyA. ZielińskaM. ZikargY.T. ZoladlM. MurrayC.J.L. OngK.L. FeiginV.L. VosT. DuaT. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021.Lancet Neurol.202423434438110.1016/S1474‑4422(24)00038‑338493795
    [Google Scholar]
  2. VashistA. ManickamP. RaymondA.D. AriasA.Y. KolishettiN. VashistA. AriasE. NairM. Recent advances in nanotherapeutics for neurological disorders.ACS Appl. Bio Mater.2023672614262110.1021/acsabm.3c0025437368486
    [Google Scholar]
  3. World Health Organization. Intersectoral global action plan on epilepsy and other neurological disorders 2022-2031.2022Available from: https://www.who.int/publications/i/item/9789240076624
  4. WekR.C. AnthonyT.G. StaschkeK.A. Surviving and adapting to stress: Translational control and the integrated stress response.Antioxid. Redox Signal.2023394-635137310.1089/ars.2022.012336943285
    [Google Scholar]
  5. NeillG. MassonG.R. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response.Front. Mol. Neurosci.202316111225310.3389/fnmol.2023.111225336825279
    [Google Scholar]
  6. Pakos-ZebruckaK. KorygaI. MnichK. LjujicM. SamaliA. GormanA.M. The integrated stress response.EMBO Rep.201617101374139510.15252/embr.20164219527629041
    [Google Scholar]
  7. NwosuG.O. PowellJ.A. PitsonS.M. Targeting the integrated stress response in hematologic malignancies.Exp. Hematol. Oncol.20221119410.1186/s40164‑022‑00348‑036348393
    [Google Scholar]
  8. ZhangG. WangX. RothermelB.A. LavanderoS. WangZ.V. The integrated stress response in ischemic diseases.Cell. Death Differ.202229475075710.1038/s41418‑021‑00889‑734743204
    [Google Scholar]
  9. EmanuelliG. Nassehzadeh-TabrizN. MorrellN.W. MarciniakS.J. The integrated stress response in pulmonary disease.Eur. Respir. Rev.20202915720018410.1183/16000617.0184‑202033004527
    [Google Scholar]
  10. KalininA. ZubkovaE. MenshikovM. Integrated stress response (ISR) pathway: Unraveling its role in cellular senescence.Int. J. Mol. Sci.202324241742310.3390/ijms24241742338139251
    [Google Scholar]
  11. DerisbourgM.J. HartmanM.D. DenzelM.S. Modulating the integrated stress response to slow aging and ameliorate age-related pathology.Nature Aging20211976076810.1038/s43587‑021‑00112‑935146440
    [Google Scholar]
  12. RutkowskiD.T. KaufmanR.J. All Roads Lead to ATF4.Dev. Cell20034444244410.1016/S1534‑5807(03)00100‑X12689582
    [Google Scholar]
  13. VattemK.M. WekR.C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells.Proc. Natl. Acad. Sci. USA200410131112691127410.1073/pnas.040054110115277680
    [Google Scholar]
  14. KimballS.R. Eukaryotic initiation factor eIF2.Int. J. Biochem. Cell Biol.1999311252910.1016/S1357‑2725(98)00128‑910216940
    [Google Scholar]
  15. BogoradA.M. LinK.Y. MarintchevA. Novel mechanisms of eIF2B action and regulation by eIF2α phosphorylation.Nucleic Acids Res.20174520119621197910.1093/nar/gkx84529036434
    [Google Scholar]
  16. DonnellyN. GormanA.M. GuptaS. SamaliA. The eIF2α kinases: Their structures and functions.Cell. Mol. Life Sci.201370193493351110.1007/s00018‑012‑1252‑623354059
    [Google Scholar]
  17. DoddB. MoonS.L. The role of protein kinase R in dystonia.Dystonia202321171810.3389/dyst.2023.11718
    [Google Scholar]
  18. Rozpędek-KamińskaW. SiweckaN. WawrzynkiewiczA. WojtczakR. PytelD. DiehlJ.A. MajsterekI. The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases.Int. J. Mol. Sci.2020216210810.3390/ijms2106210832204380
    [Google Scholar]
  19. ChakrabartyY. YangZ. ChenH. ChanD.C. The HRI branch of the integrated stress response selectively triggers mitophagy.Mol. Cell202484610901100.e610.1016/j.molcel.2024.01.01638340717
    [Google Scholar]
  20. MaoD. ReuterC.M. RuzhnikovM.R.Z. BeckA.E. FarrowE.G. EmrickL.T. RosenfeldJ.A. MackenzieK.M. RobakL. WheelerM.T. BurrageL.C. JainM. LiuP. CalameD. KüryS. SillesenM. Schmitz-AbeK. TondutiD. SpacciniL. IasconeM. GenettiC.A. KoenigM.K. GrafM. TranA. AlejandroM. LeeB.H. ThiffaultI. AgrawalP.B. BernsteinJ.A. BellenH.J. ChaoH.T. AcostaM.T. AdamM. AdamsD.R. AgrawalP.B. AlejandroM.E. AllardP. AlveyJ. AmendolaL. AndrewsA. AshleyE.A. AzamianM.S. BacinoC.A. BademciG. BakerE. BalasubramanyamA. BaldridgeD. BaleJ. BamshadM. BarbouthD. BatzliG.F. Bayrak-ToydemirP. BeckA. BeggsA.H. BejeranoG. BellenH.J. BennetJ. Berg-RoodB. BernierR. BernsteinJ.A. BerryG.T. BicanA. BivonaS. BlueE. BohnsackJ. BonnenmannC. BonnerD. BottoL. BriereL.C. BrokampE. BurkeE.A. BurrageL.C. ButteM.J. ByersP. CareyJ. CarrasquilloO. ChangT.C.P. ChanprasertS. ChaoH-T. ClarkG.D. CoakleyT.R. CobbanL.A. CoganJ.D. ColeF.S. ColleyH.A. CooperC.M. CopeH. CraigenW.J. CunninghamM. D’SouzaP. DaiH. DasariS. DavidsM. DayalJ.G. Dell’AngelicaE.C. DharS.U. DippleK. DohertyD. DorraniN. DouineE.D. DraperD.D. DuncanL. EarlD. EcksteinD.J. EmrickL.T. EngC.M. EstevesC. EstwickT. FernandezL. FerreiraC. FiegE.L. FisherP.G. FogelB.L. ForghaniI. FresardL. GahlW.A. GlassI. GodfreyR.A. Golden-GrantK. GoldmanA.M. GoldsteinD.B. GrajewskiA. GrodenC.A. GropmanA.L. HahnS. HamidR. HanchardN.A. HayesN. HighF. HingA. HisamaF.M. HolmI.A. HomJ. Horike-PyneM. HuangA. HuangY. IsasiR. JamalF. JarvikG.P. JarvikJ. JayadevS. JiangY. JohnstonJ.M. KaravitiL. KelleyE.G. KileyD. KohaneI.S. KohlerJ.N. KrakowD. KrasnewichD.M. KorrickS. KoziuraM. KrierJ.B. LalaniS.R. LamB. LamC. LanpherB.C. LanzaI.R. LauC.C. LeBlancK. LeeB.H. LeeH. LevittR. LewisR.A. LincolnS.A. LiuP. LiuX.Z. LongoN. LooS.K. LoscalzoJ. MaasR.L. MacnamaraE.F. MacRaeC.A. MaduroV.V. MajcherskaM.M. MalicdanM.C.V. MamounasL.A. ManolioT.A. MaoR. MaravillaK. MarkelloT.C. MaromR. MarthG. MartinB.A. MartinM.G. Martínez-AgostoJ.A. MarwahaS. McCauleyJ. McConkie-RosellA. McCormackC.E. McCrayA.T. MeffordH. MerrittJ.L. MightM. MirzaaG. Morava-KoziczE. MorettiP.M. MorimotoM. MulvihillJ.J. MurdockD.R. NathA. NelsonS.F. NewmanJ.H. NicholasS.K. NickersonD. NovacicD. OglesbeeD. OrengoJ.P. PaceL. PakS. PallaisJ.C. PalmerC.G.S. PappJ.C. ParkerN.H. PhillipsJ.A.III