Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Suicide is a major global public health concern that affects people of all ages, with over 700000 individuals intentionally ending their lives every year. Suicide is a multi-factorial event related to multiple risk factors interlocking with each other, among which neurobiological factors are considered to be an objective measure of the incidence of this phenomenon and can be used as a measurable tool for evaluating suicidal tendencies.

Objective

The aim of this study is to thoroughly examine available data and assess candidate proteins as prospective biomarkers for predicting suicides and ascertaining the manner of death in forensic cases.

Methods

An electronic search was conducted on PubMed, Science Direct Scopus, and the Excerpta Medica Database. The systematic review adhered to PRISMA guidelines and encompassed case series, prospective and retrospective studies, and short communications published in English. The focus was on proteomics and suicide, specifically, those studies where researchers conducted human proteomic analyses on specimens obtained from individuals who completed or attempted suicide.

Results

A total of 14 studies met the inclusion criteria, resulting in a dataset of numerous candidate protein biomarkers. These include tenascin-C, potassium voltage-gated channel subfamily Q member 3, vimentin-immunoreactive astrocytes, glutathione S-transferase theta 1, iron transport proteins, A-crystallin chain B, manganese superoxide dismutase, glial fibrillary acidic protein, various glycolytic pathway proteins, 14-3-3 eta and 14-3-3 theta proteins, specific cytoskeleton proteins, C-reactive protein, serum amyloid A protein 1, extrinsic coagulation pathway proteins, the vacuolar-type proton pump ATPase subunit, plasma apolipoprotein A-IV, and ER stress proteins. These proteins are proposed as a panel of biomarkers to be evaluated in conjunction with other clinical predictors of suicide.

Conclusion

This review aims to provide a comprehensive summary of all proteomic studies conducted on cases of attempted or completed suicide. By doing so, it seeks to bridge existing gaps in knowledge and pave the way for future investigations. The ultimate goal is to potentially identify a suicide biomarker.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X344453241129073214
2025-01-20
2025-09-02
Loading full text...

Full text loading...

References

  1. ArensmanE. ScottV. De LeoD. PirkisJ. Suicide and suicide prevention from a global perspective.Crisis202041Suppl. 1S3S710.1027/0227‑5910/a000664 32208759
    [Google Scholar]
  2. BenlaarajO. El JaafariI. EllahyaniA. BoutaayamouI. Prediction of suicidal ideation in a new Arabic annotated dataset.9th International Conference on Wireless Networks and Mobile Communications (WINCOM)Rabat, Morocco, 26-29 October20221510.1109/WINCOM55661.2022.9966481
    [Google Scholar]
  3. HedegaardH. CurtinS.C. WarnerM. Suicide mortality in the United States.NCHS Data Brief201833018 30500324
    [Google Scholar]
  4. ZhaoH. LiuY. ZhangX. LiaoY. ZhangH. HanX. GuoL. FanB. WangW. LuC. Identifying novel proteins for suicide attempt by integrating proteomes from brain and blood with genome-wide association data.Neuropsychopharmacology20244981255126510.1038/s41386‑024‑01807‑4 38317018
