Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Alzheimer's disease is the leading cause of dementia worldwide. It belongs to the group of neurodegenerative ailments caused by the accumulation of extracellular β-amyloid plaques (Aβ) and intracellular neurofibrillary tau tangles, which damage brain tissue. One of the mechanisms proposed involves protein neurotoxicity and neuroinflammation through the purinergic system pathway. Several endogenous nucleotides, such as Adenosine 5'-triphosphate (ATP), are involved in cell signaling. High ATP levels can cause P2X7 receptor hyper-stimulation, resulting in an exacerbated inflammatory process and in apoptosis of cells. From this perspective, searching for new therapies becomes important to assist in the patient's treatment and quality of life. As a flavonoid with several properties, including anti-inflammatory activity, Quercetin may be an alternative to alleviate the damage and symptoms caused by Alzheimer's disease. Therefore, this review aims to examine the potential of Quercetin through P2X7 modulation against neuroinflammation in Alzheimer's disease, as it affects the P2X7 receptor by direct and indirect interactions, resulting in decreased inflammation levels. Therefore, we believe that Quercetin may have significant power in modulating the P2X7 receptor, demonstrating that the purinergic system has the potential to modulate neuroinflammation and can add to the treatment, reduce disease progression, and result in better prognoses. Furthermore, technological alternatives such as Quercetin micronization might improve its delivery to target tissues.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X355614250130100132
2025-04-11
2025-09-02
Loading full text...

Full text loading...

References

  1. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals (Basel)2023167102010.3390/ph16071020
    [Google Scholar]
  2. Barba-OstriaC. Carrera-PachecoS.E. Gonzalez-PastorR. Heredia-MoyaJ. Mayorga-RamosA. Rodríguez-PólitC. Zúñiga-MirandaJ. Arias-AlmeidaB. GuamánL.P. Evaluation of biological activity of natural compounds: current trends and methods.Molecules20222714449010.3390/molecules27144490 35889361
    [Google Scholar]
  3. BabaeiF. MirzababaeiM. Nassiri-AslM. Quercetin in food: Possible mechanisms of its effect on memory.J. Food Sci.20188392280228710.1111/1750‑3841.14317 30103275
    [Google Scholar]
  4. MirzaM.A. MahmoodS. HillesA.R. AliA. KhanM.Z. ZaidiS.A.A. IqbalZ. GeY. Quercetin as a therapeutic product: Evaluation of its pharmacological action and clinical applications—a review.Pharmaceuticals (Basel)20231611163110.3390/ph16111631 38004496
    [Google Scholar]
  5. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom10010059 31905923
    [Google Scholar]
  6. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  7. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789 33302541
    [Google Scholar]
  8. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  9. SluyterR. The P2X7 receptor.Adv. Exp. Med. Biol.20171051175310.1007/5584_2017_59 28676924
    [Google Scholar]
  10. RonningK.E. Déchelle-MarquetP.A. CheY. GuillonneauX. SennlaubF. DelarasseC. The P2X7 receptor, a multifaceted receptor in Alzheimer’s disease.Int. J. Mol. Sci.202324141174710.3390/ijms241411747 37511507
    [Google Scholar]
  11. FrancistiováL. BianchiC. Di LauroC. Sebastián-SerranoÁ. de Diego-GarcíaL. KobolákJ. DinnyésA. Díaz-HernándezM. The role of P2X7 receptor in Alzheimer’s disease.Front. Mol. Neurosci.2020139410.3389/fnmol.2020.00094 32581707