PoseyJ.E. PostlethwaitJ.H. PotockiL. PuseyB.N. QuinlanA. RaskindW. RajaA.N. RenteriaG. ReuterC.M. RivesL. RobertsonA.K. RodanL.H. RosenfeldJ.A. RowleyR.K. RuzhnikovM. SaccoR. SampsonJ.B. SamsonS.L. SaportaM. ScottC.R. SchaechterJ. SchedlT. SchochK. ScottD.A. ShakachiteL. SharmaP. ShashiV. ShinJ. SignerR. SillariC.H. SilvermanE.K. SinsheimerJ.S. SiscoK. SmithK.S. Solnica-KrezelL. SpillmannR.C. StolerJ.M. StongN. SullivanJ.A. SunA. SuttonS. SweetserD.A. SybertV. TaborH.K. TamburroC.P. TanQ.K-G. TekinM. TelischiF. ThorsonW. TifftC.J. ToroC. TranA.A. UrvT.K. VelinderM. ViskochilD. VogelT.P. WahlC.E. WallaceS. WalleyN.M. WalshC.A. WalkerM. WambachJ. WanJ. WangL. WanglerM.F. WardP.A. WegnerD. WenerM. WesterfieldM. WheelerM.T. WiseA.L. WolfeL.A. WoodsJ.D. YamamotoS. YangJ. YoonA.J. YuG. ZastrowD.B. ZhaoC. ZuchnerS. De novo EIF2AK1 and EIF2AK2 variants are associated with developmental delay, leukoencephalopathy, and neurologic decompensation.Am. J. Hum. Genet.2020106457058310.1016/j.ajhg.2020.02.01632197074
    [Google Scholar]
  21. DeviL. OhnoM. Deletion of the eIF2α kinase GCN2 fails to rescue the memory decline associated with Alzheimer’s disease.PLoS One.2013810e7733510.1371/journal.pone.0077335
    [Google Scholar]
  22. HicksD. GireshK. WrischnikL.A. WeiserD.C. The PPP1R15 family of eIF2-alpha phosphatase targeting subunits (GADD34 and CReP).Int. J. Mol. Sci.202324241732110.3390/ijms24241732138139150
    [Google Scholar]
  23. HaiT. CurranT. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity.Proc. Natl. Acad. Sci. USA19918893720372410.1073/pnas.88.9.37201827203
    [Google Scholar]
  24. HugginsC.J. MayekarM.K. MartinN. SaylorK.L. GonitM. JailwalaP. KasojiM. HainesD.C. QuiñonesO.A. JohnsonP.F. C/EBPγ Is a critical regulator of cellular stress response networks through heterodimerization with ATF4.Mol. Cell. Biol.201636569371310.1128/MCB.00911‑1526667036
    [Google Scholar]
  25. SuN. KilbergM.S. C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene.J. Biol. Chem.200828350351063511710.1074/jbc.M80687420018940792
    [Google Scholar]
  26. PodustL.M. KrezelA.M. KimY. Crystal structure of the CCAAT box/enhancer-binding protein β activating transcription factor-4 basic leucine zipper heterodimer in the absence of DNA.J. Biol. Chem.2001276150551310.1074/jbc.M00559420011018027
    [Google Scholar]
  27. BandyopadhyayS. ChiangC. SrivastavaJ. GerstenM. WhiteS. BellR. KurschnerC. MartinC.H. SmootM. SahasrabudheS. BarberD.L. ChandaS.K. IdekerT. A human MAP kinase interactome.Nat. Meth.s201071080180510.1038/nmeth.150620936779
    [Google Scholar]
  28. ChihD.Y. ParkD.J. GrossM. IdosG. VuongP.T. HiramaT. ChumakovA.M. SaidJ. KoefflerH.P. Protein partners of C/EBPε.Exp. Hematol.200432121173118110.1016/j.exphem.2004.08.01415588942
    [Google Scholar]
  29. ReinkeA.W. BaekJ. AshenbergO. KeatingA.E. Networks of bZIP protein-protein interactions diversified over a billion years of evolution.Science2013340613373073410.1126/science.1233465
    [Google Scholar]
  30. DemmingsM.D. TennysonE.C. PetroffG.N. Tarnowski-GarnerH.E. CreganS.P. Activating transcription factor-4 promotes neuronal death induced by Parkinson’s disease neurotoxins and α-synuclein aggregates.Cell Death Differ.20212851627164310.1038/s41418‑020‑00688‑633277577
    [Google Scholar]
  31. AlghusenI.M. CarmanM.S. WilkinsH. EphrameS.J. QiangA. DiasW.B. FedosyukH. DensonA.R. SwerdlowR.H. SlawsonC. O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4.Front. Aging Neurosci.202315132612710.3389/fnagi.2023.132612738192280
    [Google Scholar]
  32. OliveiraM.M. KlannE. eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer’s disease.Semin. Cell Dev. Biol.202212510110910.1016/j.semcdb.2021.07.00934304995
    [Google Scholar]
  33. BondS. Lopez-LloredaC. GannonP.J. Akay-EspinozaC. Jordan-SciuttoK.L. The integrated stress response and phosphorylated eukaryotic initiation factor 2α in neurodegeneration.J. Neuropathol. Exp. Neurol.202079212314310.1093/jnen/nlz12931913484
    [Google Scholar]
  34. YiS. ChenK. ZhangL. ShiW. ZhangY. NiuS. JiaM. CongB. LiY. Endoplasmic reticulum stress is involved in stress-induced hypothalamic neuronal injury in rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK pathways.Front. Cell. Neurosci.20191319010.3389/fncel.2019.0019031130849
    [Google Scholar]
  35. WuM-Y. GaoF. TangJ-F. ShenJ-C. GaoR. DangB-Q. ChenG. Possible mechanisms of the PERK pathway on neuronal apoptosis in a rat model of surgical brain injury.Am. J. Transl. Res.202113273274233594322
    [Google Scholar]
  36. SanfordL.D. WellmanL.L. AdkinsA.M. GuoM.L. ZhangY. RenR. YangL. TangX. Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for understanding trauma and stress-related disorders.Neurobiol. Stress20232310051710.1016/j.ynstr.2023.10051736793998
    [Google Scholar]
  37. CoulsonR.L. MourrainP. WangG.X. Sleep deficiency as a driver of cellular stress and damage in neurological disorders.Sleep Med. Rev.20226310161610.1016/j.smrv.2022.10161635381445
    [Google Scholar]
  38. KimballS.R. AntonettiD.A. BrawleyR.M. JeffersonL.S. Mechanism of inhibition of peptide chain initiation by amino acid deprivation in perfused rat liver. Regulation involving inhibition of eukaryotic initiation factor 2 alpha phosphatase activity.J. Biol. Chem.199126631969197610.1016/S0021‑9258(18)52387‑51671047
    [Google Scholar]
  39. KellerT.L. ZoccoD. SundrudM.S. HendrickM. EdeniusM. YumJ. KimY.J. LeeH.K. CorteseJ.F. WirthD.F. DignamJ.D. RaoA. YeoC.Y. MazitschekR. WhitmanM. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase.Nat. Chem. Biol.20128331131710.1038/nchembio.79022327401
    [Google Scholar]
  40. RobertF. WilliamsC. YanY. DonohueE. CencicR. BurleyS.K. PelletierJ. Blocking UV-induced eIF2α phosphorylation with small molecule inhibitors of GCN2.Chem. Biol. Drug Des.2009741576710.1111/j.1747‑0285.2009.00827.x19519745
    [Google Scholar]
  41. ChenT. OzelD. QiaoY. HarbinskiF. ChenL. DenoyelleS. HeX. ZverevaN. SupkoJ.G. ChorevM. HalperinJ.A. AktasB.H. Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target.Nat. Chem. Biol.20117961061610.1038/nchembio.61321765405