    [Google Scholar]
  5. SchlichtK. BüttnerA. SiedlerF. SchefferB. ZillP. EisenmengerW. AckenheilM. BondyB. Comparative proteomic analysis with postmortem prefrontal cortex tissues of suicide victims versus controls.J. Psychiatr. Res.200741649350110.1016/j.jpsychires.2006.04.006 16750834
    [Google Scholar]
  6. TureckiG. BrentD.A. GunnellD. O’ConnorR.C. OquendoM.A. PirkisJ. StanleyB.H. Suicide and suicide risk.Nat. Rev. Dis. Primers2019517410.1038/s41572‑019‑0121‑0 31649257
    [Google Scholar]
  7. ChaddaR. GuptaA. Looking into biological markers of suicidal behaviours.Indian J. Med. Res.2019150432833110.4103/ijmr.IJMR_227_19 31823914
    [Google Scholar]
  8. KouterK. Videtic PaskaA. ‘Omics’ of suicidal behaviour: A path to personalised psychiatry.World J. Psychiatry2021111077479010.5498/wjp.v11.i10.774 34733641
    [Google Scholar]
  9. HasinY. SeldinM. LusisA. Multi-omics approaches to disease.Genome Biol.20171818310.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  10. BhakY. JeongH. ChoY.S. JeonS. ChoJ. GimJ.A. JeonY. BlazyteA. ParkS.G. KimH.M. ShinE.S. PaikJ.W. LeeH.W. KangW. KimA. KimY. KimB.C. HamB.J. BhakJ. LeeS. Depression and suicide risk prediction models using blood-derived multi-omics data.Transl. Psychiatry20199126210.1038/s41398‑019‑0595‑2 31624227
    [Google Scholar]
  11. ErikaS. SonaT. IvanT. PeterB. VladimiraT. ZdenkaH. Proteomic analysis of cerebrospinal fluid in suicidal patients - A pilot study.J. Proteomics Bioinform.201811510.4172/jpb.1000476
    [Google Scholar]
  12. PengJ. GygiS.P. Proteomics: The move to mixtures.J. Mass Spectrom.200136101083109110.1002/jms.229 11747101
    [Google Scholar]
  13. LiX. WangW. ChenJ. Recent progress in mass spectrometry proteomics for biomedical research.Sci. China Life Sci.201760101093111310.1007/s11427‑017‑9175‑2 29039124
    [Google Scholar]
  14. KimM.J. DoM. HanD. SonM. ShinD. YeoI. YunY.H. YooS.H. ChoiH.J. ShinD. RheeS.J. AhnY.M. KimY. Proteomic profiling of postmortem prefrontal cortex tissue of suicide completers.Transl. Psychiatry202212114210.1038/s41398‑022‑01896‑z 35383147
    [Google Scholar]
  15. Cabello-ArreolaA. HoA.M.C. OzerdemA. Cuellar-BarbozaA.B. KucukerM.U. HeppelmannC.J. CharlesworthM.C. CeylanD. StockmeierC.A. RajkowskaG. FryeM.A. ChoiD.S. VeldicM. Differential dorsolateral prefrontal cortex proteomic profiles of suicide victims with mood disorders.Genes202011325610.3390/genes11030256 32120974
    [Google Scholar]
  16. KékesiK.A. JuhászG. SimorA. GulyássyP. SzegőÉ.M. Hunyadi-GulyásÉ. DarulaZ. MedzihradszkyK.F. PalkovitsM. PenkeB. CzurkóA. Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide.PLoS One2012712e5053210.1371/journal.pone.0050532 23272063
    [Google Scholar]
  17. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ2021372n7110.1136/bmj.n71 33782057
    [Google Scholar]
  18. BrunnerJ. BronischT. UhrM. IsingM. BinderE. HolsboerF. TurckC.W. Proteomic analysis of the CSF in unmedicated patients with major depressive disorder reveals alterations in suicide attempters.Eur. Arch. Psychiatry Clin. Neurosci.2005255643844010.1007/s00406‑005‑0575‑9 16382377
    [Google Scholar]
