Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Tobacco dependence is a chronic, relapsing disorder with significant socioeconomic and health impacts that lead to considerable morbidity and mortality worldwide. Nicotine is the primary component responsible for the initiation and continuation of tobacco use. Nicotine exposure causes multiple alterations in the structure and function of the brain’s reward system. Evidence shows that synaptic plasticity, a key event that modifies neural circuit structure and function, is largely influenced by changes in glutamatergic neurotransmission in the forebrain’s reward pathways. It is now widely accepted that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) modify synaptic strength within the reward circuitry. Dendritic spines, the primary sites of synaptic plasticity, exhibit an array of structural adaptations in size and shape influenced by neural activity, which correlates with alterations in the strength of synaptic connections. Such alterations in dendritic spine morphology largely depend on the remodeling of the underlying actin cytoskeleton. The dynamics of the actin cytoskeleton are regulated by several modulators, including actin-binding proteins, protein kinases, and small GTPases. This review focuses on the restructuring of the dendritic spine machinery and the relevant changes in synaptic strength mediated by AMPARs in key brain areas involved in addiction. However, our understanding of the neural pathways governing the emergence and significance of the structural and functional changes that lead to addiction-like behaviors after prolonged nicotine exposure remains insufficient. Comprehending these essential neural processes could deepen our insight into the progression and maintenance of nicotine dependence.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X365159250311142852
2025-04-07
2025-09-02
Loading full text...

Full text loading...

References

  1. SesackS.R. GraceA.A. Cortico-Basal Ganglia reward network: Microcircuitry.Neuropsychopharmacology2010351274710.1038/npp.2009.93 19675534
    [Google Scholar]
  2. AllichonM.C. OrtizV. PousinhaP. AndrianariveloA. PetitbonA. HeckN. TrifilieffP. BarikJ. VanhoutteP. Cell-type-specific adaptions in striatal medium-sized spiny neurons and their roles in behavioral responses to drugs of abuse.Front. Synaptic Neurosci.20211379927410.3389/fnsyn.2021.799274 34970134
    [Google Scholar]
  3. KimH.J. LeeJ.H. YunK. KimJ.H. Alterations in striatal circuits underlying addiction-like behaviors.Mol. Cells201740637938510.14348/molcells.2017.0088 28724279
    [Google Scholar]
  4. ChenS.Y. LuK.M. KoH.A. HuangT.H. HaoJ.H.J. YanY.T. ChangS.L.Y. EvansS.M. LiuF.C. Parcellation of the striatal complex into dorsal and ventral districts.Proc. Natl. Acad. Sci. USA2020117137418742910.1073/pnas.1921007117 32170006
    [Google Scholar]
  5. HaberS.N. Corticostriatal circuitry.Dialogues Clin. Neurosci.201618172110.31887/DCNS.2016.18.1/shaber 27069376
    [Google Scholar]
  6. KlawonnA.M. MalenkaR.C. Nucleus accumbens modulation in reward and aversion.Cold Spring Harb. Symp. Quant. Biol.20188311912910.1101/sqb.2018.83.037457
    [Google Scholar]
  7. NestlerE.J. LüscherC. The molecular basis of drug addiction: Linking epigenetic to synaptic and circuit mechanisms.Neuron20191021485910.1016/j.neuron.2019.01.016 30946825
    [Google Scholar]
  8. VolkowN.D. MoralesM. The brain on drugs: From reward to addiction.Cell2015162471272510.1016/j.cell.2015.07.046 26276628
    [Google Scholar]
  9. PappE. BorhegyiZ. TomiokaR. RocklandK.S. ModyI. FreundT.F. Glutamatergic input from specific sources influences the nucleus accumbens-ventral pallidum information flow.Brain Struct. Funct.20122171374810.1007/s00429‑011‑0331‑z 21643647
    [Google Scholar]
  10. JanakP.H. TyeK.M. From circuits to behaviour in the amygdala.Nature2015517753428429210.1038/nature14188 25592533
    [Google Scholar]
  11. BrittJ.P. BenaliouadF. McDevittR.A. StuberG.D. WiseR.A. BonciA. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.Neuron201276479080310.1016/j.neuron.2012.09.040 23177963
    [Google Scholar]
  12. VertesR.P. HooverW.B. RodriguezJ.J. Projections of the central medial nucleus of the thalamus in the rat: Node in cortical, striatal and limbic forebrain circuitry.Neuroscience201221912013610.1016/j.neuroscience.2012.04.067 22575585
    [Google Scholar]
  13. PhilibinS.D. HernandezA. SelfD.W. BibbJ.A. Striatal signal transduction and drug addiction.Front. Neuroanat.201156010.3389/fnana.2011.00060 21960960
    [Google Scholar]