    [Google Scholar]
  42. Yefidoff-FreedmanR. FanJ. YanL. ZhangQ. Santosd.G.R.R. RanaS. ContrerasJ.I. SahooR. WanD. YoungJ. TeixeiraD.K.L. MorisseauC. HalperinJ. HammockB. NatarajanA. WangP. ChorevM. AktasB.H. Development of 1-((1,4- trans )-4-aryloxycyclohexyl)-3-arylurea activators of heme-regulated inhibitor as selective activators of the eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation arm of the integrated endoplasmic reticulum stress response.J. Med. Chem.201760135392540610.1021/acs.jmedchem.7b0005928590739
    [Google Scholar]
  43. RosenM.D. WoodsC.R. GoldbergS.D. HackM.D. BoundsA.D. YangY. WagamanP.C. PhuongV.K. AmeriksA.P. BarrettT.D. KanelakisK.C. ChangJ. ShankleyN.P. RabinowitzM.H. Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2α (HRI) kinase.Bioorg. Med. Chem. Lett.200919236548655110.1016/j.bmcl.2009.10.03319854648
    [Google Scholar]
  44. HuW. HofstetterW. WeiX. GuoW. ZhouY. PataerA. LiH. FangB. SwisherS.G. Double-stranded RNA-dependent protein kinase-dependent apoptosis induction by a novel small compound.J. Pharmacol. Exp. Ther.2009328386687210.1124/jpet.108.14175419066342
    [Google Scholar]
  45. KungC CianchettaG LiuT KumarA.P SuiZ CaiZ Pyruvate kinase modulators and use thereof.Patent WO2019035865A1,2018
  46. BarageS. KulkarniA. PalJ.K. JoshiM. Unravelling the structural interactions between PKR kinase domain and its small molecule inhibitors using computational approaches.J. Mol. Graph. Model.20177532232910.1016/j.jmgm.2017.06.00928628858
    [Google Scholar]
  47. StockwellS.R. PlattG. BarrieS.E. ZoumpoulidouG. Poelet.R.H. AherneG.W. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling.PLoS One201271e28568
    [Google Scholar]
  48. GanzJ. ShachamT. KramerM. ShenkmanM. EigerH. WeinbergN. IancoviciO. RoyS. SimhaevL. Da’adooshB. EngelH. PeretsN. BarhumY. PortnoyM. OffenD. LederkremerG.Z. A novel specific PERK activator reduces toxicity and extends survival in Huntington’s disease models.Sci. Rep.2020101687510.1038/s41598‑020‑63899‑432327686
    [Google Scholar]
  49. AxtenJ.M. MedinaJ.R. FengY. ShuA. RomerilS.P. GrantS.W. Discovery of 7-Methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1 H -indol-5-yl)-7 H -pyrrolo[2,3- d ]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (P.J. Med. Chem.201255167193720710.1021/jm300713s22827572
    [Google Scholar]
  50. AxtenJ.M. RomerilS.P. ShuA. RalphJ. MedinaJ.R. FengY. LiW.H.H. GrantS.W. HeerdingD.A. MinthornE. MenckenT. GaulN. GoetzA. StanleyT. HassellA.M. GampeR.T. AtkinsC. KumarR. Discovery of GSK2656157: An optimized perk inhibitor selected for preclinical development.ACS Med. Chem. Lett.201341096496810.1021/ml400228e24900593
    [Google Scholar]
  51. SidrauskiC. Acosta-AlvearD. KhoutorskyA. VedanthamP. HearnB.R. LiH. GamacheK. GallagherC.M. AngK.K.H. WilsonC. OkreglakV. AshkenaziA. HannB. NaderK. ArkinM.R. RensloA.R. SonenbergN. WalterP. Pharmacological brake-release of mRNA translation enhances cognitive memory.eLife20132e0049810.7554/eLife.0049823741617
    [Google Scholar]
  52. WongY.L. LeBonL. BassoA.M. KohlhaasK.L. NikkelA.L. RobbH.M. Donnelly-RobertsD.L. PrakashJ. SwensenA.M. RubinsteinN.D. KrishnanS. McAllisterF.E. HasteN.V. O’BrienJ.J. RoyM. IrelandA. FrostJ.M. ShiL. RiedmaierS. MartinK. DartM.J. SidrauskiC. eIF2B activator prevents neurological defects caused by a chronic integrated stress response.eLife20198e4294010.7554/eLife.4294030624206
    [Google Scholar]
  53. HallidayM. RadfordH. ZentsK.A.M. MolloyC. MorenoJ.A. VerityN.C. SmithE. OrtoriC.A. BarrettD.A. BushellM. MallucciG.R. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice.Brain201714061768178310.1093/brain/awx07428430857
    [Google Scholar]
  54. BoyceM. BryantK.F. JousseC. LongK. HardingH.P. ScheunerD. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress.Science2005307571193593910.1126/science.1101902
    [Google Scholar]
  55. TsaytlerP. HardingH.P. RonD. BertolottiA. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis.Science201133260259194
    [Google Scholar]
  56. DasI. KrzyzosiakA. SchneiderK. WrabetzL. D’AntonioM. BarryN. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit.Science2015348623123924210.1126/science.aaa4484
    [Google Scholar]
  57. KrzyzosiakA. SigurdardottirA. LuhL. CarraraM. DasI. SchneiderK. BertolottiA. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B.Cell2018174512161228.e1910.1016/j.cell.2018.06.03030057111
    [Google Scholar]
  58. HallidayM. RadfordH. SekineY. MorenoJ. VerityN. QuesneL.J. OrtoriC.A. BarrettD.A. FromontC. FischerP.M. HardingH.P. RonD. MallucciG.R. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity.Cell Death Dis.201563e1672e167210.1038/cddis.2015.4925741597
    [Google Scholar]
  59. KrukowskiK. NolanA. FriasE.S. BooneM. UretaG. GrueK. PaladiniM.S. ElizarrarasE. DelgadoL. BernalesS. WalterP. RosiS. Small molecule cognitive enhancer reverses age-related memory decline in mice.eLife20209e6204810.7554/eLife.6204833258451
    [Google Scholar]
  60. ZhangY. YangY. HuZ. ZhuM. QinS. YuP. LiB. XuJ. OndrejcakT. KlyubinI. RowanM.J. HuN.W. Long-term depression-inducing low frequency stimulation enhances p-Tau181 and p-Tau217 in an age-dependent manner in live rats.J. Alzheimers Dis.202289133535010.3233/JAD‑22035135871344
    [Google Scholar]
  61. HosoiT. KakimotoM. TanakaK. NomuraJ. OzawaK. Unique pharmacological property of ISRIB in inhibition of Aβ-induced neuronal cell death.J. Pharmacol. Sci.2016131429229510.1016/j.jphs.2016.08.00327569458
    [Google Scholar]
  62. JhanjiM. RaoC.N. MasseyJ.C. HopeM.C.III ZhouX. KeeneC.D. MaT. WyattM.D. StewartJ.A. SajishM. Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration.Nat. Commun.2022131324410.1038/s41467‑022‑30785‑835688816
    [Google Scholar]
  63. SajishM. SchimmelP. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.Nature2015519754337037310.1038/nature1402825533949
    [Google Scholar]