  19. PengR. DaiW. LiY. High serum levels of tenascin-C are associated with suicide attempts in depressed patients.Psychiatry Res.2018268606410.1016/j.psychres.2018.06.069 30005189
    [Google Scholar]
  20. SchefflerB. FaissnerA. BeckH. BehleK. WolfH.K. WiestlerO.D. BlümckeI. Hippocampal loss of tenascin boundaries in Ammon’s horn sclerosis.Glia1997191354610.1002/(SICI)1098‑1136(199701)19:1<35::AID‑GLIA4>3.0.CO;2‑9 8989566
    [Google Scholar]
  21. StrekalovaT. SunM. SibbeM. EversM. DityatevA. GassP. SchachnerM. Fibronectin domains of extracellular matrix molecule tenascin-C modulate hippocampal learning and synaptic plasticity.Mol. Cell. Neurosci.200221117318710.1006/mcne.2002.1172 12359159
    [Google Scholar]
  22. MineurY.S. ObayemiA. WigestrandM.B. FoteG.M. CalarcoC.A. LiA.M. PicciottoM.R. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior.Proc. Natl. Acad. Sci. USA201311093573357810.1073/pnas.1219731110 23401542
    [Google Scholar]
  23. DammannF. KirschsteinT. GuliX. MüllerS. PorathK. RohdeM. TokayT. KöhlingR. Bidirectional shift of group III metabotropic glutamate receptor-mediated synaptic depression in the epileptic hippocampus.Epilepsy Res.201813915716310.1016/j.eplepsyres.2017.12.002 29224956
    [Google Scholar]
  24. BotM. ChanM.K. JansenR. LamersF. VogelzangsN. SteinerJ. LewekeF.M. RothermundtM. CooperJ. BahnS. PenninxB.W.J.H. Serum proteomic profiling of major depressive disorder.Transl. Psychiatry201557e59910.1038/tp.2015.88 26171980
    [Google Scholar]
  25. PengR. LiY. Associations between tenascin-c and testosterone deficiency in men with major depressive disorder: A cross-sectional retrospective study.J. Inflamm. Res.20211489790510.2147/JIR.S298270 33758529
    [Google Scholar]
  26. DavamiM. BaharlouR. Ahmadi VasmehjaniA. GhanizadehA. KeshtkarM. DezhkamI. AtashzarM. Elevated IL-17 and TGF-β serum levels: A positive correlation between T-helper 17 cell-related pro-inflammatory responses with major depressive disorder.Basic Clin. Neurosci.20167213714210.15412/J.BCN.03070207 27303608
    [Google Scholar]
  27. Mercado-GómezO. Landgrave-GómezJ. Arriaga-AvilaV. Nebreda-CoronaA. Guevara-GuzmánR. Role of TGF-β signaling pathway on Tenascin C protein upregulation in a pilocarpine seizure model.Epilepsy Res.2014108101694170410.1016/j.eplepsyres.2014.09.019 25445237
    [Google Scholar]
  28. WangH.S. PanZ. ShiW. BrownB.S. WymoreR.S. CohenI.S. KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel.Science199828353951890189310.1126/science.282.5395.1890
    [Google Scholar]
  29. OkadaM. ZhuG. HiroseS. ItoK.I. MurakamiT. WakuiM. KanekoS. Age-dependent modulation of hippocampal excitability by KCNQ-channels.Epilepsy Res.2003531-2819410.1016/S0920‑1211(02)00249‑8 12576170
    [Google Scholar]
  30. CharlierC. SinghN.A. RyanS.G. LewisT.B. ReusB.E. LeachR.J. LeppertM. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family.Nat. Genet.1998181535510.1038/ng0198‑53 9425900
    [Google Scholar]
  31. DickD.M. ForoudT. FluryL. BowmanE.S. MillerM.J. RauN.L. MoeP.R. SamavedyN. El-MallakhR. ManjiH. GlitzD.A. MeyerE.T. SmileyC. HahnR. WidmarkC. McKinneyR. SuttonL. BallasC. GriceD. BerrettiniW. ByerleyW. CoryellW. DePauloR. MacKinnonD.F. GershonE.S. KelsoeJ.R. McMahonF.J. McInnisM. MurphyD.L. ReichT. ScheftnerW. NurnbergerJ.I.Jr Genomewide linkage analyses of bipolar disorder: A new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative.Am. J. Hum. Genet.200373110711410.1086/376562 12772088