  14. YagerL.M. GarciaA.F. WunschA.M. FergusonS.M. The ins and outs of the striatum: Role in drug addiction.Neuroscience201530152954110.1016/j.neuroscience.2015.06.033 26116518
    [Google Scholar]
  15. EverittB.J. RobbinsT.W. From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction.Neurosci. Biobehav. Rev.20133791946195410.1016/j.neubiorev.2013.02.010 23438892
    [Google Scholar]
  16. EverittB.J. RobbinsT.W. Drug addiction: Updating actions to habits to compulsions ten years on.Annu. Rev. Psychol.2016671235010.1146/annurev‑psych‑122414‑033457 26253543
    [Google Scholar]
  17. LoboM.K. NestlerE.J. The striatal balancing act in drug addiction: Distinct roles of direct and indirect pathway medium spiny neurons.Front. Neuroanat.201154110.3389/fnana.2011.00041 21811439
    [Google Scholar]
  18. LüscherC. RobbinsT.W. EverittB.J. The transition to compulsion in addiction.Nat. Rev. Neurosci.202021524726310.1038/s41583‑020‑0289‑z 32231315
    [Google Scholar]
  19. ChangeuxJ.P. Nicotine addiction and nicotinic receptors: Lessons from genetically modified mice.Nat. Rev. Neurosci.201011638940110.1038/nrn2849 20485364
    [Google Scholar]
  20. FalascaS. RancV. PetruzzielloF. KhaniA. KretzR. ZhangX. RainerG. Altered neurochemical levels in the rat brain following chronic nicotine treatment.J. Chem. Neuroanat.201459-60293510.1016/j.jchemneu.2014.05.002 24915436
    [Google Scholar]
  21. KimS. SohnS. RyuI.S. YangJ.H. KimO.H. KimJ.S. KimY.H. JangE.Y. ChoeE.S. Nicotine rather than non-nicotine substances in 3R4F WCSC increases behavioral sensitization and drug-taking behavior in rats.Nicotine Tob. Res.20222481201120710.1093/ntr/ntac063 35323980
    [Google Scholar]
  22. MarkouA. Neurobiology of nicotine dependence.Philos. Trans. R. Soc. Lond. B Biol. Sci.200836315073159316810.1098/rstb.2008.0095 18640919
    [Google Scholar]
  23. RyuI.S. KimJ. SeoS.Y. YangJ.H. OhJ.H. LeeD.K. ChoH.W. YoonS.S. SeoJ.W. ChangS. KimH.Y. ShimI. ChoeE.S. Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum.Sci. Rep.2017711500910.1038/s41598‑017‑15161‑7 29118361
    [Google Scholar]
  24. RyuI.S. KimJ. SeoS.Y. YangJ.H. OhJ.H. LeeD.K. ChoH.W. LeeK. YoonS.S. SeoJ.W. ShimI. ChoeE.S. Repeated administration of cigarette smoke condensate increases glutamate levels and behavioral sensitization.Front. Behav. Neurosci.2018124710.3389/fnbeh.2018.00047 29615877
    [Google Scholar]
  25. TepperJ.M. AbercrombieE.D. BolamJ.P. Basal ganglia macrocircuits.Prog. Brain Res.20071603710.1016/S0079‑6123(06)60001‑0 17499105
    [Google Scholar]
  26. TraynelisS.F. WollmuthL.P. McBainC.J. MennitiF.S. VanceK.M. OgdenK.K. HansenK.B. YuanH. MyersS.J. DingledineR. Glutamate receptor ion channels: Structure, regulation, and function.Pharmacol. Rev.201062340549610.1124/pr.109.002451 20716669
    [Google Scholar]
  27. ChaterT.E. GodaY. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity.Front. Cell. Neurosci.2014840110.3389/fncel.2014.00401 25505875
    [Google Scholar]
  28. NicollR.A. RocheK.W. Long-term potentiation: Peeling the onion.Neuropharmacology201374182210.1016/j.neuropharm.2013.02.010 23439383
    [Google Scholar]
  29. ParkM. AMPA receptor trafficking for postsynaptic potentiation.Front. Cell. Neurosci.20181236110.3389/fncel.2018.00361 30364291
    [Google Scholar]
  30. MurakoshiH. YasudaR. Postsynaptic signaling during plasticity of dendritic spines.Trends Neurosci.201235213514310.1016/j.tins.2011.12.002 22222350
    [Google Scholar]
  31. CingolaniL.A. GodaY. Actin in action: The interplay between the actin cytoskeleton and synaptic efficacy.Nat. Rev. Neurosci.20089534435610.1038/nrn2373 18425089
    [Google Scholar]
  32. LeiW. OmotadeO.F. MyersK.R. ZhengJ.Q. Actin cytoskeleton in dendritic spine development and plasticity.Curr. Opin. Neurobiol.201639869210.1016/j.conb.2016.04.010 27138585
    [Google Scholar]
  33. GoldenS.A. RussoS.J. Mechanisms of psychostimulant-induced structural plasticity.Cold Spring Harb. Perspect. Med.2012210a01195710.1101/cshperspect.a011957 22935995
    [Google Scholar]
  34. LüscherC. MalenkaR.C. Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling.Neuron201169465066310.1016/j.neuron.2011.01.017 21338877
    [Google Scholar]
  35. PenzesP. RafalovichI. Regulation of the actin cytoskeleton in dendritic spines. synaptic plasticity: Dynamics.Synaptic Plasticity. Advances in Experimental Medicine and Biology. KreutzM. SalaC. ViennaSpringer2012819510.1007/978‑3‑7091‑0932‑8_4
    [Google Scholar]
  36. SchubertV. DottiC.G. Transmitting on actin: Synaptic control of dendritic architecture.J. Cell Sci.2007120220521210.1242/jcs.03337 17215449