  64. GoswamiP. AkhterJ. ManglaA. SuramyaS. JindalG. AhmadS. Downregulation of ATF-4 attenuates the endoplasmic reticulum stress–mediated neuroinflammation and cognitive impairment in experimentally induced alzheimer’s disease model.Mol. Neurobiol.202361850715082
    [Google Scholar]
  65. HuZ. YuP. ZhangY. YangY. ZhuM. QinS. XuJ.T. DuanD. WuY. WangD. RowanM.J. HuN.W. Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer’s disease.Transl. Psychiatry20221219610.1038/s41398‑022‑01862‑935260557
    [Google Scholar]
  66. OliveiraM.M. LourencoM.V. LongoF. KasicaN.P. YangW. UretaG. FerreiraD.D.P. MendonçaP.H.J. BernalesS. MaT. FeliceD.F.G. KlannE. FerreiraS.T. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease.Sci. Signal.202114668eabc542910.1126/scisignal.abc542933531382
    [Google Scholar]
  67. BugalloR. MarlinE. BaltanásA. ToledoE. FerreroR. Vinueza-GavilanesR. LarreaL. ArrasateM. AragónT. Fine tuning of the unfolded protein response by ISRIB improves neuronal survival in a model of amyotrophic lateral sclerosis.Cell Death Dis.202011539710.1038/s41419‑020‑2601‑232457286
    [Google Scholar]
  68. ZhuP.J. KhatiwadaS. CuiY. ReinekeL.C. DoolingS.W. KimJ.J. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome.Science2019366646784384910.1126/science.aaw5185
    [Google Scholar]
  69. RouseS.L. MatthewsI.R. LiJ. SherrE.H. ChanD.K. Integrated stress response inhibition provides sex-dependent protection against noise-induced cochlear synaptopathy.Sci. Rep.20201011806310.1038/s41598‑020‑75058‑w33093490
    [Google Scholar]
  70. HellenbrandD.J. QuinnC.M. PiperZ.J. MorehouseC.N. FixelJ.A. HannaA.S. Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration.J. Neuroinflammation202118128410.1186/s12974‑021‑02337‑234876174
    [Google Scholar]
  71. SafavyniaS.A. GoldsteinP.A. The role of neuroinflammation in postoperative cognitive dysfunction: Moving from hypothesis to treatment.Front. Psychiatry2019975210.3389/fpsyt.2018.0075230705643
    [Google Scholar]
  72. LozanoD. SchimmelS.J. AcostaS. Neuroinflammation in traumatic brain injury: A chronic response to an acute injury.Brain Circ.20173313514210.4103/bc.bc_18_1730276315
    [Google Scholar]
  73. ChangL. LiuX. ChenJ. LiuH. WangG. WangG. LiaoX. ShenX. Attenuation of activated eIF2Α signaling by ISRIB treatment after spinal cord injury improves locomotor function.J. Mol. Neurosci.202272358559710.1007/s12031‑021‑01920‑934647267
    [Google Scholar]
  74. FriasE.S. HoseiniM.S. KrukowskiK. PaladiniM.S. GrueK. UretaG. RieneckerK.D.A. WalterP. StrykerM.P. RosiS. Aberrant cortical spine dynamics after concussive injury are reversed by integrated stress response inhibition.Proc. Natl. Acad. Sci. USA202211942e220942711910.1073/pnas.220942711936227915
    [Google Scholar]
  75. ChouA. KrukowskiK. JopsonT. ZhuP.J. Costa-MattioliM. WalterP. RosiS. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury.Proc. Natl. Acad. Sci. USA201711431E6420E642610.1073/pnas.170766111428696288
    [Google Scholar]
  76. HuangT. LuoL. JiangS. ChenC. HeH. LiangC. LiW. WangH. ZhuL. WangK. GuoY. Targeting integrated stress response regulates microglial M1/M2 polarization and attenuates neuroinflammation following surgical brain injury in rat.Cell. Signal.20218511004810.1016/j.cellsig.2021.11004834015470
    [Google Scholar]
  77. JiangL. DongR. XuM. LiuY. XuJ. MaZ. XiaT. GuX. Inhibition of the integrated stress response reverses oxidative stress damage-induced postoperative cognitive dysfunction.Front. Cell. Neurosci.20221699286910.3389/fncel.2022.99286936212697
    [Google Scholar]
  78. ZhangL. ZhiK. SuY. PengW. MengX. Effect of eIF2α in neuronal injury induced by high glucose and the protective mechanism of resveratrol.Mol. Neurobiol.202360106043605910.1007/s12035‑023‑03457‑x37410333
    [Google Scholar]
  79. HagermanR.J. Berry-KravisE. HazlettH.C. BaileyD.B. MoineH. KooyR.F. Fragile X syndrome.Nat. Rev. Dis. Prim.20173117065
    [Google Scholar]
  80. CoulsonR.L. FrattiniV. MoyerC.E. HodgesJ. WalterP. MourrainP. ZuoY. WangG.X. Translational modulator ISRIB alleviates synaptic and behavioral phenotypes in Fragile X syndrome.iScience202427410925910.1016/j.isci.2024.10925938510125
    [Google Scholar]
  81. JohnsonE.C.B. KangJ. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease.PeerJ20164e256510.7717/peerj.256527781164
    [Google Scholar]
  82. BriggsD.I. DefensorE. ArdestaniK.P. YiB. HalpainM. SeabrookG. Role of endoplasmic reticulum stress in learning and memory impairment and Alzheimer’s disease-like neuropathology in the PS19 and APP swe mouse models of tauopathy and amyloidosis.Eneuro2017144ENEURO.002517
    [Google Scholar]
  83. Della-Flora NunesG. WilsonE.R. MarzialiL.N. HurleyE. SilvestriN. HeB. O’MalleyB.W. BeirowskiB. PoitelonY. WrabetzL. FeltriM.L. Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells.Nat. Commun.2021121328510.1038/s41467‑021‑23552‑834078899
    [Google Scholar]
  84. FangM.Y. MarkmillerS. VuA.Q. JavaherianA. DowdleW.E. JolivetP. BushwayP.J. CastelloN.A. BaralA. ChanM.Y. LinsleyJ.W. LinsleyD. MercolaM. FinkbeinerS. LecuyerE. LewcockJ.W. YeoG.W. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD.Neuron20191035802819.e1110.1016/j.neuron.2019.05.04831272829
    [Google Scholar]
  85. MorenoJ.A. HallidayM. MolloyC. RadfordH. VerityN. AxtenJ.M. OrtoriC.A. WillisA.E. FischerP.M. BarrettD.A. MallucciG.R. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice.Sci. Transl. Med.20135206206ra13810.1126/scitranslmed.300676724107777
    [Google Scholar]
  86. BellM.C. MeierS.E. IngramA.L. AbisambraJ.F. PERK-opathies: An endoplasmic reticulum stress mechanism underlying neurodegeneration.Curr. Alzheimer Res.201613215016310.2174/156720501366615121814543126679859
    [Google Scholar]
  87. AbdullahiA. StanojcicM. ParousisA. PatsourisD. JeschkeM.G. Modeling acute ER stress in vivo and in vitro.Shock201747450651310.1097/SHK.000000000000075927755507
    [Google Scholar]