    [Google Scholar]
  32. OgdieM.N. FisherS.E. YangM. IshiiJ. FrancksC. LooS.K. CantorR.M. McCrackenJ.T. McGoughJ.J. SmalleyS.L. NelsonS.F. Attention deficit hyperactivity disorder: Fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11.Am. J. Hum. Genet.200475466166810.1086/424387 15297934
    [Google Scholar]
  33. O’LearyL.A. BelliveauC. DavoliM.A. MaJ.C. TantiA. TureckiG. MechawarN. Widespread decrease of cerebral vimentin-immunoreactive astrocytes in depressed suicides.Front. Psychiatry20211264096310.3389/fpsyt.2021.640963 33613346
    [Google Scholar]
  34. CotterD. MackayD. ChanaG. BeasleyC. LandauS. EverallI.P. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder.Cereb. Cortex200212438639410.1093/cercor/12.4.386 11884354
    [Google Scholar]
  35. AndriezenW.L. The neuroglia nlms in the human brain.BMJ18932170022723010.1136/bmj.2.1700.227 20754383
    [Google Scholar]
  36. O’LearyL.A. DavoliM.A. BelliveauC. TantiA. MaJ.C. FarmerW.T. TureckiG. MuraiK.K. MechawarN. Characterization of vimentin-immunoreactive astrocytes in the human brain.Front. Neuroanat.2020143110.3389/fnana.2020.00031 32848635
    [Google Scholar]
  37. LafargaM. BercianoM.T. SuarezI. ViaderoC.F. AndresM.A. BercianoJ. Cytology and organization of reactive astroglia in human cerebellar cortex with severe loss of granule cells: A study on the ataxic form of creutzfeldt-jakob disease.Neuroscience199140233735210.1016/0306‑4522(91)90124‑7 2027464
    [Google Scholar]
  38. BjörklundH. Eriksdotter-NilssonM. DahlD. OlsonL. Astrocytes in smears of CNS tissues as visualized by GFA and vimentin immunofluorescence.Med. Biol.19846213848 6379328
    [Google Scholar]
  39. PixleyS.K.R. de VellisJ. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin.Brain Res. Dev. Brain Res.198415220120910.1016/0165‑3806(84)90097‑X 6383523
    [Google Scholar]
  40. VinodK.Y. HungundB.L. Role of the endocannabinoid system in depression and suicide.Trends Pharmacol. Sci.2006271053954510.1016/j.tips.2006.08.006 16919786
    [Google Scholar]
  41. GravinaP. SpoletiniI. MasiniS. ValentiniA. VanniD. PaladiniE. BossùP. CaltagironeC. FedericiG. SpallettaG. BernardiniS. Genetic polymorphisms of glutathione S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia.Psychiatry Res.2011187345445610.1016/j.psychres.2010.10.008 21093063
    [Google Scholar]
  42. SmythiesJ. Oxidative reactions and schizophrenia: A review-discussion.Schizophr. Res.199724335736410.1016/S0920‑9964(97)00005‑4 9134597
    [Google Scholar]
  43. DeanB. TsatsanisA. LamL.Q. ScarrE. DuceJ.A. Changes in cortical protein markers of iron transport with gender, major depressive disorder and suicide.World J. Biol. Psychiatry202021211912610.1080/15622975.2018.1555377 30513246
    [Google Scholar]
  44. HeidariM. JohnstoneD.M. BassettB. GrahamR.M. ChuaA.C.G. HouseM.J. CollingwoodJ.F. BettencourtC. HouldenH. RytenM. OlynykJ.K. TrinderD. MilwardE.A. Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features.Mol. Psychiatry201621111599160710.1038/mp.2015.192 26728570
    [Google Scholar]