    [Google Scholar]
  37. StarE.N. KwiatkowskiD.J. MurthyV.N. Rapid turnover of actin in dendritic spines and its regulation by activity.Nat. Neurosci.20025323924610.1038/nn811 11850630
    [Google Scholar]
  38. LinW.H. WebbD.J. Actin and actin-binding proteins: Masters of dendritic spine formation, morphology, and function.Open Neurosci. J.200932546610.2174/1874082000903020054 20717495
    [Google Scholar]
  39. BorovacJ. BoschM. OkamotoK. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins.Mol. Cell. Neurosci.20189112213010.1016/j.mcn.2018.07.001 30004015
    [Google Scholar]
  40. OkamotoK.I. NagaiT. MiyawakiA. HayashiY. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity.Nat. Neurosci.20047101104111210.1038/nn1311 15361876
    [Google Scholar]
  41. BellotA. GuivernauB. TajesM. Bosch-MoratóM. Valls-ComamalaV. MuñozF.J. The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines.Brain Res.2014157311610.1016/j.brainres.2014.05.024 24854120
    [Google Scholar]
  42. ColganL.A. YasudaR. Plasticity of dendritic spines: Subcompartmentalization of signaling.Annu. Rev. Physiol.201476136538510.1146/annurev‑physiol‑021113‑170400 24215443
    [Google Scholar]
  43. HotulainenP. HoogenraadC.C. Actin in dendritic spines: Connecting dynamics to function.J. Cell Biol.2010189461962910.1083/jcb.201003008 20457765
    [Google Scholar]
  44. NakahataY. YasudaR. Plasticity of spine structure: Local signaling, translation and cytoskeletal reorganization.Front. Synaptic Neurosci.2018102910.3389/fnsyn.2018.00029 30210329
    [Google Scholar]
  45. RaczB. WeinbergR.J. Spatial organization of cofilin in dendritic spines.Neuroscience2006138244745610.1016/j.neuroscience.2005.11.025 16388910
    [Google Scholar]
  46. SarmiereP.D. BamburgJ.R. Regulation of the neuronal actin cytoskeleton by ADF/cofilin.J. Neurobiol.200458110311710.1002/neu.10267 14598374
    [Google Scholar]
  47. RustM.B. ADF/cofilin: A crucial regulator of synapse physiology and behavior.Cell. Mol. Life Sci.201572183521352910.1007/s00018‑015‑1941‑z 26037722
    [Google Scholar]
  48. CalabreseB. SaffinJ.M. HalpainS. Activity-dependent dendritic spine shrinkage and growth involve downregulation of cofilin via distinct mechanisms.PLoS One201494e9478710.1371/journal.pone.0094787 24740405
    [Google Scholar]
  49. MengY. TakahashiH. MengJ. ZhangY. LuG. AsrarS. NakamuraT. JiaZ. Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase.Neuropharmacology200447574675410.1016/j.neuropharm.2004.06.030 15458846
    [Google Scholar]
  50. PrunierC. PrudentR. KapurR. SadoulK. LafanechèreL. LIM kinases: Cofilin and beyond.Oncotarget2017825417494176310.18632/oncotarget.16978 28445157
    [Google Scholar]
  51. KovalevaT.F. MaksimovaN.S. ZhukovI.Y. PershinV.I. MukhinaI.V. GainullinM.R. Cofilin: Molecular and cellular functions and its role in the functioning of the nervous system.Neurochem. J.2019131111910.1134/S1819712419010124
    [Google Scholar]
  52. RustM.B. GurniakC.B. RennerM. VaraH. MorandoL. GörlichA. Sassoè-PognettoM. BanchaabouchiM.A. GiustettoM. TrillerA. ChoquetD. WitkeW. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics.EMBO J.201029111889190210.1038/emboj.2010.72 20407421
    [Google Scholar]
  53. GuJ. LeeC.W. FanY. KomlosD. TangX. SunC. YuK. HartzellH.C. ChenG. BamburgJ.R. ZhengJ.Q. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity.Nat. Neurosci.201013101208121510.1038/nn.2634 20835250
    [Google Scholar]
  54. BoschM. CastroJ. SaneyoshiT. MatsunoH. SurM. HayashiY. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.Neuron201482244445910.1016/j.neuron.2014.03.021 24742465
    [Google Scholar]
  55. NoguchiJ. HayamaT. WatanabeS. UcarH. YagishitaS. TakahashiN. KasaiH. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines.Sci. Rep.2016613289710.1038/srep32897 27595610
    [Google Scholar]
  56. DePoyL.M. GourleyS.L. Synaptic cytoskeletal plasticity in the prefrontal cortex following psychostimulant exposure.Traffic201516991994010.1111/tra.12295 25951902
    [Google Scholar]
  57. RigoniD. AvalosM.P. BoezioM.J. GuzmánA.S. CalfaG.D. PerassiE.M. PierottiS.M. BisbalM. Garcia-KellerC. CancelaL.M. BollatiF. Stress-induced vulnerability to develop cocaine addiction depends on cofilin modulation.Neurobiol. Stress20211510034910.1016/j.ynstr.2021.100349 34169122
    [Google Scholar]
  58. RothenfluhA. CowanC.W. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’?Curr. Opin. Neurobiol.201323450751210.1016/j.conb.2013.01.027 23428655
    [Google Scholar]
