Skip to content
2000
Volume 23, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Alzheimer’s disease (AD), a neurodegenerative condition, continues to pose significant challenges to modern medicine due to the limited efficacy offered by current therapeutic modalities. With the complex pathophysiology of AD, which includes tau protein accumulation, amyloid-β plaque formation, neuroinflammation, and synaptic dysfunction, novel drug-targeting sites must be identified. This study presents a thorough evaluation of novel drug targeting sites, with a focus on these pathological characteristics as promising therapeutic targets while providing an explanation of their role in the course of the disease. We investigate in detail how neurotoxicity, resulting in synapse failure and cognitive impairment, is caused by tau proteins and amyloid plaques. In addition, the article discusses the increasing evidence that synaptic dysfunction is a major factor in the disease's progression, as well as the significance of neuroinflammation in the pathophysiology of the condition. The review also covers new drug sites such as amyloid-β plaques, tau proteins, and the inhibition of neuroinflammation mediators, in addition to traditional drug sites, including cholinergic and glutamatergic therapeutic targets. Lastly, we discuss the role of translational informatics involving data modeling, predictive analytics, explainable artificial intelligence (AI), and multimodal approaches for the management and prediction of AD. This article will serve as a guide for future research efforts in the fields of neuroscience, neuropharmacology, drug delivery sciences, and translational informatics.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X361867250313073624
2025-04-08
2025-12-07
Loading full text...

Full text loading...

References

  1. AtriA. The Alzheimer’s disease clinical spectrum: Diagnosis and management.Med. Clin. North Am.2019103226329310.1016/j.mcna.2018.10.00930704681
    [Google Scholar]
  2. ThiesW. BleilerL. 2013 Alzheimer’s disease facts and figures.Alzheimers Dement.20139220824510.1016/j.jalz.2013.02.00323507120
    [Google Scholar]
  3. LanctôtK.L. Hahn-PedersenJ.H. EichingerC.S. FreemanC. ClarkA. TarazonaL.R.S. CummingsJ. Burden of illness in people with Alzheimer’s disease: A systematic review of epidemiology, comorbidities and mortality.J. Prev. Alzheimers Dis.20241119710710.14283/jpad.2023.6138230722
    [Google Scholar]
  4. PanzaF. LozuponeM. LogroscinoG. ImbimboB.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.2019152738810.1038/s41582‑018‑0116‑630610216
    [Google Scholar]
  5. AshrafG.M. AlexiouA. Biological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease.Springer201910.1007/978‑981‑13‑9636‑6
    [Google Scholar]
  6. CummingsJ.L. GonzalezM.I. PritchardM.C. MayP.C. Toledo-ShermanL.M. HarrisG.A. The therapeutic landscape of tauopathies: Challenges and prospects.Alzheimers Res. Ther.202315116810.1186/s13195‑023‑01321‑737803386
    [Google Scholar]
  7. JohanssonI.L. SamuelssonC. MüllerN. Patients’ and communication partners’ experiences of communicative changes in Parkinson’s disease.Disabil. Rehabil.202042131835184310.1080/09638288.2018.153987530669899
    [Google Scholar]
  8. KimJ.S. HongS.B. ParkK.W. LeeA.T.C. Psychotic symptoms in patients with major neurological diseases.J. Clin. Neurol.202420215316510.3988/jcn.2023.050138433485
    [Google Scholar]
  9. ZhangX.X. TianY. WangZ.T. MaY.H. TanL. YuJ.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention.J. Prev. Alzheimers Dis.20218331332110.14283/jpad.2021.1534101789
    [Google Scholar]
  10. Di BattistaA.M. HeinsingerN.M. RebeckG.W. Alzheimer’s disease genetic risk factor APOE-ε4 also affects normal brain function.Curr. Alzheimer Res.201613111200120710.2174/156720501366616040111512727033053