    [Google Scholar]
  12. LiW. HeH. DuM. GaoM. SunQ. WangY. LuH. OuS. XiaC. XuC. ZhaoQ. SunH. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway.Phytother. Res.20243841990200610.1002/ptr.8158 38372204
    [Google Scholar]
  13. ZhaoX. GongL. WangC. LiuM. HuN. DaiX. PengC. LiY. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/Keap1/Nrf2 signaling pathway.J. Ethnopharmacol.202126811356910.1016/j.jep.2020.113569 33186701
    [Google Scholar]
  14. AlexanderC. ParsaeeA. VasefiM. Polyherbal and multimodal treatments: Kaempferol- and quercetin-rich herbs alleviate symptoms of Alzheimer’s disease.Biology (Basel)20231211145310.3390/biology12111453 37998052
    [Google Scholar]
  15. ZuG. SunK. LiL. ZuX. HanT. HuangH. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus.Sci. Rep.20211112295910.1038/s41598‑021‑02248‑5 34824300
    [Google Scholar]
  16. GrantW.B. BlakeS.M. Diet’s role in modifying risk of Alzheimer’s disease: History and present understanding.J. Alzheimers Dis.20239641353138210.3233/JAD‑230418 37955087
    [Google Scholar]
  17. YuJ.T. XuW. TanC.C. AndrieuS. SucklingJ. EvangelouE. PanA. ZhangC. JiaJ. FengL. KuaE.H. WangY.J. WangH.F. TanM.S. LiJ.Q. HouX.H. WanY. TanL. MokV. TanL. DongQ. TouchonJ. GauthierS. AisenP.S. VellasB. Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials.J. Neurol. Neurosurg. Psychiatry202091111201120910.1136/jnnp‑2019‑321913 32690803
    [Google Scholar]
  18. MorrisM.C. TangneyC.C. WangY. SacksF.M. BennettD.A. AggarwalN.T. MIND diet associated with reduced incidence of Alzheimer’s disease.Alzheimers Dement.20151191007101410.1016/j.jalz.2014.11.009 25681666
    [Google Scholar]
  19. ZhangX.X. TianY. WangZ.T. MaY.H. TanL. YuJ.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention.J. Prev. Alzheimers Dis.202183313321 34101789
    [Google Scholar]
  20. LiJ. SunM. CuiX. LiC. Protective effects of flavonoids against Alzheimer’s disease: Pathological hypothesis, potential targets, and structure-activity relationship.Int. J. Mol. Sci.202223171002010.3390/ijms231710020 36077418
    [Google Scholar]
  21. CuiZ. ZhaoX. AmevorF.K. DuX. WangY. LiD. ShuG. TianY. ZhaoX. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism.Front. Immunol.20221394332110.3389/fimmu.2022.943321 35935939
    [Google Scholar]
  22. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  23. WangC. ZongS. CuiX. WangX. WuS. WangL. LiuY. LuZ. The effects of microglia-associated neuroinflammation on Alzheimer’s disease.Front. Immunol.202314111717210.3389/fimmu.2023.1117172 36911732
    [Google Scholar]
  24. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  25. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.23208 29467962
    [Google Scholar]
  26. SoaresC.L.R. WilairatanaP. SilvaL.R. MoreiraP.S. Vilar BarbosaN.M.M. da SilvaP.R. CoutinhoH.D.M. de MenezesI.R.A. FelipeC.F.B. Biochemical aspects of the inflammatory process: A narrative review.Biomed. Pharmacother.202316811576410.1016/j.biopha.2023.115764 37897973
    [Google Scholar]
  27. SchillerM. Ben-ShaananT.L. RollsA. Neuronal regulation of immunity: Why, how and where?Nat. Rev. Immunol.2021203610.1038/s41577‑020‑0387‑1
    [Google Scholar]
  28. RajmohanR. ReddyP.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑160612 27567878
    [Google Scholar]
  29. Calvo-RodriguezM. García-RodríguezC. VillalobosC. NúñezL. Role of toll like receptor 4 in Alzheimer’s disease.Front. Immunol.202011158810.3389/fimmu.2020.01588 32983082