  59. TodaS. ShenH.W. PetersJ. CagleS. KalivasP.W. Cocaine increases actin cycling: Effects in the reinstatement model of drug seeking.J. Neurosci.20062651579158710.1523/JNEUROSCI.4132‑05.2006 16452681
    [Google Scholar]
  60. ShenH. TodaS. MoussawiK. BouknightA. ZahmD.S. KalivasP.W. Altered dendritic spine plasticity in cocaine-withdrawn rats.J. Neurosci.20092992876288410.1523/JNEUROSCI.5638‑08.2009 19261883
    [Google Scholar]
  61. TodaS. ShenH. KalivasP.W. Inhibition of actin polymerization prevents cocaine-induced changes in spine morphology in the nucleus accumbens.Neurotox. Res.2010183-441041510.1007/s12640‑010‑9193‑z 20401643
    [Google Scholar]
  62. KovacsK. LajthaA. SershenH. Effect of nicotine and cocaine on neurofilaments and receptors in whole brain tissue and synaptoneurosome preparations.Brain Res. Bull.2010821-210911710.1016/j.brainresbull.2010.02.008 20188799
    [Google Scholar]
  63. GregerI.H. EstebanJ.A. AMPA receptor biogenesis and trafficking.Curr. Opin. Neurobiol.200717328929710.1016/j.conb.2007.04.007 17475474
    [Google Scholar]
  64. HollmannM. HeinemannS. Cloned glutamate receptors.Annu. Rev. Neurosci.19941713110810.1146/annurev.ne.17.030194.000335 8210177
    [Google Scholar]
  65. LuW. ShiY. JacksonA.C. BjorganK. DuringM.J. SprengelR. SeeburgP.H. NicollR.A. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach.Neuron200962225426810.1016/j.neuron.2009.02.027 19409270
    [Google Scholar]
  66. ReimersJ.M. MilovanovicM. WolfM.E. Quantitative analysis of AMPA receptor subunit composition in addiction-related brain regions.Brain Res.2011136722323310.1016/j.brainres.2010.10.016 20946890
    [Google Scholar]
  67. DieringG.H. HuganirR.L. The AMPA receptor code of synaptic plasticity.Neuron2018100231432910.1016/j.neuron.2018.10.018 30359599
    [Google Scholar]
  68. KopecC.D. RealE. KesselsH.W. MalinowR. GluR1 links structural and functional plasticity at excitatory synapses.J. Neurosci.20072750137061371810.1523/JNEUROSCI.3503‑07.2007 18077682
    [Google Scholar]
  69. LeeH.K. TakamiyaK. HeK. SongL. HuganirR.L. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus.J. Neurophysiol.2010103147948910.1152/jn.00835.2009 19906877
    [Google Scholar]
  70. LuW. RocheK.W. Posttranslational regulation of AMPA receptor trafficking and function.Curr. Opin. Neurobiol.201222347047910.1016/j.conb.2011.09.008 22000952
    [Google Scholar]
  71. LussierM.P. Sanz-ClementeA. RocheK.W. Dynamic regulation of N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by posttranslational modifications.J. Biol. Chem.201529048285962860310.1074/jbc.R115.652750 26453298
    [Google Scholar]
  72. BoehmJ. KangM.G. JohnsonR.C. EstebanJ. HuganirR.L. MalinowR. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1.Neuron200651221322510.1016/j.neuron.2006.06.013 16846856
    [Google Scholar]
  73. EstebanJ.A. ShiS.H. WilsonC. NuriyaM. HuganirR.L. MalinowR. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity.Nat. Neurosci.20036213614310.1038/nn997 12536214
    [Google Scholar]
  74. HussainN.K. ThomasG.M. LuoJ. HuganirR.L. Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation.Proc. Natl. Acad. Sci. USA201511243E5883E589010.1073/pnas.1518382112 26460013
    [Google Scholar]
  75. LuW. IsozakiK. RocheK.W. NicollR.A. Synaptic targeting of AMPA receptors is regulated by a CaMKII site in the first intracellular loop of GluA1.Proc. Natl. Acad. Sci. USA201010751222662227110.1073/pnas.1016289107 21135237
    [Google Scholar]
  76. BowersM.S. ChenB.T. BonciA. AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future.Neuron2010671112410.1016/j.neuron.2010.06.004 20624588
    [Google Scholar]
  77. SeoS.Y. OhJ.H. ChoeE.S. Protein kinase G increases AMPA receptor GluR1 phosphorylation at serine 845 after repeated cocaine administration in the rat nucleus accumbens.Neurosci. Lett.201354414715110.1016/j.neulet.2013.04.003 23583340
    [Google Scholar]
  78. OhJ.H. YangJ.H. AhnS.M. YounB. ChoiB.T. WangJ.Q. ChoeE.S. Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration.Psychopharmacology2013227343744510.1007/s00213‑013‑2968‑1 23334104
    [Google Scholar]
  79. YangJ.H. SeoS.Y. OhJ.H. RyuI.S. KimJ. LeeD.K. RyuY. ChoeE.S. Activation of protein kinase G after repeated cocaine administration is necessary for the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 at serine 831 in the rat nucleus accumbens.Front. Mol. Neurosci.20181126310.3389/fnmol.2018.00263 30104957
    [Google Scholar]
  80. KimS. SohnS. ChoeE.S. Phosphorylation of GluA1-Ser831 by CaMKII activation in the caudate and putamen is required for behavioral sensitization after challenge nicotine in rats.Int. J. Neuropsychopharmacol.202225867868710.1093/ijnp/pyac034 35678163