    [Google Scholar]
  11. Sáiz-VazquezO. Puente-MartínezA. Pacheco-BonrostroJ. Ubillos-LandaS. Blood pressure and Alzheimer’s disease: A review of meta-analysis.Front. Neurol.202313106533510.3389/fneur.2022.106533536712428
    [Google Scholar]
  12. PorsteinssonA.P. IsaacsonR.S. KnoxS. SabbaghM.N. RubinoI. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021.J. Prev. Alzheimers Dis.20218337138610.14283/jpad.2021.2334101796
    [Google Scholar]
  13. ChehrehnegarN. NejatiV. ShatiM. RashediV. LotfiM. AdeliradF. ForoughanM. Early detection of cognitive disturbances in mild cognitive impairment: A systematic review of observational studies.Psychogeriatrics202020221222810.1111/psyg.1248431808989
    [Google Scholar]
  14. Domínguez-FernándezC. Egiguren-OrtizJ. RazquinJ. Gómez-GalánM. De las Heras-GarcíaL. Paredes-RodríguezE. AstigarragaE. MiguélezC. Barreda-GómezG. Review of technological challenges in personalised medicine and early diagnosis of neurodegenerative disorders.Int. J. Mol. Sci.2023244332110.3390/ijms2404332136834733
    [Google Scholar]
  15. KimS.J. LeeH.Y. In vivo molecular imaging in preclinical research.Lab. Anim. Res.20223813110.1186/s42826‑022‑00142‑336266669
    [Google Scholar]
  16. MokV.C.T. PendleburyS. WongA. AlladiS. AuL. BathP.M. BiesselsG.J. ChenC. CordonnierC. DichgansM. DominguezJ. GorelickP.B. KimS. KwokT. GreenbergS.M. JiaJ. KalariaR. KivipeltoM. NaegandranK. LamL.C.W. LamB.Y.K. LeeA.T.C. MarkusH.S. O’BrienJ. PaiM.C. PantoniL. SachdevP. SkoogI. SmithE.E. SrikanthV. SuhG.H. WardlawJ. KoH. BlackS.E. ScheltensP. Tackling challenges in care of Alzheimer’s disease and other dementias amid the COVID‐19 pandemic, now and in the future.Alzheimers Dement.202016111571158110.1002/alz.1214332789951
    [Google Scholar]
  17. BogdanovicB. EftimovT. SimjanoskaM. In-depth insights into Alzheimer’s disease by using explainable machine learning approach.Sci. Rep.2022121650810.1038/s41598‑022‑10202‑235444165
    [Google Scholar]
  18. KaurS. DasGuptaG. SinghS. Altered neurochemistry in Alzheimer’s disease: Targeting neurotransmitter receptor mechanisms and therapeutic strategy.Neurophysiology201951429330910.1007/s11062‑019‑09823‑7
    [Google Scholar]
  19. AllenY. FoubertM. CurtinD. HennessyC. TwomeyN. GalvinA. NaughtonC. 323 A multidisciplinary quality improvement project for managing non-cognitive symptoms of dementia in acute care.Age and Ageing202251Suppl 3afac218.283
    [Google Scholar]
  20. GuzzonA. RebbaV. PaccagnellaO. RigonM. BonioloG. The value of supportive care: A systematic review of cost-effectiveness of non-pharmacological interventions for dementia.PLoS One2023185e028530510.1371/journal.pone.028530537172047
    [Google Scholar]
  21. ReynoldsD.S. A short perspective on the long road to effective treatments for Alzheimer’s disease.Br. J. Pharmacol.2019176183636364810.1111/bph.1458130657599
    [Google Scholar]
  22. RajasekharK. GovindarajuT. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease.RSC Advances2018842237802380410.1039/C8RA03620A35540246
    [Google Scholar]
  23. BertrandD. WallaceT.L. A review of the cholinergic system and therapeutic approaches to treat brain disorders.Behavioral Pharmacology of the Cholinergic System202012810.1007/7854_2020_141
    [Google Scholar]
  24. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules2706181635335180
    [Google Scholar]
  25. VermaS. KumarA. TripathiT. KumarA. Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in Alzheimer’s disease therapy.J. Pharm. Pharmacol.201870898599310.1111/jphp.1291929663387
    [Google Scholar]
  26. ThompsonK.J. TobinA.B. Crosstalk between the M1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer’s disease?Cell. Signal.20207010954510.1016/j.cellsig.2020.10954531978506
    [Google Scholar]