  88. SmithH.L. FreemanO.J. ButcherA.J. HolmqvistS. HumoudI. SchätzlT. HughesD.T. VerityN.C. SwindenD.P. HayesJ. Weerdd.L. RowitchD.H. FranklinR.J.M. MallucciG.R. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration.Neuron20201055855866.e510.1016/j.neuron.2019.12.01431924446
    [Google Scholar]
  89. ChipurupalliS. KannanE. TergaonkarV. D’AndreaR. RobinsonN. Hypoxia induced ER stress response as an adaptive mechanism in cancer.Int. J. Mol. Sci.201920374910.3390/ijms2003074930754624
    [Google Scholar]
  90. HanY. YuanM. GuoY.S. ShenX.Y. GaoZ.K. BiX. Mechanism of endoplasmic reticulum stress in cerebral ischemia.Front. Cell. Neurosci.20211570433410.3389/fncel.2021.70433434408630
    [Google Scholar]
  91. DhirN. JainA. SharmaA.R. PrakashA. RadotraB.D. MedhiB. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling.Metab. Brain Dis.20233841177119210.1007/s11011‑023‑01183‑w36847967
    [Google Scholar]
  92. XuL. BiY. XuY. WuY. DuX. MouY. Suppression of CHOP reduces neuronal apoptosis and rescues cognitive impairment induced by intermittent hypoxia by inhibiting bax and bak activation.Neural. Plast.20212021409044110.1155/2021/4090441
    [Google Scholar]
  93. GunduC. ArruriV.K. SherkhaneB. KhatriD.K. SinghS.B. GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis and augments mitochondrial function to mitigate high glucose induced neurotoxicity in N2A cells.Curr. Res. Pharmacol. Drug Discov.20223100087
    [Google Scholar]
  94. ThangameeranM.S.I. TsaiS.T. HungH.Y. HuW.F. PangC.Y. ChenS.Y. LiewH.K. A role for endoplasmic reticulum stress in intracerebral hemorrhage.Cells20209375010.3390/cells903075032204394
    [Google Scholar]
  95. MengC. ZhangJ. DangB. LiH. ShenH. LiX. WangZ. PERK Pathway activation promotes intracerebral hemorrhage induced secondary brain injury by inducing neuronal apoptosis both in vivo and in vitro. Front. Neurosci.20181211110.3389/fnins.2018.0011129541018
    [Google Scholar]
  96. YanF. CaoS. LiJ. DixonB. YuX. ChenJ. GuC. LinW. ChenG. Pharmacological inhibition of PERK attenuates early brain injury after subarachnoid hemorrhage in rats through the activation of akt.Mol. Neurobiol.20175431808181710.1007/s12035‑016‑9790‑926887383
    [Google Scholar]
  97. AjoolabadyA. LindholmD. RenJ. PraticoD. ER stress and UPR in Alzheimer’s disease: Mechanisms, pathogenesis, treatments.Cell Death Dis.202213870610.1038/s41419‑022‑05153‑535970828
    [Google Scholar]
  98. RadfordH. MorenoJ.A. VerityN. HallidayM. MallucciG.R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia.Acta Neuropathol.2015130563364210.1007/s00401‑015‑1487‑z26450683
    [Google Scholar]
  99. KorenS.A. HammM.J. CloydR. FontaineS.N. ChishtiE. LanzillottaC. Rodriguez-RiveraJ. IngramA. BellM. Galvis-EscobarS.M. ZuliaN. DomenicoD.F. DuongD. SeyfriedN.T. PowellD. VandsburgerM. FrolingerT. HartzA.M.S. KorenJ.III AxtenJ.M. LapingN.J. AbisambraJ.F. Broad kinase inhibition mitigates early neuronal dysfunction in tauopathy.Int. J. Mol. Sci.2021223118610.3390/ijms2203118633530349
    [Google Scholar]
  100. JeonY.M. KwonY. LeeS. KimH.J. Potential roles of the endoplasmic reticulum stress pathway in amyotrophic lateral sclerosis.Front. Aging Neurosci.202315104789710.3389/fnagi.2023.104789736875699
    [Google Scholar]
  101. KimH.J. RaphaelA.R. LaDowE.S. McGurkL. WeberR.A. TrojanowskiJ.Q. LeeV.M.Y. FinkbeinerS. GitlerA.D. BoniniN.M. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models.Nat. Genet.201446215216010.1038/ng.285324336168
    [Google Scholar]
  102. GaoC. ShiQ. PanX. ChenJ. ZhangY. LangJ. WenS. LiuX. ChengT.L. LeiK. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis.Cell Rep.202443311389210.1016/j.celrep.2024.11389238431841
    [Google Scholar]
  103. SzebényiK. WengerL.M.D. SunY. DunnA.W.E. LimegroverC.A. GibbonsG.M. ConciE. PaulsenO. MierauS.B. BalmusG. LakatosA. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology.Nat. Neurosci.202124111542155410.1038/s41593‑021‑00923‑434675437
    [Google Scholar]
  104. CostaC.A. ManaaW.E. DuplanE. CheclerF. The endoplasmic reticulum stress/unfolded protein response and their contributions to parkinson’s disease physiopathology.Cells2020911249510.3390/cells911249533212954
    [Google Scholar]
  105. MercadoG. CastilloV. SotoP. LópezN. AxtenJ.M. SardiS.P. HoozemansJ.J.M. HetzC. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease.Neurobiol. Dis.201811213614810.1016/j.nbd.2018.01.00429355603
    [Google Scholar]
  106. EspinaM. FrancoD.N. Brañas-NavarroM. NavarroI.R. BritoV. Lopez-MolinaL. Costas-InsuaC. GuzmánM. GinésS. The GRP78-PERK axis contributes to memory and synaptic impairments in Huntington’s disease R6/1 mice.Neurobiol. Dis.202318410622510.1016/j.nbd.2023.10622537442396
    [Google Scholar]
  107. GrandeV. OrnaghiF. ComerioL. RestelliE. MasoneA. CorbelliA. TolomeoD. CaponeV. AxtenJ.M. LapingN.J. FiordalisoF. SalleseM. ChiesaR. PERK inhibition delays neurodegeneration and improves motor function in a mouse model of Marinesco-Sjögren syndrome.Hum. Mol. Genet.201827142477248910.1093/hmg/ddy15229718201
    [Google Scholar]
  108. SenT. SahaP. GuptaR. FoleyL.M. JiangT. AbakumovaO.S. HitchensT.K. SenN. Aberrant ER stress induced neuronal-IFNΒ elicits white matter injury due to microglial activation and T-Cell infiltration after TBI.J. Neurosci.202040242444610.1523/JNEUROSCI.0718‑19.201931694961
    [Google Scholar]
  109. SenT. GuptaR. KaiserH. SenN. Activation of PERK elicits memory impairment through inactivation of CREB and downregulation of PSD95 after traumatic brain injury.J. Neurosci.201737245900591110.1523/JNEUROSCI.2343‑16.201728522733
    [Google Scholar]
  110. LiuY. ZhaoM. YuY. LiuJ. LiuW. YaoR. Extracellular cold-inducible RNA-binding protein mediated neuroinflammation and neuronal apoptosis after traumatic brain injury.Burn. Trauma.202412tkae004
    [Google Scholar]
  111. HoodK.N. ZhaoJ. RedellJ.B. HylinM.J. HarrisB. PerezA. MooreA.N. DashP.K. Endoplasmic reticulum stress contributes to the loss of newborn hippocampal neurons after traumatic brain injury.J. Neurosci.20183892372238410.1523/JNEUROSCI.1756‑17.201829386258