  45. ChenM.H. SuT.P. ChenY.S. HsuJ.W. HuangK.L. ChangW.H. ChenT.J. BaiY.M. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: A nationwide population-based study.BMC Psychiatry201313116110.1186/1471‑244X‑13‑161 23735056
    [Google Scholar]
  46. StelzhammerV. HaenischF. ChanM.K. CooperJ.D. SteinerJ. SteebH. Martins-de-SouzaD. RahmouneH. GuestP.C. BahnS. Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients.Int. J. Neuropsychopharmacol.201417101599160810.1017/S1461145714000819 24901538
    [Google Scholar]
  47. MaesM. MeltzerH.Y. BuckleyP. BosmansE. Plasma-soluble interleukin-2 and transferrin receptor in schizoprenia and major depression.Eur. Arch. Psychiatry Clin. Neurosci.1995244632532910.1007/BF02190412 7772617
    [Google Scholar]
  48. NichollI.D. QuinlanR.A. Chaperone activity of α-crystallins modulates intermediate filament assembly.EMBO J.199413494595310.1002/j.1460‑2075.1994.tb06339.x 7906647
    [Google Scholar]
  49. van RijkA.F. BloemendalH. Alpha-B-crystallin in neuropathology.Ophthalmologica2000214171210.1159/000027468 10657740
    [Google Scholar]
  50. MuralevaN.A. KolosovaN.G. StefanovaN.A. p38 MAPK-dependent alphaB-crystallin phosphorylation in Alzheimer’s disease-like pathology in OXYS rats.Exp. Gerontol.2019119455210.1016/j.exger.2019.01.017 30664924
    [Google Scholar]
  51. ShinoharaH. InagumaY. GotoS. InagakiT. KatoK. αB crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease.J. Neurol. Sci.1993119220320810.1016/0022‑510X(93)90135‑L 8277336
    [Google Scholar]
  52. RistoriG. MontesperelliC. KovacsD. BorsellinoG. BattistiniL. ButtinelliC. Heat shock proteins and multiple sclerosis.Stress Proteins.Handbook of Experimental PharmacologyBerlin, HeidelbergSpringer199913610.1007/978‑3‑642‑58259‑2_17
    [Google Scholar]
  53. VelardeM.C. FlynnJ.M. DayN.U. MelovS. CampisiJ. Mitochondrial oxidative stress caused by SOD2 deficiency promotes cellular senescence and aging phenotypes in the skin.Aging (Albany NY)20124131210.18632/aging.100423 22278880
    [Google Scholar]
  54. TalarowskaM. OrzechowskaA. SzemrajJ. SuK.P. MaesM. GałeckiP. Manganese superoxide dismutase gene expression and cognitive functions in recurrent depressive disorder.Neuropsychobiology2014701232810.1159/000363340 25171019
    [Google Scholar]
  55. DjordjevićV. Superoxide dismutase in psychiatric diseases.BiochemistryIntechOpen202210.5772/intechopen.99847
    [Google Scholar]
  56. ChidambaramS.B. AnandN. VarmaS.R. RamamurthyS. VichitraC. SharmaA. MahalakshmiA.M. EssaM.M. Superoxide dismutase and neurological disorders.IBRO Neurosci. Rep.20241637339410.1016/j.ibneur.2023.11.007 39007083
    [Google Scholar]
  57. AbdelhakA. FoschiM. Abu-RumeilehS. YueJ.K. D’AnnaL. HussA. OecklP. LudolphA.C. KuhleJ. PetzoldA. ManleyG.T. GreenA.J. OttoM. TumaniH. Blood GFAP as an emerging biomarker in brain and spinal cord disorders.Nat. Rev. Neurol.202218315817210.1038/s41582‑021‑00616‑3 35115728
    [Google Scholar]
  58. SteinackerP. Al ShweikiM.H.D.R. OecklP. GrafH. LudolphA.C. Schönfeldt-LecuonaC. OttoM. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder.J. Psychiatr. Res.2021144545810.1016/j.jpsychires.2021.09.012 34600287
    [Google Scholar]
  59. LiT.Y. SunY. LiangY. LiuQ. ShiY. ZhangC.S. ZhangC. SongL. ZhangP. ZhangX. LiX. ChenT. HuangH.Y. HeX. WangY. WuY.Q. ChenS. JiangM. ChenC. XieC. YangJ.Y. LinY. ZhaoS. YeZ. LinS.Y. ChiuD.T. LinS.C. ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy.Mol. Cell201662335937010.1016/j.molcel.2016.04.009 27153534