    [Google Scholar]
  81. JenkinsM.A. TraynelisS.F. PKC phosphorylates GluA1-Ser831 to enhance AMPA receptor conductance.Channels (Austin)201261606410.4161/chan.18648 22373567
    [Google Scholar]
  82. NewpherT.M. EhlersM.D. Glutamate receptor dynamics in dendritic microdomains.Neuron200858447249710.1016/j.neuron.2008.04.030 18498731
    [Google Scholar]
  83. HanleyJ.G. Actin-dependent mechanisms in AMPA receptor trafficking.Front. Cell. Neurosci.2014838110.3389/fncel.2014.00381 25429259
    [Google Scholar]
  84. MorettoE. PassafaroM. Recent findings on AMPA receptor recycling.Front. Cell. Neurosci.20181228610.3389/fncel.2018.00286 30233324
    [Google Scholar]
  85. BonnetS.A.D. AkadD.S. SamaddarT. LiuY. HuangX. DongY. SchlüterO.M. Synaptic state-dependent functional interplay between postsynaptic density-95 and synapse-associated protein 102.J. Neurosci.20133333133981340910.1523/JNEUROSCI.6255‑11.2013 23946397
    [Google Scholar]
  86. CaoY.Y. WuL.L. LiX.N. YuanY.L. ZhaoW.W. QiJ.X. ZhaoX.Y. WardN. WangJ. Molecular mechanisms of AMPA receptor trafficking in the nervous system.Int. J. Mol. Sci.202325111110.3390/ijms25010111 38203282
    [Google Scholar]
  87. OpazoP. SainlosM. ChoquetD. Regulation of AMPA receptor surface diffusion by PSD-95 slots.Curr. Opin. Neurobiol.201222345346010.1016/j.conb.2011.10.010 22051694
    [Google Scholar]
  88. YangJ. MaR.N. DongJ.M. HuS.Q. LiuY. YanJ.Z. Phosphorylation of 4.1N by CaMKII regulates the trafficking of glua1-containing AMPA receptors during long-term potentiation in acute rat hippocampal brain slices.Neuroscience202453613114210.1016/j.neuroscience.2023.11.016 37993087
    [Google Scholar]
  89. Díaz-AlonsoJ. NicollR.A. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs.Neuropharmacology202119710871010.1016/j.neuropharm.2021.108710 34271016
    [Google Scholar]
  90. GregerI.H. WatsonJ.F. Cull-CandyS.G. Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins.Neuron201794471373010.1016/j.neuron.2017.04.009 28521126
    [Google Scholar]
  91. ShengN. BembenM.A. Díaz-AlonsoJ. TaoW. ShiY.S. NicollR.A. LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes.Proc. Natl. Acad. Sci. USA2018115153948395310.1073/pnas.1800719115 29581259
    [Google Scholar]
  92. AnggonoV. HuganirR.L. Regulation of AMPA receptor trafficking and synaptic plasticity.Curr. Opin. Neurobiol.201222346146910.1016/j.conb.2011.12.006 22217700
    [Google Scholar]
  93. HuganirR.L. NicollR.A. AMPARs and synaptic plasticity: The last 25 years.Neuron201380370471710.1016/j.neuron.2013.10.025 24183021
    [Google Scholar]
  94. WangX. CahillM.E. WernerC.T. ChristoffelD.J. GoldenS.A. XieZ. LowethJ.A. MarinelliM. RussoS.J. PenzesP. WolfM.E. Kalirin-7 mediates cocaine-induced AMPA receptor and spine plasticity, enabling incentive sensitization.J. Neurosci.20133327110121102210.1523/JNEUROSCI.1097‑13.2013 23825406
    [Google Scholar]
  95. ConradK.L. TsengK.Y. UejimaJ.L. ReimersJ.M. HengL.J. ShahamY. MarinelliM. WolfM.E. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving.Nature2008454720011812110.1038/nature06995 18500330
    [Google Scholar]
  96. McCutcheonJ.E. WangX. TsengK.Y. WolfM.E. MarinelliM. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine.J. Neurosci.201131155737574310.1523/JNEUROSCI.0350‑11.2011 21490215
    [Google Scholar]
  97. WolfM.E. TsengK.Y. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how, and why?Front. Mol. Neurosci.201257210.3389/fnmol.2012.00072 22754497
    [Google Scholar]
  98. WangY.Q. HuangY.H. BalakrishnanS. LiuL. WangY.T. NestlerE.J. SchlüterO.M. DongY. AMPA and NMDA receptor trafficking at cocaine-generated synapses.J. Neurosci.20214191996201110.1523/JNEUROSCI.1918‑20.2021 33436529
    [Google Scholar]
  99. WrightW.J. GrazianeN.M. NeumannP.A. HamiltonP.J. CatesH.M. FuerstL. SpenceleyA. MacKinnon-BoothN. IyerK. HuangY.H. ShahamY. SchlüterO.M. NestlerE.J. DongY. Silent synapses dictate cocaine memory destabilization and reconsolidation.Nat. Neurosci.2020231324610.1038/s41593‑019‑0537‑6 31792465
    [Google Scholar]
  100. ShuklaA. BerounA. PanopoulouM. NeumannP.A. GrantS.G.N. OliveM.F. DongY. SchlüterO.M. Calcium‐permeable AMPA receptors and silent synapses in cocaine‐conditioned place preference.EMBO J.201736445847410.15252/embj.201695465 28077487
    [Google Scholar]
  101. SaneyoshiT. FortinD.A. SoderlingT.R. Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways.Curr. Opin. Neurobiol.201020110811510.1016/j.conb.2009.09.013 19896363
    [Google Scholar]