    [Google Scholar]
  112. ZhuS. HenningerK. McGrathB.C. CavenerD.R. PERK regulates working memory and protein synthesis-dependent memory flexibility.PLoS One.2016119e016276610.1371/journal.pone.0162766
    [Google Scholar]
  113. ZhangJ. ZhangP. MengC. DangB. LiH. ShenH. WangZ. LiX. ChenG. The PERK pathway plays a neuroprotective role during the early phase of secondary brain injury induced by experimental intracerebral hemorrhage.Acta Neurochir. Suppl.202012710511910.1007/978‑3‑030‑04615‑6_1731407071
    [Google Scholar]
  114. ZimmermannH.R. YangW. BeckelmanB.C. KasicaN.P. ZhouX. GalliL.D. RyazanovA.G. MaT. Genetic removal of eIF 2α kinase PERK in mice enables hippocampal L‐ LTP independent of mTORC 1 activity.J. Neurochem.2018146213314410.1111/jnc.1430629337352
    [Google Scholar]
  115. VieiraF.G. TassinariV.R. KiddJ.D. MorenoA. ThompsonK. PerrinS. PERK modulation, with GSK2606414, Sephin1 or salubrinal, failed to produce therapeutic benefits in the SOD1G93A mouse model of ALS.PLoS One.2024192e0292190
    [Google Scholar]
  116. LiuB. XiaJ. ChenY. ZhangJ. Sevoflurane-induced endoplasmic reticulum stress contributes to neuroapoptosis and BACE-1 expression in the developing brain: The role of eIF2α.Neurotox. Res.201731221822910.1007/s12640‑016‑9671‑z27682474
    [Google Scholar]
  117. LuJ. LiZ. ZhaoQ. LiuD. MeiY. Neuritin improves the neurological functional recovery after experimental intracerebral hemorrhage in mice.Neurobiol. Dis.202115610540710.1016/j.nbd.2021.10540734058347
    [Google Scholar]
  118. KhouzamH.R. A review of trazodone use in psychiatric and medical conditions.Postgrad. Med.2017129114014810.1080/00325481.2017.124926527744763
    [Google Scholar]
  119. SchroeckJ.L. FordJ. ConwayE.L. KurtzhaltsK.E. GeeM.E. VollmerK.A. MergenhagenK.A. Review of safety and efficacy of sleep medicines in older adults.Clin. Ther.201638112340237210.1016/j.clinthera.2016.09.01027751669
    [Google Scholar]
  120. Albert-GascoH. SmithH.L. Alvarez-CastelaoB. SwindenD. HallidayM. Janaki-RamanS. ButcherA.J. MallucciG.R. Trazodone rescues dysregulated synaptic and mitochondrial nascent proteomes in prion neurodegeneration.Brain2024147264966410.1093/brain/awad31337703312
    [Google Scholar]
  121. Oliveirad.P. CellaC. LockerN. RavindranK.K.G. MendisA. WaffordK. GilmourG. DijkD.J. Winsky-SommererR. Improved sleep, memory, and cellular pathological features of tauopathy, including the NLRP3 inflammasome, after chronic administration of trazodone in rTg4510 mice.J. Neurosci.202242163494350910.1523/JNEUROSCI.2162‑21.202235273086
    [Google Scholar]
  122. DanieleS. PozzoD.E. ZappelliE. MartiniC. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-κB, p38 and JNK.Cell. Signal.20152781609162910.1016/j.cellsig.2015.04.00625911310
    [Google Scholar]
  123. ChelucciE. DanieleS. VergassolaM. CeccarelliL. ZucchiS. BoltriL. Trazodone counteracts the response of microglial cells to inflammatory stimuli.Eur. J. Neurosci.20246075605562010.1111/ejn.16522
    [Google Scholar]
  124. BortolottoV. ManciniF. ManganoG. SalemR. XiaE. GrossoD.E. BianchiM. CanonicoP.L. PolenzaniL. GrilliM. Proneurogenic effects of trazodone in murine and human neural progenitor cells.ACS Chem. Neurosci.2017892027203810.1021/acschemneuro.7b0017528636360
    [Google Scholar]
  125. AlmeidaL.M. PinhoB.R. DuchenM.R. OliveiraJ.M.A. The PERKs of mitochondria protection during stress: Insights for PERK modulation in neurodegenerative and metabolic diseases.Biol. Rev. Camb. Philos. Soc.20229751737174810.1111/brv.1286035475315
    [Google Scholar]
  126. SunX. LiuJ. CraryJ.F. MalageladaC. SulzerD. GreeneL.A. LevyO.A. ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin.J. Neurosci.20133362398240710.1523/JNEUROSCI.2292‑12.201323392669
    [Google Scholar]
  127. HuY. LuX. XuY. LuL. YuS. ChengQ. YangB. TsuiC.K. YeD. HuangJ. LiangX. Salubrinal attenuated retinal neovascularization by inhibiting CHOP-HIF1α-VEGF pathways.Oncotarget2017844772197723210.18632/oncotarget.2043129100382
    [Google Scholar]
  128. Anuncibay-SotoB. Pérez-RodríguezD. Santos-GaldianoM. FontE. Regueiro-PurriñosM. Fernández-LópezA. Post‐ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia.J. Neurochem.2016138229530610.1111/jnc.1365127123756
    [Google Scholar]
  129. Anuncibay-SotoB. Pérez-RodriguezD. Santos-GaldianoM. Font-BelmonteE. UgidosI.F. Gonzalez-RodriguezP. Regueiro-PurriñosM. Fernández-LópezA. Salubrinal and robenacoxib treatment after global cerebral ischemia. Exploring the interactions between ER stress and inflammation.Biochem. Pharmacol.2018151263710.1016/j.bcp.2018.02.02929499167
    [Google Scholar]
  130. LindholmD. WootzH. KorhonenL. ER stress and neurodegenerative diseases.Cell Death Differ.200613338539210.1038/sj.cdd.440177816397584
    [Google Scholar]
  131. GongT. WangQ. LinZ. ChenM. SunG. Endoplasmic reticulum (ER) stress inhibitor salubrinal protects against ceramide-induced SH-SY5Y cell death.Biochem. Biophys. Res. Commun.2012427346146510.1016/j.bbrc.2012.08.06822935424
    [Google Scholar]
  132. RaniS. SreenivasaiahP.K. ChoC. KimD.H. Salubrinal alleviates pressure overload-induced cardiac hypertrophy by inhibiting endoplasmic reticulum stress pathway.Mol. Cells2017401667210.14348/molcells.2017.225928152298
    [Google Scholar]
  133. HuangX. ChenY. ZhangH. MaQ. ZhangY. XuH. Salubrinal attenuates β-amyloid-induced neuronal death and microglial activation by inhibition of the NF-κB pathway.Neurobiol. Aging20123351007.e91007.e1710.1016/j.neurobiolaging.2011.10.00722056200
    [Google Scholar]
  134. LeeD.Y. LeeK.S. LeeH.J. KimD.H. NohY.H. YuK. JungH.Y. LeeS.H. LeeJ.Y. YounY.C. JeongY. KimD.K. LeeW.B. KimS.S. Activation of PERK signaling attenuates Abeta-mediated ER stress.PLoS One201055e1048910.1371/journal.pone.001048920463975
    [Google Scholar]
  135. ShimS. LeeW. ChungH. JungY.K. Amyloid β-induced FOXRED2 mediates neuronal cell death via inhibition of proteasome activity.Cell. Mol. Life Sci.201168122115212710.1007/s00018‑010‑0561‑x20972601