    [Google Scholar]
  60. KimJ. DangC.V. Multifaceted roles of glycolytic enzymes.Trends Biochem. Sci.200530314215010.1016/j.tibs.2005.01.005 15752986
    [Google Scholar]
  61. DavalievaK. MalevaK.I. DworkA.J. Proteomics research in schizophrenia.Front. Cell. Neurosci.2016101810.3389/fncel.2016.00018 26909022
    [Google Scholar]
  62. YanagiM. ShirakawaO. KitamuraN. OkamuraK. SakuraiK. NishiguchiN. HashimotoT. NushidaH. UenoY. KanbeD. KawamuraM. ArakiK. NawaH. MaedaK. Association of 14-3-3 ε gene haplotype with completed suicide in Japanese.J. Hum. Genet.200550421021610.1007/s10038‑005‑0241‑0 15838597
    [Google Scholar]
  63. UnderwoodM.D. ArangoV. Evidence for neurodegeneration and neuroplasticity as part of the neurobiology of suicide.Biol. Psychiatry201170430630710.1016/j.biopsych.2011.06.004 21791256
    [Google Scholar]
  64. ObsilT. ObsilovaV. Structural basis of 14-3-3 protein functions.Semin. Cell Dev. Biol.201122766367210.1016/j.semcdb.2011.09.001 21920446
    [Google Scholar]
  65. FuH. SubramanianR.R. MastersS.C. 14-3-3 proteins: Structure, function, and regulation.Annu. Rev. Pharmacol. Toxicol.200040161764710.1146/annurev.pharmtox.40.1.617 10836149
    [Google Scholar]
  66. InamdarS.M. LankfordC.K. LairdJ.G. NovbatovaG. TatroN. WhitmoreS.S. ScheetzT.E. BakerS.A. Analysis of 14-3-3 isoforms expressed in photoreceptors.Exp. Eye Res.201817010811610.1016/j.exer.2018.02.022 29486162
    [Google Scholar]
  67. HercherC. TureckiG. MechawarN. Through the looking glass: Examining neuroanatomical evidence for cellular alterations in major depression.J. Psychiatr. Res.2009431194796110.1016/j.jpsychires.2009.01.006 19233384
    [Google Scholar]
  68. YangY. ChenJ. LiuC. FangL. LiuZ. GuoJ. ChengK. ZhouC. ZhanY. MelgiriN.D. ZhangL. ZhongJ. ChenJ. RaoC. XieP. The extrinsic coagulation pathway: A biomarker for suicidal behavior in major depressive disorder.Sci. Rep.2016613288210.1038/srep32882 27605454
    [Google Scholar]
  69. HowrenM.B. LamkinD.M. SulsJ. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis.Psychosom. Med.200971217118610.1097/PSY.0b013e3181907c1b 19188531
    [Google Scholar]
  70. MillerA.H. MaleticV. RaisonC.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression.Biol. Psychiatry200965973274110.1016/j.biopsych.2008.11.029 19150053
    [Google Scholar]
  71. Le-NiculescuH. LeveyD.F. AyalewM. PalmerL. GavrinL.M. JainN. WinigerE. BhosrekarS. ShankarG. RadelM. BellangerE. DuckworthH. OlesekK. VergoJ. SchweitzerR. YardM. BallewA. ShekharA. SanduskyG.E. SchorkN.J. KurianS.M. SalomonD.R. NiculescuA.B.III Discovery and validation of blood biomarkers for suicidality.Mol. Psychiatry201318121249126410.1038/mp.2013.95 23958961
    [Google Scholar]
  72. CermakJ. KeyN.S. BachR.R. BallaJ. JacobH.S. VercellottiG.M. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor.Blood199382251352010.1182/blood.V82.2.513.513 8329706
    [Google Scholar]
  73. Vidal-DomènechF. RiquelmeG. PinachoR. Rodriguez-MiasR. VeraA. MonjeA. FerrerI. CalladoL.F. MeanaJ.J. VillénJ. RamosB. Calcium-binding proteins are altered in the cerebellum in schizophrenia.PLoS One2020157e023040010.1371/journal.pone.0230400 32639965