  102. ChangJ.Y. NakahataY. HayanoY. YasudaR. Mechanisms of Ca2+/calmodulin-dependent kinase II activation in single dendritic spines.Nat. Commun.2019101278410.1038/s41467‑019‑10694‑z 31239443
    [Google Scholar]
  103. OkamotoK.I. NarayananR. LeeS.H. MurataK. HayashiY. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure.Proc. Natl. Acad. Sci. USA2007104156418642310.1073/pnas.0701656104 17404223
    [Google Scholar]
  104. WangQ. ChenM. SchaferN.P. BuenoC. SongS.S. HudmonA. WolynesP.G. WaxhamM.N. CheungM.S. Assemblies of calcium/calmodulin-dependent kinase II with actin and their dynamic regulation by calmodulin in dendritic spines.Proc. Natl. Acad. Sci. USA201911638189371894210.1073/pnas.1911452116 31455737
    [Google Scholar]
  105. ChangJ.Y. Parra-BuenoP. LavivT. SzatmariE.M. LeeS.J.R. YasudaR. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance.Neuron2017944800808.e410.1016/j.neuron.2017.04.041 28521133
    [Google Scholar]
  106. CoultrapS.J. FreundR.K. O’LearyH. SandersonJ.L. RocheK.W. Dell’AcquaM.L. BayerK.U. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection.Cell Rep.20146343143710.1016/j.celrep.2014.01.005 24485660
    [Google Scholar]
  107. LeeS.J.R. Escobedo-LozoyaY. SzatmariE.M. YasudaR. Activation of CaMKII in single dendritic spines during long-term potentiation.Nature2009458723629930410.1038/nature07842 19295602
    [Google Scholar]
  108. LismanJ. YasudaR. RaghavachariS. Mechanisms of CaMKII action in long-term potentiation.Nat. Rev. Neurosci.201213316918210.1038/nrn3192 22334212
    [Google Scholar]
  109. OkamotoK. BoschM. HayashiY. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: A potential molecular identity of a synaptic tag?Physiology200924635736610.1152/physiol.00029.2009 19996366
    [Google Scholar]
  110. KimK. LakhanpalG. LuH.E. KhanM. SuzukiA. HayashiK.M. NarayananR. LuybenT.T. MatsudaT. NagaiT. BlanpiedT.A. HayashiY. OkamotoK. A temporary gating of actin remodeling during synaptic plasticity consists of the interplay between the kinase and structural functions of CaMKII.Neuron201587481382610.1016/j.neuron.2015.07.023 26291163
    [Google Scholar]
  111. KimK. SaneyoshiT. HosokawaT. OkamotoK. HayashiY. Interplay of enzymatic and structural functions of Ca MKII in long‐term potentiation.J. Neurochem.2016139695997210.1111/jnc.13672 27207106
    [Google Scholar]
  112. KristensenA.S. JenkinsM.A. BankeT.G. SchousboeA. MakinoY. JohnsonR.C. HuganirR. TraynelisS.F. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating.Nat. Neurosci.201114672773510.1038/nn.2804 21516102
    [Google Scholar]
  113. BoudreauA.C. FerrarioC.R. GlucksmanM.J. WolfM.E. Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine.J. Neurochem.2009110136337710.1111/j.1471‑4159.2009.06140.x 19457111
    [Google Scholar]
  114. JacksonK.J. MuldoonP.P. WaltersC. DamajM.I. Neuronal calcium/calmodulin-dependent protein kinase II mediates nicotine reward in the conditioned place preference test in mice.Behav. Pharmacol.2016271505610.1097/FBP.0000000000000189 26292186
    [Google Scholar]
  115. SaneyoshiT. HayashiY. The Ca2+ and Rho GTPase signaling pathways underlying activity‐dependent actin remodeling at dendritic spines.Cytoskeleton201269854555410.1002/cm.21037 22566410
    [Google Scholar]
  116. MurakoshiH. WangH. YasudaR. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines.Nature2011472734110010410.1038/nature09823 21423166
    [Google Scholar]
  117. NegishiM. KatohH. Rho family GTPases as key regulators for neuronal network formation.J. Biochem.2002132215716610.1093/oxfordjournals.jbchem.a003205 12153710
    [Google Scholar]
  118. HlushchenkoI. KoskinenM. HotulainenP. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.Cytoskeleton201673943544110.1002/cm.21280 26849484
    [Google Scholar]
  119. HedrickN.G. YasudaR. Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity.Curr. Opin. Neurobiol.20174519320110.1016/j.conb.2017.06.002 28709063
    [Google Scholar]
  120. GovekE.E. NeweyS.E. AelstV.L. The role of the Rho GTPases in neuronal development.Genes Dev.200519114910.1101/gad.1256405 15630019
    [Google Scholar]
  121. LiJ. ZhangL. ChenZ. XieM. HuangL. XueJ. LiuY. LiuN. GuoF. ZhengY. KongJ. ZhangL. ZhangL. Cocaine activates Rac1 to control structural and behavioral plasticity in caudate putamen.Neurobiol. Dis.20157515917610.1016/j.nbd.2014.12.031 25595128
    [Google Scholar]
  122. AminE. AhmadianM.R. Regulators of Rho signaling.Rho GTPase.SingaporeWorld Scientific Connect2018335110.1142/9789813228795_0003
    [Google Scholar]