    [Google Scholar]
  30. VenegasC. HenekaM.T. Danger-associated molecular patterns in Alzheimer’s disease.J. Leukoc. Biol.20171011879810.1189/jlb.3MR0416‑204R 28049142
    [Google Scholar]
  31. AntonioliL. BlandizziC. PacherP. HaskóG. The purinergic system as a pharmacological target for the treatment of immune-mediated inflammatory diseases.Pharmacol. Rev.201971334538210.1124/pr.117.014878 31235653
    [Google Scholar]
  32. MerighiS. PoloniT.E. TerrazzanA. MorettiE. GessiS. FerrariD. Alzheimer and purinergic signaling: Just a matter of inflammation?Cells2021105126710.3390/cells10051267 34065393
    [Google Scholar]
  33. AhnY.H. TangY. IllesP. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer’s disease, ischemic brain injury, and epileptic state.Expert Opin. Ther. Targets202327976377810.1080/14728222.2023.2258281 37712394
    [Google Scholar]
  34. GenetzakisE. GilchristJ. KassiouM. FigtreeG.A. Development and clinical translation of P2X7 receptor antagonists: A potential therapeutic target in coronary artery disease?Pharmacol. Ther.202223710822810.1016/j.pharmthera.2022.108228 35716953
    [Google Scholar]
  35. ZhengH. LiuQ. ZhouS. LuoH. ZhangW. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases.Front. Immunol.202415134562510.3389/fimmu.2024.1345625 38370420
    [Google Scholar]
  36. AdinolfiE. GiulianiA.L. De MarchiE. PegoraroA. OrioliE. Di VirgilioF. The P2X7 receptor: A main player in inflammation.Biochem. Pharmacol.201815123424410.1016/j.bcp.2017.12.021 29288626
    [Google Scholar]
  37. ShiehC.H. HeinrichA. SerchovT. van CalkerD. BiberK. P2X7‐dependent, but differentially regulated release of IL‐6, CCL2, and TNF‐α in cultured mouse microglia.Glia201462459260710.1002/glia.22628 24470356
    [Google Scholar]
  38. RiveraA. VanzulliI. ButtA. A central role for atp signalling in glial interactions in the CNS.Curr. Drug Targets201617161829183310.2174/1389450117666160711154529 27400972
    [Google Scholar]
  39. HuangY. XuW. ZhouR. NLRP3 inflammasome activation and cell death.Cell. Mol. Immunol.2021182114212710.1038/s41423‑021‑00740‑6
    [Google Scholar]
  40. ThawkarB.S. KaurG. Inhibitors of NF-κB and P2X7/NLRP3/] Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease.J. Neuroimmunol.2019326627410.1016/j.jneuroim.2018.11.010 30502599
    [Google Scholar]
  41. McLarnonJ.G. RyuJ.K. WalkerD.G. ChoiH.B. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus.J. Neuropathol. Exp. Neurol.200665111090109710.1097/01.jnen.0000240470.97295.d3 17086106
    [Google Scholar]
  42. Martínez-FrailesC. Di LauroC. BianchiC. de Diego-GarcíaL. Sebastián-SerranoÁ. BoscáL. Díaz-HernándezM. Amyloid peptide induced neuroinflammation increases the P2X7 receptor expression in microglial cells, impacting on its functionality.Front. Cell. Neurosci.20191314310.3389/fncel.2019.00143 31031598
    [Google Scholar]
  43. MeiS.Y. ZhangN. WangM. LvP. LiuQ. Microglial] purinergic signaling in Alzheimer’s disease.Purinergic Signal.20241310.1007/s11302‑024‑10029‑8 38910192
    [Google Scholar]
  44. NorthR.A. P2X receptorsPhilos. Trans. R. Soc. Lond. B Biol. Sci.201637117002015042710.1098/rstb.2015.0427 27377721
    [Google Scholar]
  45. JiangL.H. BaldwinJ.M. RogerS. BaldwinS.A. Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms.Front. Pharmacol.201345510.3389/fphar.2013.00055 23675347
    [Google Scholar]