    [Google Scholar]
  74. SongQ. MengB. XuH. MaoZ. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases.Transl. Neurodegener.2020911710.1186/s40035‑020‑00196‑0 32393395
    [Google Scholar]
  75. MaxsonM.E. GrinsteinS. The vacuolar-type H+-ATPase at a glance - more than a proton pump.J. Cell Sci.2014127234987499310.1242/jcs.158550 25453113
    [Google Scholar]
  76. RoyB. DwivediY. Understanding the neuroepigenetic constituents of suicide brain.Prog. Mol. Biol. Transl. Sci.201815723326210.1016/bs.pmbts.2018.01.007 29933952
    [Google Scholar]
  77. ZhurovV. SteadJ.D.H. MeraliZ. PalkovitsM. FaludiG. Schild-PoulterC. AnismanH. PoulterM.O. Molecular pathway reconstruction and analysis of disturbed gene expression in depressed individuals who died by suicide.PLoS One2012710e4758110.1371/journal.pone.0047581 23110080
    [Google Scholar]
  78. FöckingM. LopezL.M. EnglishJ.A. DickerP. WolffA. BrindleyE. WynneK. CagneyG. CotterD.R. Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia.Mol. Psychiatry201520442443210.1038/mp.2014.63 25048004
    [Google Scholar]
  79. MandalA.K. MathewB. SrinivasanK. PradeepJ. ThomasT. MurthyS.K. Downregulation of apolipoprotein A-IV in plasma & impaired reverse cholesterol transport in individuals with recent acts of deliberate self-harm.Indian J. Med. Res.2019150436537510.4103/ijmr.IJMR_1842_17 31823918
    [Google Scholar]
  80. Sorci-ThomasM.G. BhatS. ThomasM.J. Activation of lecithin: Cholesterol acyltransferase by HDL ApoA-I central helices.Clin. Lipidol.20094111312410.2217/17584299.4.1.113 20582235
    [Google Scholar]
  81. SteinmetzA. UtermannG. Activation of lecithin: Cholesterol acyltransferase by human apolipoprotein A-IV.J. Biol. Chem.198526042258226410.1016/S0021‑9258(18)89547‑3 3918999
    [Google Scholar]
  82. HeronD.S. ShinitzkyM. HershkowitzM. SamuelD. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes.Proc. Natl. Acad. Sci. USA198077127463746710.1073/pnas.77.12.7463 6938985
    [Google Scholar]
  83. Bayard-BurfieldL. AllingC. BlennowK. JönssonS. Träskman-BendzL. Impairment of the blood-CSF barrier in suicide attempters.Eur. Neuropsychopharmacol.19966319519910.1016/0924‑977X(96)00020‑X 8880079
    [Google Scholar]
  84. Baca-GarciaE. Diaz-SastreC. García-ResaE. CeverinoA. RamirezA. Saiz-RuizJ. de LeonJ. Lack of association between plasma apolipoprotein E and suicide attempts.J. Clin. Psychiatry200465458010.4088/JCP.v65n0420a 15119924
    [Google Scholar]
  85. AsellusP. NordströmP. NordströmA.L. JokinenJ. Plasma apolipoprotein E and severity of suicidal behaviour.J. Affect. Disord.201619013714210.1016/j.jad.2015.09.024 26519632
    [Google Scholar]
  86. AsellusP. NordströmP. NordströmA.L. JokinenJ. CSF Apolipoprotein E in attempted suicide.J. Affect. Disord.201822524624910.1016/j.jad.2017.08.019 28841487
    [Google Scholar]
  87. BownC. WangJ.F. MacQueenG. YoungL.T. Increased temporal cortex ER stress proteins in depressed subjects who died by suicide.Neuropsychopharmacology200022332733210.1016/S0893‑133X(99)00091‑3 10693161
    [Google Scholar]
  88. AkerfeldtK. Guidebook to molecular chaperones and protein-folding catalysts. Mary-Jane Gething.Q. Rev. Biol.2000751484910.1086/393278
    [Google Scholar]