  27. SongX. JensenM.Ø. JoginiV. SteinR.A. LeeC.H. MchaourabH.S. ShawD.E. GouauxE. Mechanism of NMDA receptor channel block by MK-801 and memantine.Nature2018556770251551910.1038/s41586‑018‑0039‑929670280
    [Google Scholar]
  28. ConwayM.E. Alzheimer’s disease: Targeting the glutamatergic system.Biogerontology202021325727410.1007/s10522‑020‑09860‑432048098
    [Google Scholar]
  29. Loera-ValenciaR. Cedazo-MinguezA. KenigsbergP.A. PageG. DuarteA.I. GiustiP. ZussoM. RobertP. FrisoniG.B. CattaneoA. ZilleM. BoltzeJ. CartierN. BueeL. JohanssonG. WinbladB. Current and emerging avenues for Alzheimer’s disease drug targets.J. Intern. Med.2019286439843710.1111/joim.1295931286586
    [Google Scholar]
  30. Calvo-Flores GuzmánB. VinnakotaC. GovindpaniK. WaldvogelH.J. FaullR.L.M. KwakowskyA. The GABAergic system as a therapeutic target for Alzheimer’s disease.J. Neurochem.2018146664966910.1111/jnc.1434529645219
    [Google Scholar]
  31. ScofieldM.D. Exploring the role of astroglial glutamate release and association with synapses in neuronal function and behavior.Biol. Psychiatry2018841177878610.1016/j.biopsych.2017.10.02929258653
    [Google Scholar]
  32. CzapskiG.A. StrosznajderJ.B. Glutamate and GABA in microglia-neuron cross-talk in Alzheimer’s disease.Int. J. Mol. Sci.202122211167710.3390/ijms22211167734769106
    [Google Scholar]
  33. ChengY.J. LinC.H. LaneH.Y. Involvement of cholinergic, adrenergic, and glutamatergic network modulation with cognitive dysfunction in Alzheimer’s disease.Int. J. Mol. Sci.2021225228310.3390/ijms2205228333668976
    [Google Scholar]
  34. Abdi DezfouliR. AkbariforoudS. EsmaeilidezfouliE. Are there links between Alzheimer’s disease and ADHD? The efficacy of acetylcholinesterase inhibitors and NMDA receptor antagonists in controlling ADHD symptoms: A systematic review.Middle East Curr. Psychiatry20243111310.1186/s43045‑024‑00405‑w
    [Google Scholar]
  35. MadavY. WairkarS. PrabhakarB. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease.Brain Res. Bull.201914617118410.1016/j.brainresbull.2019.01.00430634016
    [Google Scholar]
  36. WalshD.M. SelkoeD.J. Amyloid β-protein and beyond: The path forward in Alzheimer’s disease.Curr. Opin. Neurobiol.20206111612410.1016/j.conb.2020.02.00332197217
    [Google Scholar]
  37. AgrawalN. SkeltonA.A. Structure and function of Alzheimer’s amyloid beta proteins from monomer to fibrils: A mini review.Protein J.201938442543410.1007/s10930‑019‑09854‑331325011
    [Google Scholar]
  38. Menendez-GonzalezM. Padilla-ZambranoH.S. AlvarezG. Capetillo-ZarateE. Tomas-ZapicoC. CostaA. Targeting beta-amyloid at the CSF: A new therapeutic strategy in Alzheimer’s disease.Front. Aging Neurosci.20181010010.3389/fnagi.2018.0010029713273
    [Google Scholar]
  39. SongC. ShiJ. ZhangP. ZhangY. XuJ. ZhaoL. ZhangR. WangH. ChenH. Immunotherapy for Alzheimer’s disease: Targeting β-amyloid and beyond.Transl. Neurodegener.20221111810.1186/s40035‑022‑00292‑335300725
    [Google Scholar]
  40. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑737386015
    [Google Scholar]
  41. HampelH. VassarR. De StrooperB. HardyJ. WillemM. SinghN. ZhouJ. YanR. VanmechelenE. De VosA. NisticòR. CorboM. ImbimboB.P. StrefferJ. VoytyukI. TimmersM. Tahami MonfaredA.A. IrizarryM. AlbalaB. KoyamaA. WatanabeN. KimuraT. YarenisL. ListaS. KramerL. VergalloA. The β-secretase BACE1 in Alzheimer’s disease.Biol. Psychiatry202189874575610.1016/j.biopsych.2020.02.00132223911
    [Google Scholar]
  42. Moussa-PachaN.M. AbdinS.M. OmarH.A. AlnissH. Al-TelT.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease.Med. Res. Rev.202040133938410.1002/med.2162231347728
    [Google Scholar]
  43. AmirradF. BousoikE. ShamlooK. Al-ShiyabH. NguyenV-H. Montazeri AliabadiH. Alzheimer’s disease: Dawn of a new era?J. Pharm. Pharm. Sci.20172016831810.18433/J3VS8P