  46. Al-AqtashR. CollierD.M. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism.Channels (Austin)2024181235515010.1080/19336950.2024.2355150 38762911
    [Google Scholar]
  47. Di VirgilioF. Dal BenD. SartiA.C. GiulianiA.L. FalzoniS. The P2X7 receptor in infection and inflammation.Immunity2017471153110.1016/j.immuni.2017.06.020 28723547
    [Google Scholar]
  48. SunQ. ScottM.J. Caspase-1 as a multifunctional inflammatory mediator: Noncytokine maturation roles.J. Leukoc. Biol.2016100596196710.1189/jlb.3MR0516‑224R 27450556
    [Google Scholar]
  49. ÖzenverN. EfferthT. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases.Pharmacol. Res.202117010571010.1016/j.phrs.2021.105710 34089866
    [Google Scholar]
  50. XueY. DuM. ZhuM.J. Quercetin suppresses NLRP3 inflammasome activation in epithelial cells triggered by Escherichia coli O157:H7.Free Radic. Biol. Med.201710876076910.1016/j.freeradbiomed.2017.05.003 28476502
    [Google Scholar]
  51. ZalpoorH. Nabi-AfjadiM. ForghaniesfidvajaniR. TavakolC. FarahighasreaboonasrF. PakizehF. DanaV.G. SeifF. Quercetin as a JAK-STAT inhibitor: A potential role in solid tumors and neurodegenerative diseases.Cell. Mol. Biol. Lett.20222716010.1186/s11658‑022‑00355‑3 35883021
    [Google Scholar]
  52. ZhangL. XuL.Y. TangF. LiuD. ZhaoX.L. ZhangJ.N. XiaJ. WuJ.J. YangY. PengC. AoH. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation.J. Pharm. Anal.202414610093010.1016/j.jpha.2023.12.020 39005843
    [Google Scholar]
  53. ZhouP. Research progress in relationship between P2X7 and flavonoids in cardiovascular disease.Acta Pol. Pharm.202481131110.32383/appdr/181979
    [Google Scholar]
  54. NiuQ. LiJ. ZhangM. ZhouP. Natural phytochemicals as P2X7 receptor inhibitors for the treatment of inflammation-related diseases.Ital. J. Food Sci.2023352223210.15586/ijfs.v35i2.2288
    [Google Scholar]
  55. BurkeC.J. HuetterothW. OwaldD. PerisseE. KrashesM.J. DasG. GohlD. SiliesM. CertelS. WaddellS. Layered reward signalling through octopamine and dopamine in Drosophila.Nature2012492742943343710.1038/nature11614 23103875
    [Google Scholar]
  56. DasS. TiwariG.J. GhoshA. In silico analysis of new flavonoids from Pongamia pinnata with a therapeutic potential for agerelated macular degeneration.3 Biotech.2020101253610.1007/s13205‑020‑02537‑2 33224705
    [Google Scholar]
  57. CarreiroE.P. CostaA.R. AntunesC.M. ErnestoS. PintoF. RodriguesB. BurkeA.J. Quercetin-1,2,3-triazole hybrids as multifunctional anti-Alzheimer’s agents.Molecules20232822749510.3390/molecules28227495 38005217
    [Google Scholar]
  58. HerzigS. ShawR.J. AMPK: Guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.20181912113510.1038/nrm.2017.95
    [Google Scholar]
  59. AbdallaF.H. CardosoA.M. PereiraL.B. SchmatzR. GonçalvesJ.F. StefanelloN. FiorenzaA.M. GutierresJ.M. da Silva SerresJ.D. ZaniniD. PimentelV.C. VieiraJ.M. SchetingerM.R.C. MorschV.M. MazzantiC.M. Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats.Mol. Cell. Biochem.20133811-21810.1007/s11010‑013‑1659‑x 23797318
    [Google Scholar]
  60. WangL. SunJ. MiaoZ. JiangX. ZhengY. YangG. Quercitrin improved cognitive impairment through inhibiting inflammation induced by microglia in Alzheimer’s disease mice.Neuroreport202233832733510.1097/WNR.0000000000001783 35594435
    [Google Scholar]
  61. AbdallaF.H. SchmatzR. CardosoA.M. CarvalhoF.B. BaldissarelliJ. de OliveiraJ.S. RosaM.M. Gonçalves NunesM.A. RubinM.A. da CruzI.B.M. BarbisanF. DresslerV.L. PereiraL.B. SchetingerM.R.C. MorschV.M. GonçalvesJ.F. MazzantiC.M. Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na+, K+-ATPase activities.Physiol. Behav.201413515216710.1016/j.physbeh.2014.06.008 24952260