    [Google Scholar]
  136. GoswamiP. AfjalM.A. AkhterJ. ManglaA. KhanJ. ParvezS. RaisuddinS. Involvement of endoplasmic reticulum stress in amyloid β (1-42)-induced Alzheimer’s like neuropathological process in rat brain.Brain Res. Bull.202016510811710.1016/j.brainresbull.2020.09.02233011197
    [Google Scholar]
  137. RubovitchV. BarakS. RachmanyL. GoldsteinR.B. ZilbersteinY. PickC.G. The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury.Neuromol. Med.2015171587010.1007/s12017‑015‑8340‑325582550
    [Google Scholar]
  138. WangZ.F GaoC ChenW. Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model.Neurob. Learn Mem.20191611225
    [Google Scholar]
  139. LiangJ-C. TanH-P. GuoQ. HuaG. ChenJ-X. Inhibition of endoplasmic reticulum stress alleviates secondary injury after traumatic brain injury.Neural Regen. Res.201813582783610.4103/1673‑5374.23247729863013
    [Google Scholar]
  140. LogsdonA.F. Lucke-WoldB.P. NguyenL. MatsumotoR.R. TurnerR.C. RosenC.L. HuberJ.D. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury.Brain Res.2016164314015110.1016/j.brainres.2016.04.06327131989
    [Google Scholar]
  141. JiangP. GanM. EbrahimA.S. LinW.L. MelroseH.L. YenS.H.C. ER stress response plays an important role in aggregation of α-synuclein.Mol. Neurodegener.2010515610.1186/1750‑1326‑5‑5621144044
    [Google Scholar]
  142. WuL. LuoN. ZhaoH.R. GaoQ. LuJ. PanY. ShiJ.P. TianY.Y. ZhangY.D. Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway.Brain Res.20141549526210.1016/j.brainres.2014.01.00324418467
    [Google Scholar]
  143. CollaE. CouneP. LiuY. PletnikovaO. TroncosoJ.C. IwatsuboT. SchneiderB.L. LeeM.K. Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo.J. Neurosci.201232103306332010.1523/JNEUROSCI.5367‑11.201222399753
    [Google Scholar]
  144. GuptaS. MishraA. SinghS. Cardinal role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death & DNA fragmentation: Implication of PERK:IRE1α:ATF6 axis in Parkinson’s pathology.Cell. Signal.20218110992210.1016/j.cellsig.2021.10992233484794
    [Google Scholar]
  145. CankaraF.N. KuşM.S. GünaydınC. ŞafakS. BilgeS.S. OzmenO. TuralE. KortholtA. The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats.Immunopharmacol. Immunotoxicol.202244216817710.1080/08923973.2021.202317435021949
    [Google Scholar]
  146. OhriS.S. HetmanM. WhittemoreS.R. Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury.Neurobiol. Dis.201358293710.1016/j.nbd.2013.04.02123659896
    [Google Scholar]
  147. WangS LiuX ShiW QiQ ZhangG LiY Mechanism of chronic stress-induced glutamatergic neuronal damage in the basolateral amygdaloid nucleus.Anal. Cell. Pathol.20212021838852710.1155/2021/8388527
    [Google Scholar]
  148. GaoB. ZhangX.Y. HanR. ZhangT.T. ChenC. QinZ.H. The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning.Acta. Pharmacol. Sin.201334565766610.1038/aps.2013.34
    [Google Scholar]
  149. Torres-PerazaJ.F. EngelT. Martín-IbáñezR. Sanz-RodríguezA. Fernández-FernándezM.R. EsgleasM. CanalsJ.M. HenshallD.C. LucasJ.J. Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus.Brain201313641161117610.1093/brain/awt04423518711
    [Google Scholar]
  150. WangB. YuY. WeiL. ZhangY. Inhibition of ER stress improves progressive motor deficits in a REEP1-null mouse model of hereditary spastic paraplegia.Biol. Open202099bio.05429610.1242/bio.05429632878877
    [Google Scholar]
  151. VaccaroA. PattenS.A. AggadD. JulienC. MaiosC. KabashiE. DrapeauP. ParkerJ.A. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.Neurobiol. Dis.201355647510.1016/j.nbd.2013.03.01523567652
    [Google Scholar]
  152. YangT. HeR. LiG. LiangJ. ZhaoL. ZhaoX. LiL. WangP. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes.Neurosci. Lett.202175813600410.1016/j.neulet.2021.13600434098025
    [Google Scholar]
  153. Font-BelmonteE. UgidosI.F. Santos-GaldianoM. González-RodríguezP. Anuncibay-SotoB. Pérez-RodríguezD. Gonzalo-OrdenJ.M. Fernández-LópezA. Post‐ischemic salubrinal administration reduces necroptosis in a rat model of global cerebral ischemia.J. Neurochem.2019151677779410.1111/jnc.1478931165478
    [Google Scholar]
  154. Barreda-MansoM.A. Yanguas-CasásN. Nieto-SampedroM. Romero-RamírezL. Neuroprotection and blood–brain barrier restoration by salubrinal after a cortical stab injury.J. Cell. Physiol.201723261501151010.1002/jcp.2565527753092
    [Google Scholar]
  155. ZadorozhniiP.V. KiselevV.V. KharchenkoA.V. In silico toxicity evaluation of Salubrinal and its analogues.Eur. J. Pharm. Sci.202015510553810.1016/j.ejps.2020.10553832889087
    [Google Scholar]
  156. TakigawaS. ChenA. NishimuraA. LiuS. LiB.Y. SudoA. YokotaH. HamamuraK. Guanabenz downregulates inflammatory responses via eIF2α dependent and independent signaling.Int. J. Mol. Sci.201617567410.3390/ijms1705067427164082
    [Google Scholar]
  157. MeachamR.H. RueliusH.W. KickC.J. PetersJ.R. KocmundS.M. SisenwineS.F. WendtR.L. Relationship of guanabenz concentrations in brain and plasma to antihypertensive effect in the spontaneously hypertensive rat.J. Pharmacol. Exp. Ther.198021435945987400962
    [Google Scholar]
  158. CarraraM. SigurdardottirA. BertolottiA. Decoding the selectivity of eIF2α holophosphatases and PPP1R15A inhibitors.Nat. Struct. Mol. Biol.201724970871610.1038/nsmb.344328759048
    [Google Scholar]
  159. SinghA. GuptaP. TiwariS. MishraA. SinghS. Guanabenz mitigates the neuropathological alterations and cell death in Alzheimer’s disease.Cell Tissue Res.2022388223925810.1007/s00441‑021‑03570‑035195784
    [Google Scholar]
  160. WayS.W. PodojilJ.R. ClaytonB.L. ZarembaA. CollinsT.L. KunjammaR.B. RobinsonA.P. BrugarolasP. MillerR.H. MillerS.D. PopkoB. Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic.Nat. Commun.201561653210.1038/ncomms753225766071
    [Google Scholar]
  161. ThompsonK.K. TsirkaS.E. Guanabenz modulates microglia and macrophages during demyelination.Sci. Rep.20201011933310.1038/s41598‑020‑76383‑w33168944