    [Google Scholar]
  44. PlotkinS.S. CashmanN.R. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease.Neurobiol. Dis.202014410501010.1016/j.nbd.2020.10501032682954
    [Google Scholar]
  45. GandiniA. BartoliniM. TedescoD. Martinez-GonzalezL. RocaC. CampilloN.E. Zaldivar-DiezJ. PerezC. ZuccheriG. MitiA. FeoliA. CastellanoS. PetrallaS. MontiB. RossiM. ModaF. LegnameG. MartinezA. BolognesiM.L. Tau-centric multitarget approach for Alzheimer’s disease: Development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors.J. Med. Chem.201861177640765610.1021/acs.jmedchem.8b0061030078314
    [Google Scholar]
  46. SuJ. XiaoY. WeiL. LeiH. SunF. WangW. LiS. WangX. ZhengJ. WangJ. A new tau dephosphorylation-targeting chimera for the treatment of tauopathies.Acta Pharmacol. Sin.202445112267227610.1038/s41401‑024‑01326‑4
    [Google Scholar]
  47. RothJ.R. RushT. ThompsonS.J. AldaherA.R. DunnT.B. MesinaJ.S. CochranJ.N. BoyleN.R. DeanH.B. YangZ. PathakV. RuizP. WuM. DayJ.J. BostwickJ.R. SutoM.J. Augelli-SzafranC.E. RobersonE.D. Development of small-molecule Tau-SH3 interaction inhibitors that prevent amyloid-β toxicity and network hyperexcitability.Neurotherapeutics2024211e0029110.1016/j.neurot.2023.10.00138241154
    [Google Scholar]
  48. GongB. ZhangW. CongW. GuY. JiW. YinT. ZhouH. HuH. ZhuangJ. LuoY. LiuY. GaoJ. YinY. Systemic administration of neurotransmitter‐derived lipidoids‐PROTACs‐DNA nanocomplex promotes Tau clearance and cognitive recovery for Alzheimer’s disease therapy.Adv. Healthc. Mater.20241332240014910.1002/adhm.20240014939007278
    [Google Scholar]
  49. MuralidarS. AmbiS.V. SekaranS. ThirumalaiD. PalaniappanB. Role of tau protein in Alzheimer’s disease: The prime pathological player.Int. J. Biol. Macromol.20201631599161710.1016/j.ijbiomac.2020.07.32732784025
    [Google Scholar]
  50. SongY. DaiC.L. ShinoharaM. Chyn TungY. ZhouS. HuangW.C. SeffouhA. LuoY. WilladsenM. JiaoY. MorishimaM. SaitoY. KohS.H. OrtegaJ. GongC.X. LovellJ.F. A pentavalent peptide vaccine elicits Aβ and tau antibodies with prophylactic activity in an Alzheimer’s disease mouse model.Brain Behav. Immun.202412218520110.1016/j.bbi.2024.08.02839142420
    [Google Scholar]
  51. KaurP. KheraA. AlajangiH.K. SharmaA. JaiswalP.K. SinghG. BarnwalR.P. Role of tau in various tauopathies, treatment approaches, and emerging role of nanotechnology in neurodegenerative disorders.Mol. Neurobiol.20236031690172010.1007/s12035‑022‑03164‑z36562884
    [Google Scholar]
  52. SubhramanyamC.S. WangC. HuQ. DheenS.T. Microglia-mediated neuroinflammation in neurodegenerative diseases.Seminars in cell & developmental biology.Elsevier2019112120
    [Google Scholar]
  53. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y33318676
    [Google Scholar]
  54. DhapolaR. HotaS.S. SarmaP. BhattacharyyaA. MedhiB. ReddyD.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease.Inflammopharmacology20212961669168110.1007/s10787‑021‑00889‑634813026
    [Google Scholar]
  55. WójtowiczS. StrosznajderA.K. JeżynaM. StrosznajderJ.B. The novel role of PPAR alpha in the brain: promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders.Neurochem. Res.202045597298810.1007/s11064‑020‑02993‑532170673
    [Google Scholar]
  56. LepetaK. LourencoM.V. SchweitzerB.C. MartinoA.P.V. BanerjeeP. Catuara-SolarzS. de La Fuente RevengaM. GuillemA.M. HaidarM. IjomoneO.M. NadorpB. QiL. PereraN.D. RefsgaardL.K. ReidK.M. SabbarM. SahooA. SchaeferN. SheeanR.K. SuskaA. VermaR. VicidominiC. WrightD. ZhangX.D. SeidenbecherC. Synaptopathies: synaptic dysfunction in neurological disorders – A review from students to students.J. Neurochem.2016138678580510.1111/jnc.1371327333343
    [Google Scholar]
  57. ChenY. FuA.K.Y. IpN.Y. Synaptic dysfunction in Alzheimer’s disease: Mechanisms and therapeutic strategies.Pharmacol. Ther.201919518619810.1016/j.pharmthera.2018.11.00630439458