  89. YuZ. LuoH. FuW. MattsonM.P. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: Suppression of oxidative stress and stabilization of calcium homeostasis.Exp. Neurol.1999155230231410.1006/exnr.1998.7002 10072306
    [Google Scholar]
  90. StrawbridgeR. YoungA.H. CleareA.J. Biomarkers for depression: Recent insights, current challenges and future prospects.Neuropsychiatr. Dis. Treat.2017131245126210.2147/NDT.S114542 28546750
    [Google Scholar]
  91. SchmidtH.D. SheltonR.C. DumanR.S. Functional biomarkers of depression: Diagnosis, treatment, and pathophysiology.Neuropsychopharmacology201136122375239410.1038/npp.2011.151 21814182
    [Google Scholar]
  92. WillourV.L. SeifuddinF. MahonP.B. JancicD. PiroozniaM. SteeleJ. SchweizerB. GoesF.S. MondimoreF.M. MacKinnonD.F. PerlisR.H. LeeP.H. HuangJ. KelsoeJ.R. ShillingP.D. RietschelM. NöthenM. CichonS. GurlingH. PurcellS. SmollerJ.W. CraddockN. DePauloJ.R.Jr SchulzeT.G. McMahonF.J. ZandiP.P. PotashJ.B. A genome-wide association study of attempted suicide.Mol. Psychiatry201217443344410.1038/mp.2011.4 21423239
    [Google Scholar]
  93. SokolowskiM. WassermanJ. WassermanD. Genome-wide association studies of suicidal behaviors: A review.Eur. Neuropsychopharmacol.201424101567157710.1016/j.euroneuro.2014.08.006 25219938
    [Google Scholar]
  94. HarrisE.C. BarracloughB. Suicide as an outcome for mental disorders.Br. J. Psychiatry1997170320522810.1192/bjp.170.3.205 9229027
    [Google Scholar]
  95. QinP. AgerboE. MortensenP.B. Suicide risk in relation to socioeconomic, demographic, psychiatric, and familial factors: A national register-based study of all suicides in Denmark.Am. J. Psychiatry2003160476577210.1176/appi.ajp.160.4.765 12668367
    [Google Scholar]
  96. PompiliM. Critical appraisal of major depression with suicidal ideation.Ann. Gen. Psychiatry2019181710.1186/s12991‑019‑0232‑8 31164909
    [Google Scholar]
  97. MannJ.J. A current perspective of suicide and attempted suicide.Ann. Intern. Med.2002136430231110.7326/0003‑4819‑136‑4‑200202190‑00010 11848728
    [Google Scholar]
  98. MannJ.J. OquendoM. UnderwoodM.D. ArangoV. The neurobiology of suicide risk: A review for the clinician.J. Clin. Psychiatry1999602711
    [Google Scholar]
  99. RicciL.C. WellmanM.M. Monoamines: Biochemical markers of suicide?J. Clin. Psychol.199046110611610.1002/1097‑4679(199001)46:1<106::AID‑JCLP2270460117>3.0.CO;2‑3 1689324
    [Google Scholar]
  100. ColleR. ChupinM. CuryC. VandendrieC. GressierF. HardyP. FalissardB. ColliotO. DucreuxD. CorrubleE. Depressed suicide attempters have smaller hippocampus than depressed patients without suicide attempts.J. Psychiatr. Res.201561131810.1016/j.jpsychires.2014.12.010 25555305
    [Google Scholar]
  101. AltshulerL.L. CasanovaM.F. GoldbergT.E. KleinmanJ.E. The hippocampus and parahippocampus in schizophrenia, suicide, and control brains.Arch. Gen. Psychiatry199047111029103410.1001/archpsyc.1990.01810230045008 2241505
    [Google Scholar]
/content/journals/cn/10.2174/011570159X344453241129073214
Loading
/content/journals/cn/10.2174/011570159X344453241129073214
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): autopsy; biomarkers; postmortem; profiling; Proteomics; risk assessment; suicide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test