    [Google Scholar]
  162. WangL. PopkoB. TixierE. RoosR.P. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis.Neurobiol. Dis.20147131732410.1016/j.nbd.2014.08.01025134731
    [Google Scholar]
  163. JiangH.Q. RenM. JiangH.Z. WangJ. ZhangJ. YinX. WangS.Y. QiY. WangX.D. FengH.L. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis.Neuroscience201427713213810.1016/j.neuroscience.2014.03.04724699224
    [Google Scholar]
  164. BellaD.E. BersanoE. AntoniniG. BorgheroG. CapassoM. CaponnettoC. ChiòA. CorboM. FilostoM. GianniniF. SpataroR. LunettaC. MandrioliJ. MessinaS. MonsurròM.R. MoraG. RivaN. RizziR. SicilianoG. SilaniV. SimoneI. SorarùG. TugnoliV. VerrielloL. VolantiP. FurlanR. NolanJ.M. AbgueguenE. TramacereI. LauriaG. The unfolded protein response in amyotrophic later sclerosis: Results of a phase 2 trial.Brain202114492635264710.1093/brain/awab16733905493
    [Google Scholar]
  165. BigganeJ.P. XuK. GoldensteinB.L. DavisK.L. LugerE.J. DavisB.A. JurgensC.W.D. PerezD.M. PorterJ.E. DozeV.A. Pharmacological characterization of the α 2A -adrenergic receptor inhibiting rat hippocampal CA3 epileptiform activity: Comparison of ligand efficacy and potency.J. Recept. Signal Transduct. Res.202242658058710.1080/10799893.2022.211089635984443
    [Google Scholar]
  166. DashP.K. HylinM.J. HoodK.N. OrsiS.A. ZhaoJ. RedellJ.B. TsvetkovA.S. MooreA.N. Inhibition of eukaryotic initiation factor 2 alpha phosphatase reduces tissue damage and improves learning and memory after experimental traumatic brain injury.J. Neurotrauma201532201608162010.1089/neu.2014.377225843479
    [Google Scholar]
  167. JiangM. LiuL. HeX. WangH. LinW. WangH. YoonS.O. WoodT.L. LuQ.R. Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.Nat. Commun.2016711218510.1038/ncomms1218527416896
    [Google Scholar]
  168. SunX. AiméP. DaiD. RamalingamN. CraryJ.F. BurkeR.E. GreeneL.A. LevyO.A. Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease.Exp. Neurol.20183039510710.1016/j.expneurol.2018.01.01529432724
    [Google Scholar]
  169. SamlukL. OstapczukP. DziembowskaM. Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis.Mol. Biol. Cell.2022338ar6710.1091/mbc.E21‑11‑0553
    [Google Scholar]
  170. AbbinkT.E.M. WisseL.E. JakuE. ThieckeM.J. Voltolini-GonzálezD. FritsenH. BobeldijkS. Braakt.T.J. PolderE. PostmaN.L. BugianiM. StruijsE.A. VerheijenM. StraatN. van der SluisS. ThomasA.A.M. MolenaarD. van der KnaapM.S. Vanishing white matter: Deregulated integrated stress response as therapy target.Ann. Clin. Transl. Neurol.2019681407142210.1002/acn3.5082631402619
    [Google Scholar]
  171. WitkampD. OudejansE. Hu-A-NgG.V. HoogterpL. KrzywańskaA.M. ŽnidaršičM. MarinusK. MestdaghV.d.C.F. BartelinkI. BugianiM. van der KnaapM.S. AbbinkT.E.M. Guanabenz ameliorates disease in vanishing white matter mice in contrast to sephin1.Ann. Clin. Transl. Neurol.2022981147116210.1002/acn3.5161135778832
    [Google Scholar]
  172. DoovesS. BugianiM. WisseL.E. AbbinkT.E.M. van der KnaapM.S. HeineV.M. Bergmann glia translocation: A new disease marker for vanishing white matter identifies therapeutic effects of Guanabenz treatment.Neuropathol. Appl. Neurobiol.201844439140310.1111/nan.1241128953319
    [Google Scholar]
  173. OhriS.S. MullinsA. HetmanM. WhittemoreS.R. Inhibition of gadd34, the stress-inducible regulatory subunit of the endoplasmic reticulum stress response, does not enhance functional recovery after spinal cord injury.PLoS One.2014911e109703
    [Google Scholar]
  174. BisicchiaE. MastrantonioR. NobiliA. PalazzoC. BarberaL.L. LatiniL. MillozziF. SassoV. PalaciosD. D’AmelioM. ViscomiM.T. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload.Cell Death Dis.202213438110.1038/s41419‑022‑04830‑935444186
    [Google Scholar]
  175. VieiraF.G. PingQ. MorenoA.J. KiddJ.D. ThompsonK. JiangB. Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS.PLoS One.2015108e013557010.1371/journal.pone.0135570
    [Google Scholar]
  176. AbdulkarimB. HernangomezM. Igoillo-EsteveM. CunhaD.A. MarselliL. MarchettiP. LadriereL. CnopM. Guanabenz sensitizes pancreatic β cells to lipotoxic endoplasmic reticulum stress and apoptosis.Endocrinology201715861659167010.1210/en.2016‑177328323924
    [Google Scholar]
  177. MaltsevA.V. NikiforovaA.B. BalN.V. BalabanP.M. Amyloid Aβ25-35 aggregates say ‘NO’ to long-term potentiation in the hippocampus through activation of stress-induced phosphatase 1 and mitochondrial Na+/Ca2+ exchanger.Int. J. Mol. Sci.202223191184810.3390/ijms23191184836233148
    [Google Scholar]
  178. BaiY. TreinsC. VolpiV.G. ScapinC. FerriC. MastrangeloR. TouvierT. FlorioF. BianchiF. CarroD.U. BaasF.F. WangD. MiniouP. GuedatP. ShyM.E. D’AntonioM. Treatment with IFB-088 improves neuropathy in CMT1A and CMT1B mice.Mol. Neurobiol.20225974159417810.1007/s12035‑022‑02838‑y35501630
    [Google Scholar]
  179. PerninF. LuoJ.X.X. CuiQ.L. BlainM. FernandesM.G.F. YaqubiM. SrourM. HallJ. DudleyR. JamannH. LarochelleC. ZandeeS.E.J. PratA. StrattonJ.A. KennedyT.E. AntelJ.P. Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis.Brain2022145124320433310.1093/brain/awac07535202462
    [Google Scholar]
  180. ChenY. PodojilJ.R. KunjammaR.B. JonesJ. WeinerM. LinW. MillerS.D. PopkoB. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis.Brain2019142234436110.1093/brain/awy32230657878
    [Google Scholar]
  181. ChenY. QuanS. PatilV. KunjammaR.B. TokarsH.M. LeistenE.D. JoyG. WillsS. ChanJ.R. WongY.C. PopkoB. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response.Glia20237192180219510.1002/glia.2438637203250
    [Google Scholar]
  182. ChenY. KunjammaR.B. WeinerM. ChanJ.R. PopkoB. Prolonging the integrated stress response enhances CNS remyelination in an inflammatory environment.eLife202110e6546910.7554/eLife.6546933752802
    [Google Scholar]
/content/journals/cn/10.2174/011570159X361653250213114821
Loading
/content/journals/cn/10.2174/011570159X361653250213114821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test