    [Google Scholar]
  58. WangP. WangF. NiL. WuP. ChenJ. Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder.Acta Pharm. Sin. B202111359960810.1016/j.apsb.2020.11.01233777670
    [Google Scholar]
  59. DeMattosR.B. LuJ. TangY. RackeM.M. DeLongC.A. TzaferisJ.A. HoleJ.T. ForsterB.M. McDonnellP.C. LiuF. KinleyR.D. JordanW.H. HuttonM.L. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice.Neuron201276590892010.1016/j.neuron.2012.10.02923217740
    [Google Scholar]
  60. PanzaF. LozuponeM. SolfrizziV. SardoneR. PiccininniC. DibelloV. StalloneR. GiannelliG. BellomoA. GrecoA. DanieleA. SeripaD. LogroscinoG. ImbimboB.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease.Expert Rev. Neurother.2018181184785710.1080/14737175.2018.153170630277096
    [Google Scholar]
  61. FettelschossA. ZabelF. BachmannM.F. Vaccination against Alzheimer disease.Hum. Vaccin. Immunother.201410484785110.4161/hv.2818324535580
    [Google Scholar]
  62. CrespiG.A.N. HermansS.J. ParkerM.W. MilesL.A. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies.Sci. Rep.201551964910.1038/srep0964925880481
    [Google Scholar]
  63. FeinbergH. SaldanhaJ.W. DiepL. GoelA. WidomA. VeldmanG.M. WeisW.I. SchenkD. BasiG.S. Crystal structure reveals conservation of amyloid-β conformation recognized by 3D6 following humanization to bapineuzumab.Alzheimers Res. Ther.2014633110.1186/alzrt26125024748
    [Google Scholar]
  64. UltschM. LiB. MaurerT. MathieuM. AdolfssonO. MuhsA. PfeiferA. PihlgrenM. BainbridgeT.W. ReicheltM. ErnstJ.A. EigenbrotC. FuhG. AtwalJ.K. WattsR.J. WangW. Structure of crenezumab complex with Aβ shows loss of β-hairpin.Sci. Rep.2016613937410.1038/srep3937427996029
    [Google Scholar]
  65. SilvaA.R. GrossoC. Delerue-MatosC. RochaJ.M. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity.Eur. J. Med. Chem.20191748711510.1016/j.ejmech.2019.04.02831029947
    [Google Scholar]
  66. BasheerN. SmolekT. HassanI. LiuF. IqbalK. ZilkaN. NovakP. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials.Mol. Psychiatry20232862197221410.1038/s41380‑023‑02113‑z37264120
    [Google Scholar]
  67. FengY.S. TanZ.X. WuL.Y. DongF. ZhangF. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease.Ageing Res. Rev.20206410119210.1016/j.arr.2020.10119233059089
    [Google Scholar]
  68. GuoS. WangH. YinY. Microglia polarization from M1 to M2 in neurodegenerative diseases.Front. Aging Neurosci.20221481534710.3389/fnagi.2022.81534735250543
    [Google Scholar]
  69. AhmadM.H. FatimaM. MondalA.C. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches.J. Clin. Neurosci.20195961110.1016/j.jocn.2018.10.03430385170
    [Google Scholar]
  70. SanzP. Garcia-GimenoM.A. Reactive glia inflammatory signaling pathways and epilepsy.Int. J. Mol. Sci.20202111409610.3390/ijms2111409632521797
    [Google Scholar]
  71. AppelbaumL.G. ShenasaM.A. StolzL. DaskalakisZ. Synaptic plasticity and mental health: methods, challenges and opportunities.Neuropsychopharmacology202348111312010.1038/s41386‑022‑01370‑w35810199
    [Google Scholar]
  72. CelliR. SantoliniI. Van LuijtelaarG. NgombaR.T. BrunoV. NicolettiF. Targeting metabotropic glutamate receptors in the treatment of epilepsy: Rationale and current status.Expert Opin. Ther. Targets201923434135110.1080/14728222.2019.158688530801204
    [Google Scholar]
  73. CaoJ. HouJ. PingJ. CaiD. Advances in developing novel therapeutic strategies for Alzheimer’s disease.Mol. Neurodegener.20181316410.1186/s13024‑018‑0299‑830541602
    [Google Scholar]
  74. LiuJ. YangB. KeJ. LiW. SuenW.C. Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy.Drugs Aging2016331068569710.1007/s40266‑016‑0406‑x27699633
    [Google Scholar]
  75. RamananV.K. DayG.S. Anti-amyloid therapies for Alzheimer disease: Finally, good news for patients.Mol. Neurodegener.20231814210.1186/s13024‑023‑00637‑037381015