    [Google Scholar]
  62. OddoS. CaccamoA. ShepherdJ.D. MurphyM.P. GoldeT.E. KayedR. MetherateR. MattsonM.P. AkbariY. LaFerlaF.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction.Neuron200339340942110.1016/S0896‑6273(03)00434‑3 12895417
    [Google Scholar]
  63. PaulaP.C. Angelica MariaS.G. LuisC.H. Gloria PatriciaC.G. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model.Molecules20192412228710.3390/molecules24122287 31226738
    [Google Scholar]
  64. Sabogal-GuáquetaA.M. Muñoz-MancoJ.I. Ramírez-PinedaJ.R. Lamprea-RodriguezM. OsorioE. Cardona-GómezG.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice.Neuropharmacology20159313414510.1016/j.neuropharm.2015.01.027 25666032
    [Google Scholar]
  65. Vargas-RestrepoF. Sabogal-GuáquetaA.M. Cardona-GómezG.P. Quercetin ameliorates inflammation in CA1 hippocampal region in aged triple transgenic Alzheimer’s disease mice model.Biomedica201838697610.7705/biomedica.v38i0.3761 29809330
    [Google Scholar]
  66. HuangQ. YingJ. YuW. DongY. XiongH. ZhangY. LiuJ. WangX. HuaF. P2X7 receptor: An emerging target in Alzheimer’s disease.Mol. Neurobiol.20236152866288010.1007/s12035‑023‑03699‑9 37940779
    [Google Scholar]
  67. AndrejewR. Oliveira-GiacomelliÁ. RibeiroD.E. GlaserT. Arnaud-SampaioV.F. LameuC. UlrichH. The P2X7 receptor: Central hub of brain diseases.Front. Mol. Neurosci.20201312410.3389/fnmol.2020.00124 32848594
    [Google Scholar]
  68. SluyterR. StokesL. Significance of P2X7 receptor variants to human health and disease.Recent Pat. DNA Gene Seq.201151415410.2174/187221511794839219 21303345
    [Google Scholar]
  69. SperlághB. ViziE. WirknerK. IllesP. P2X7 receptors in the nervous system.Prog. Neurobiol.200678632734610.1016/j.pneurobio.2006.03.007 16697102
    [Google Scholar]
  70. BianchiC. Alvarez-CastelaoB. Sebastián-SerranoÁ. Di LauroC. Soria-TobarL. NickeA. EngelT. Díaz-HernándezM. P2X7 receptor inhibition ameliorates ubiquitin–proteasome system dysfunction associated with Alzheimer’s disease.Alzheimers Res. Ther.202315110510.1186/s13195‑023‑01258‑x 37287063
    [Google Scholar]
  71. HuangQ. YingJ. YuW. DongY. XiongH. ZhangY. LiuJ. WangX. HuaF. P2X7 receptor: An emerging target in Alzheimer’s disease.Mol. Neurobiol.20246152866288010.1007/s12035‑023‑03699‑9 37940779
    [Google Scholar]
  72. AndersonG. A more holistic perspective of Alzheimer’s disease: Roles of gut microbiome, adipocytes, hpa axis, melatonergic pathway and astrocyte mitochondria in the emergence of autoimmunity. Front.Bioscience-Landmark2023281235510.31083/j.fbl2812355 38179773
    [Google Scholar]
  73. SousaK.S. QuilesC.L. MuxelS.M. TrevisanI.L. FerreiraZ.S. MarkusR.P. Brain damage-linked atp promotes p2x7 receptors mediated pineal N-acetylserotonin release.Neuroscience2022499122210.1016/j.neuroscience.2022.06.039 35798261
    [Google Scholar]
  74. JangS.W. LiuX. PradoldejS. TosiniG. ChangQ. IuvoneP.M. YeK. N -acetylserotonin activates TrkB receptor in a circadian rhythm.Proc. Natl. Acad. Sci. USA201010783876388110.1073/pnas.0912531107 20133677
    [Google Scholar]
  75. YooD.Y. NamS.M. KimW. LeeC.H. WonM.H. HwangI.K. YoonY.S. N-acetylserotonin increases cell proliferation and differentiating neuroblasts with tertiary dendrites through upregulation of brain-derived neurotrophic factor in the mouse dentate gyrus.J. Vet. Med. Sci.201173111411141610.1292/jvms.11‑0123 21712640