  123. RuQ. WangY. ZhouE. ChenL. WuY. The potential therapeutic roles of Rho GTPases in substance dependence.Front. Mol. Neurosci.202316112527710.3389/fnmol.2023.1125277 37063367
    [Google Scholar]
  124. KumarR. SanawarR. LiX. LiF. Structure, biochemistry, and biology of PAK kinases.Gene2017605203110.1016/j.gene.2016.12.014 28007610
    [Google Scholar]
  125. BodaB. JourdainL. MullerD. Distinct, but compensatory roles of PAK1 and PAK3 in spine morphogenesis.Hippocampus200818985786110.1002/hipo.20451 18481281
    [Google Scholar]
  126. HayashiK. OhshimaT. HashimotoM. MikoshibaK. Pak1 regulates dendritic branching and spine formation.Dev. Neurobiol.200767565566910.1002/dneu.20363 17443815
    [Google Scholar]
  127. AsrarS. MengY. ZhouZ. TodorovskiZ. HuangW.W. JiaZ. Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1).Neuropharmacology2009561738010.1016/j.neuropharm.2008.06.055 18644395
    [Google Scholar]
  128. DubosA. CombeauG. BernardinelliY. BarnierJ.V. HartleyO. GaertnerH. BodaB. MullerD. Alteration of synaptic network dynamics by the intellectual disability protein PAK3.J. Neurosci.201232251952710.1523/JNEUROSCI.3252‑11.2012 22238087
    [Google Scholar]
  129. KiralyD.D. MaX.M. MazzoneC.M. XinX. MainsR.E. EipperB.A. Behavioral and morphological responses to cocaine require kalirin7.Biol. Psychiatry201068324925510.1016/j.biopsych.2010.03.024 20452575
    [Google Scholar]
  130. DietzD.M. SunH. LoboM.K. CahillM.E. ChadwickB. GaoV. KooJ.W. Mazei-RobisonM.S. DiasC. MazeI. Damez-WernoD. DietzK.C. ScobieK.N. FergusonD. ChristoffelD. OhnishiY. HodesG.E. ZhengY. NeveR.L. HahnK.M. RussoS.J. NestlerE.J. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons.Nat. Neurosci.201215689189610.1038/nn.3094 22522400
    [Google Scholar]
  131. RooD.M. KlauserP. MullerD. LTP promotes a selective long-term stabilization and clustering of dendritic spines.PLoS Biol.200869e21910.1371/journal.pbio.0060219 18788894
    [Google Scholar]
  132. SalaC. SegalM. Dendritic spines: The locus of structural and functional plasticity.Physiol. Rev.201494114118810.1152/physrev.00012.2013 24382885
    [Google Scholar]
  133. ParkJ.M. JungS.C. EunS.Y. Long-term synaptic plasticity: Circuit perturbation and stabilization.Korean J. Physiol. Pharmacol.201418645746010.4196/kjpp.2014.18.6.457 25598658
    [Google Scholar]
  134. MalenkaR.C. BearM.F. LTP and LTD: An embarrassment of riches.Neuron200444152110.1016/j.neuron.2004.09.012 15450156
    [Google Scholar]
  135. FukazawaY. SaitohY. OzawaF. OhtaY. MizunoK. InokuchiK. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo.Neuron200338344746010.1016/S0896‑6273(03)00206‑X 12741991
    [Google Scholar]
  136. HarrisK.M. FialaJ.C. OstroffL. Structural changes at dendritic spine synapses during long-term potentiation.Philos. Trans. R. Soc. Lond. B Biol. Sci.2003358143274574810.1098/rstb.2002.1254 12740121
    [Google Scholar]
  137. MatsuzakiM. HonkuraN. Ellis-DaviesG.C.R. KasaiH. Structural basis of long-term potentiation in single dendritic spines.Nature2004429699376176610.1038/nature02617 15190253
    [Google Scholar]
  138. YangY. WangX. FrerkingM. ZhouQ. Spine expansion and stabilization associated with long-term potentiation.J. Neurosci.200828225740575110.1523/JNEUROSCI.3998‑07.2008 18509035
    [Google Scholar]
  139. ArellanoJ.I. Benavides-PiccioneR. DefelipeJ. YusteR. Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies.Front. Neurosci.20071113114310.3389/neuro.01.1.1.010.2007 18982124
    [Google Scholar]
  140. OkabeS. Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms.Mol. Cell. Neurosci.202010910356410.1016/j.mcn.2020.103564 33096206
    [Google Scholar]
  141. NägerlU.V. EberhornN. CambridgeS.B. BonhoefferT. Bidirectional activity-dependent morphological plasticity in hippocampal neurons.Neuron200444575976710.1016/j.neuron.2004.11.016 15572108
    [Google Scholar]
  142. WiegertJ.S. OertnerT.G. Long-term depression triggers the selective elimination of weakly integrated synapses.Proc. Natl. Acad. Sci. USA201311047E4510E451910.1073/pnas.1315926110 24191047
    [Google Scholar]
  143. ZhouQ. HommaK.J. PooM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses.Neuron200444574975710.1016/j.neuron.2004.11.011 15572107
    [Google Scholar]
  144. BorczykM. ŚliwińskaM.A. CalyA. BernasT. RadwanskaK. Neuronal plasticity affects correlation between the size of dendritic spine and its postsynaptic density.Sci. Rep.201991169310.1038/s41598‑018‑38412‑7 30737431
    [Google Scholar]
  145. RobinsonT.E. KolbB. Structural plasticity associated with exposure to drugs of abuse.Neuropharmacology200447Suppl. 1334610.1016/j.neuropharm.2004.06.025 15464124