    [Google Scholar]
  76. RoytmanM. MashriqiF. Al-TawilK. SchulzP.E. ZaharchukG. BenzingerT.L.S. FranceschiA.M. Amyloid-related imaging abnormalities: An update.AJR Am. J. Roentgenol.2023220456257410.2214/AJR.22.2846136321981
    [Google Scholar]
  77. PolancoJ.C. LiC. BodeaL.G. Martinez-MarmolR. MeunierF.A. GötzJ. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies.Nat. Rev. Neurol.2018141223910.1038/nrneurol.2017.16229242522
    [Google Scholar]
  78. ChenY. YuY. Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation.J. Neuroinflammation202320116510.1186/s12974‑023‑02853‑337452321
    [Google Scholar]
  79. EsquerA. BlancF. CollonguesN. Immunotherapies targeting amyloid and tau protein in alzheimer’s disease: should we move away from diseases and focus on biological targets? A systematic review and expert opinion.Neurol. Ther.20231261883190710.1007/s40120‑023‑00541‑137812325
    [Google Scholar]
  80. NgP.Y. ChangI.S. KohR.Y. ChyeS.M. Recent advances in tau-directed immunotherapy against Alzheimer’s disease: An overview of pre-clinical and clinical development.Metab. Brain Dis.20203571049106610.1007/s11011‑020‑00591‑632632666
    [Google Scholar]
  81. XiaY. ProkopS. GiassonB.I. “Don’t Phos Over Tau”: Recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies.Mol. Neurodegener.20211613710.1186/s13024‑021‑00460‑534090488
    [Google Scholar]
  82. GuoY. LiS. ZengL-H. TanJ. Tau-targeting therapy in Alzheimer’s disease: Critical advances and future opportunities.Ageing Neurodegener. Dis.202223
    [Google Scholar]
  83. Sánchez-SarasúaS. Fernández-PérezI. Espinosa-FernándezV. Sánchez-PérezA.M. LedesmaJ.C. Can we treat neuroinflammation in Alzheimer’s disease?Int. J. Mol. Sci.20202122875110.3390/ijms2122875133228179
    [Google Scholar]
  84. ChandraA. ValkimadiP.E. PaganoG. CousinsO. DervenoulasG. PolitisM. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment.Hum. Brain Mapp.201940185424544210.1002/hbm.2478231520513
    [Google Scholar]
  85. El IdrissiF. GressierB. DevosD. BelarbiK. A computational exploration of the molecular network associated to neuroinflammation in Alzheimer’s Disease.Front. Pharmacol.20211263000310.3389/fphar.2021.63000334335238
    [Google Scholar]
  86. FosterJ.B. LashleyR. ZhaoF. WangX. KungN. AskwithC.C. LinL. ShultisM.W. HodgettsK.J. LinC.L.G. Enhancement of tripartite synapses as a potential therapeutic strategy for Alzheimer’s disease: A preclinical study in rTg4510 mice.Alzheimers Res. Ther.20191117510.1186/s13195‑019‑0530‑z31439023
    [Google Scholar]
  87. ZhouH. LiH. GowravaramN. QuanM. KausarN. GompertsS.N. Disruption of hippocampal neuronal circuit function depends upon behavioral state in the APP/PS1 mouse model of Alzheimer’s disease.Sci. Rep.20221212102210.1038/s41598‑022‑25364‑236471155
    [Google Scholar]
  88. CongY.F. LiuF.W. XuL. SongS.S. ShenX.R. LiuD. HouX.Q. ZhangH.T. Rolipram ameliorates memory deficits and depression-like behavior in APP/PS1/tau triple transgenic mice: Involvement of neuroinflammation and apoptosis via cAMP signaling.Int. J. Neuropsychopharmacol.202326958559810.1093/ijnp/pyad04237490542
    [Google Scholar]
  89. MeftahS. GanJ. Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression.Front. Synaptic Neurosci.202315112903610.3389/fnsyn.2023.112903636970154
    [Google Scholar]
  90. YadollahikhalesG. RojasJ.C. Anti-amyloid immunotherapies for Alzheimer’s disease: A 2023 clinical update.Neurotherapeutics202320491493110.1007/s13311‑023‑01405‑037490245
    [Google Scholar]
  91. van BokhovenP. de WildeA. VermuntL. LeferinkP.S. HeetveldS. CummingsJ. ScheltensP. VijverbergE.G.B. The Alzheimer’s disease drug development landscape.Alzheimers Res. Ther.202113118610.1186/s13195‑021‑00927‑z34763720
    [Google Scholar]