    [Google Scholar]
  76. MizoguchiY. YaoH. ImamuraY. HashimotoM. MonjiA. Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: The Sefuri study.Sci. Rep.20201011644210.1038/s41598‑020‑73576‑1 33020545
    [Google Scholar]
  77. AzmanK.F. ZakariaR. Recent advances on the role of brain-derived neurotrophic factor (BDNF) in neurodegenerative diseases.Int. J. Mol. Sci.20222312682710.3390/ijms23126827 35743271
    [Google Scholar]
  78. KumarR. VermaV. JainA. JainR.K. MaikhuriJ.P. GuptaG. Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer.J. Nutr. Biochem.201122872373110.1016/j.jnutbio.2010.06.003 21062672
    [Google Scholar]
  79. AguiarG.P.S. ArcariB.D. ChavesL.M.P.C. MagroC.D. BoschettoD.L. PiatoA.L. LanzaM. OliveiraJ.V. Micronization of trans-resveratrol by supercritical fluid: Dissolution, solubility and in vitro antioxidant activity.Ind. Crops Prod.20181121510.1016/j.indcrop.2017.11.008
    [Google Scholar]
  80. AlmeidaE.R. Lima-RezendeC.A. SchneiderS.E. GarbinatoC. PedrosoJ. DecuiL. AguiarG.P.S. MüllerL.G. OliveiraJ.V. SiebelA.M. Micronized resveratrol shows anticonvulsant properties in pentylenetetrazole-induced seizure model in adult zebrafish.Neurochem. Res.202146224125110.1007/s11064‑020‑03158‑0 33108629
    [Google Scholar]
  81. QiY. GuoL. JiangY. ShiY. SuiH. ZhaoL. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles.Drug Deliv.202027174575510.1080/10717544.2020.1762262 32397764
    [Google Scholar]
  82. LakshmiY. PrasanthD. KumarK. AhmadS. RamanjaneyuluS. RahulN. PasalaP. Unravelling the molecular mechanisms of a quercetin nanocrystal for treating potential parkinson’s disease in a rotenone model: Supporting evidence of network pharmacology and in silico data analysis.Biomedicines20231110275610.3390/biomedicines11102756 37893129
    [Google Scholar]
  83. GonzalesM.M. GarbarinoV.R. KautzT.F. PalaviciniJ.P. Lopez-CruzanM. DehkordiS.K. MathewsJ.J. ZareH. XuP. ZhangB. FranklinC. HabesM. CraftS. PetersenR.C. TchkoniaT. KirklandJ.L. SalardiniA. SeshadriS. MusiN. OrrM.E. Senolytic therapy in mild Alzheimer’s disease: A phase 1 feasibility trial.Nat. Med.202329102481248810.1038/s41591‑023‑02543‑w 37679434
    [Google Scholar]
  84. RiesslandM. OrrM.E. Translating the biology of aging into new therapeutics for Alzheimer’s disease.Senolytics. J. Prev. Alzheimers Dis.2023104633646 37874084
    [Google Scholar]
  85. Wróbel-BiedrawaD. GrabowskaK. GalantyA. SobolewskaD. PodolakI. A flavonoid on the brain: Quercetin as a potential therapeutic agent in central nervous system disorders.Life (Basel)202212459110.3390/life12040591 35455082
    [Google Scholar]
  86. YangR. LiL. YuanH. LiuH. GongY. ZouL. LiS. WangZ. ShiL. JiaT. ZhaoS. WuB. YiZ. GaoY. LiG. XuH. LiuS. ZhangC. LiG. LiangS. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X4 receptor in dorsal root ganglia.J. Cell. Physiol.201923432756276410.1002/jcp.27091 30145789
    [Google Scholar]
  87. Cano-MartínezA. Bautista-PérezR. Castrejón-TéllezV. Carreón-TorresE. Pérez-TorresI. Díaz-DíazE. Flores-EstradaJ. Guarner-LansV. Rubio-RuízM.E. Resveratrol and quercetin as regulators of inflammatory and purinergic receptors to attenuate liver damage associated to metabolic syndrome.Int. J. Mol. Sci.20212216893910.3390/ijms22168939 34445644
    [Google Scholar]
/content/journals/cn/10.2174/011570159X355614250130100132
Loading
/content/journals/cn/10.2174/011570159X355614250130100132
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test