    [Google Scholar]
  146. BrownR.W. KolbB. Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex.Brain Res.20018991-29410010.1016/S0006‑8993(01)02201‑6 11311869
    [Google Scholar]
  147. GonzalezC.L.R. GharbawieO.A. WhishawI.Q. KolbB. Nicotine stimulates dendritic arborization in motor cortex and improves concurrent motor skill but impairs subsequent motor learning.Synapse200555318319110.1002/syn.20106 15635590
    [Google Scholar]
  148. KolbB. GibbR. GornyG. Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex.Neurobiol. Learn. Mem.200379111010.1016/S1074‑7427(02)00021‑7 12482673
    [Google Scholar]
  149. FujiiS. JiZ. MoritaN. SumikawaK. Acute and chronic nicotine exposure differentially facilitate the induction of LTP.Brain Res.1999846113714310.1016/S0006‑8993(99)01982‑4 10536221
    [Google Scholar]
  150. GuanX. NakauchiS. SumikawaK. Nicotine reverses consolidated long-term potentiation in the hippocampal CA1 region.Brain Res.200610781809110.1016/j.brainres.2006.02.034 16564510
    [Google Scholar]
  151. OdaA. YamagataK. NakagomiS. UejimaH. WiriyasermkulP. OhgakiR. NagamoriS. KanaiY. TanakaH. Nicotine induces dendritic spine remodeling in cultured hippocampal neurons.J. Neurochem.2014128224625510.1111/jnc.12470 24117996
    [Google Scholar]
  152. QuinteroG. Role of nucleus accumbens glutamatergic plasticity in drug addiction.Neuropsychiatr. Dis. Treat.201391499151210.2147/NDT.S45963 24109187
    [Google Scholar]
  153. BoudreauA.C. WolfM.E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens.J. Neurosci.200525409144915110.1523/JNEUROSCI.2252‑05.2005 16207873
    [Google Scholar]
  154. PierceR.C. WolfM.E. Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission.Cold Spring Harb. Perspect. Med.201332a01202110.1101/cshperspect.a012021 23232118
    [Google Scholar]
  155. CaggiulaA.R. DonnyE.C. WhiteA.R. ChaudhriN. BoothS. GharibM.A. HoffmanA. PerkinsK.A. SvedA.F. Cue dependency of nicotine self-administration and smoking.Pharmacol. Biochem. Behav.200170451553010.1016/S0091‑3057(01)00676‑1 11796151
    [Google Scholar]
  156. McDonaldC.G. EppolitoA.K. BrielmaierJ.M. SmithL.N. BergstromH.C. LawheadM.R. SmithR.F. Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats.Brain Res.2007115121121810.1016/j.brainres.2007.03.019 17418110
    [Google Scholar]
  157. GipsonC.D. ReissnerK.J. KupchikY.M. SmithA.C.W. StankeviciuteN. Hensley-SimonM.E. KalivasP.W. Reinstatement of nicotine seeking is mediated by glutamatergic plasticity.Proc. Natl. Acad. Sci. USA2013110229124912910.1073/pnas.1220591110 23671067
    [Google Scholar]
  158. KalivasP.W. The glutamate homeostasis hypothesis of addiction.Nat. Rev. Neurosci.200910856157210.1038/nrn2515 19571793
    [Google Scholar]
  159. LiechtiM.E. MarkouA. Role of the glutamatergic system in nicotine dependence: Implications for the discovery and development of new pharmacological smoking cessation therapies.CNS Drugs200822970572410.2165/00023210‑200822090‑00001 18698872
    [Google Scholar]
  160. AlasmariF. Al-RejaieS.S. AlSharariS.D. SariY. Targeting glutamate homeostasis for potential treatment of nicotine dependence.Brain Res. Bull.20161211810.1016/j.brainresbull.2015.11.010 26589642
    [Google Scholar]
  161. AdermarkL. MorudJ. LotfiA. DanielssonK. UleniusL. SöderpalmB. EricsonM. Temporal rewiring of striatal circuits initiated by nicotine.Neuropsychopharmacology201641133051305910.1038/npp.2016.118 27388328
    [Google Scholar]
  162. SanchezV. Bakhti-SurooshA. ChenA. BrunzellD.H. ErisirA. LynchW.J. Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine‐seeking following extended access self‐administration.Eur. J. Neurosci.20195042707272110.1111/ejn.14408 30888721
    [Google Scholar]
  163. AbdolahiA. AcostaG. BreslinF.J. HembyS.E. LynchW.J. Incubation of nicotine seeking is associated with enhanced protein kinase A‐regulated signaling of dopamine‐ and cAMP‐regulated phosphoprotein of 32 kDa in the insular cortex.Eur. J. Neurosci.201031473374110.1111/j.1460‑9568.2010.07114.x 20384816
    [Google Scholar]
  164. FunkD. CoenK. TamadonS. HopeB.T. ShahamY. LêA.D. Role of central amygdala neuronal ensembles in incubation of nicotine craving.J. Neurosci.201636338612862310.1523/JNEUROSCI.1505‑16.2016 27535909
    [Google Scholar]
/content/journals/cn/10.2174/011570159X365159250311142852
Loading
/content/journals/cn/10.2174/011570159X365159250311142852
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Actin; cytoskeleton; dendritic spines; glutamate; nicotine; synaptic remodeling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test