  92. KiralyM. FossJ.F. GiordanoT. Neuroinflammation, its role in Alzheimer’s disease and therapeutic strategies.J. Prev. Alzheimers Dis.202310468669810.14283/jpad.2023.10937874089
    [Google Scholar]
  93. ZhaoK. LiZ. LiuQ. ChengY. BarretoG.E. LiuR. Editorial: Novel therapeutic target and drug discovery for neurological diseases.Front. Pharmacol.202213104226610.3389/fphar.2022.1042266
    [Google Scholar]
  94. SpagnuoloC. MocciaS. RussoG.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders.Eur. J. Med. Chem.201815310511510.1016/j.ejmech.2017.09.00128923363
    [Google Scholar]
  95. NisticòR. PignatelliM. PiccininS. MercuriN.B. CollingridgeG. Targeting synaptic dysfunction in Alzheimer’s disease therapy.Mol. Neurobiol.201246357258710.1007/s12035‑012‑8324‑322914888
    [Google Scholar]
  96. HuangL.K. KuanY.C. LinH.W. HuC.J. Clinical trials of new drugs for Alzheimer disease: A 2020-2023 update.J. Biomed. Sci.20233018310.1186/s12929‑023‑00976‑637784171
    [Google Scholar]
  97. HampelH. WilliamsC. EtchetoA. GoodsaidF. ParmentierF. SallantinJ. KaufmannW.E. MisslingC.U. AfsharM. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2‐73) Phase 2a clinical study.Alzheimers Dement. (N. Y.)202061e1201310.1002/trc2.1201332318621
    [Google Scholar]
  98. RashadA. RasoolA. ShaheryarM. SarfrazA. SarfrazZ. Robles-VelascoK. Cherrez-OjedaI. Donanemab for Alzheimer’s disease: A systematic review of clinical trials. Healthcare.MDPI202232
    [Google Scholar]
  99. KrafftG.A. JerecicJ. SiemersE. ClineE.N. ACU193: an immunotherapeutic poised to test the amyloid β oligomer hypothesis of Alzheimer’s disease.Front. Neurosci.20221684821510.3389/fnins.2022.84821535557606
    [Google Scholar]
  100. ShulmanM. KongJ. O’GormanJ. RattiE. RajagovindanR. ViolletL. HuangE. SharmaS. RacineAM. CzerkowiczJ. TANGO: A placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer’s disease.Nat. Aging20233121591160110.1038/s43587‑023‑00523‑w
    [Google Scholar]
  101. CoimbraJ.R.M. ResendeR. CustódioJ.B.A. SalvadorJ.A.R. SantosA.E. BACE1 inhibitors for Alzheimer’s disease: Current challenges and future perspectives.J. Alzheimers Dis.2024101s1S53S7810.3233/JAD‑24014638943390
    [Google Scholar]
  102. SivanantharajahL. MudherA. Curcumin as a holistic treatment for tau pathology.Front. Pharmacol.20221390311910.3389/fphar.2022.90311935662729
    [Google Scholar]
  103. ThalL.J. FerrisS.H. KirbyL. BlockG.A. LinesC.R. YuenE. AssaidC. NesslyM.L. NormanB.A. BaranakC.C. ReinesS.A. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment.Neuropsychopharmacology20053061204121510.1038/sj.npp.130069015742005
    [Google Scholar]
  104. MenonS.N. ZerinF. EzewudoE. SimonN.P. MenonS.N. DanielM.L. GreenA.J. PandeyA. MackayC.E. HafezS. MoniriN.H. HasanR. Neflamapimod inhibits endothelial cell activation, adhesion molecule expression, leukocyte attachment and vascular inflammation by inhibiting p38 MAPKα and NF-κB signaling.Biochem. Pharmacol.202321411568310.1016/j.bcp.2023.11568337429422
    [Google Scholar]
  105. ShenB. LinY. BiC. ZhouS. BaiZ. ZhengG. ZhouJ. Translational informatics for Parkinson’s disease: From big biomedical data to small actionable alterations.Genomics Proteomics Bioinformatics201917441542910.1016/j.gpb.2018.10.00731786313
    [Google Scholar]
  106. ZahraM.A. Al-TaherA. AlquhaidanM. HussainT. IsmailI. RayaI. KandeelM. The synergy of artificial intelligence and personalized medicine for the enhanced diagnosis, treatment, and prevention of disease.Drug Metab. Pers. Ther.2024392475810.1515/dmpt‑2024‑000338997240
    [Google Scholar]
  107. GoldM. AmatniekJ. CarrilloM.C. CedarbaumJ.M. HendrixJ.A. MillerB.B. RobillardJ.M. RiceJ.J. SoaresH. TomeM.B. TarnanasI. VargasG. BainL.J. CzajaS.J. Digital technologies as biomarkers, clinical outcomes assessment, and recruitment tools in Alzheimer’s disease clinical trials.Alzheimers Dement. (N. Y.)20184123424210.1016/j.trci.2018.04.00329955666
    [Google Scholar]
  108. AhangariN. FischerC.E. SchweizerT.A. MunozD.G. Cognitive resilience and severe Alzheimer’s disease neuropathology.Aging Brain2023310006510.1016/j.nbas.2023.10006536911256
    [Google Scholar]
  109. Al-AyyadM. OwidaH.A. De FazioR. Al-NaamiB. ViscontiP. Electromyography monitoring systems in rehabilitation: A review of clinical applications, wearable devices and signal acquisition methodologies.Electronics (Basel)2023127152010.3390/electronics12071520
    [Google Scholar]
  110. LottS.A. StreelE. BachmanS.L. BodeK. DyerJ. Fitzer-AttasC. GoldsackJ.C. HakeA. JannatiA. FuertesR.S. FromyP. Digital health technologies for Alzheimer’s disease and related dementias: Initial results from a landscape analysis and community collaborative effort.J. Prev. Alzheimers Dis.20241151480148910.14283/jpad.2024.10339350395
    [Google Scholar]
  111. OwensA.P. BallardC. BeigiM. KalafatisC. BrookerH. LavelleG. BrønnickK.K. SauerJ. BoddingtonS. VelayudhanL. AarslandD. Implementing remote memory clinics to enhance clinical care during and after COVID-19.Front. Psychiatry20201157993410.3389/fpsyt.2020.57993433061927
    [Google Scholar]
  112. Gomez-ValadesA. Martinez-TomasR. RinconM. Integrative base ontology for the research analysis of Alzheimer’s disease-related mild cognitive impairment.Front. Neuroinform.20211556169110.3389/fninf.2021.56169133613222
    [Google Scholar]
  113. PoldrackR.A. YarkoniT. From brain maps to cognitive ontologies: informatics and the search for mental structure.Annu. Rev. Psychol.201667158761210.1146/annurev‑psych‑122414‑03372926393866
    [Google Scholar]
  114. AlobaidiM. MalikK.M. HussainM. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.Comput. Methods Programs Biomed.201816511712810.1016/j.cmpb.2018.08.01030337066
    [Google Scholar]
  115. SwanK. SpeyerR. ScharitzerM. FarnetiD. BrownT. WoisardV. CordierR. Measuring what matters in healthcare: A practical guide to psychometric principles and instrument development.Front. Psychol.202314122585010.3389/fpsyg.2023.122585037790221
    [Google Scholar]
  116. MalhotraA. YounesiE. GündelM. MüllerB. HenekaM.T. Hofmann-ApitiusM. ADO: A disease ontology representing the domain knowledge specific to Alzheimer’s disease.Alzheimers Dement.201410223824610.1016/j.jalz.2013.02.00923830913
    [Google Scholar]
  117. Timón-ReinaS. RincónM. Martínez-TomásR. KirsebomB.E. FladbyT. A knowledge graph framework for dementia research data.Appl. Sci. (Basel)202313181049710.3390/app131810497
    [Google Scholar]
  118. ShoaipN. BarakatS. ElmogyM. Alzheimer’s Disease Integrated Ontology (ADIO).14th International Conference on Computer Engineering and Systems (ICCES)December 2019374379
    [Google Scholar]
  119. BerrosN. El MendiliF. FilalyY. El Bouzekri El IdrissiY. Enhancing digital health services with big data analytics.Big Data Cogn. Comput.2023726410.3390/bdcc7020064
    [Google Scholar]
  120. MahendranN. P M, D.R.V. A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease.Comput. Biol. Med.202214110505610.1016/j.compbiomed.2021.10505634839903
    [Google Scholar]
  121. Uspenskaya-CadozO. AlamuriC. WangL. YangM. KhindaS. NigmatullinaY. CaoT. KayalN. O’KeefeM. RubelC. Machine learning algorithm helps identify non-diagnosed prodromal Alzheimer’s disease patients in the general population.J. Prev. Alzheimers Dis.20196318519110.14283/jpad.2019.1031062833
    [Google Scholar]
  122. SinghaniaU. TripathyB. HasanM.K. AnumbeN.C. AlboaneenD. AhmedF.R.A. AhmedT.E. NourM.M.M. A predictive and preventive model for onset of Alzheimer’s disease.Front. Public Health2021975153610.3389/fpubh.2021.75153634708019
    [Google Scholar]
  123. UddinK.M.M. AlamM.J. UddinM.A. AryalS. a novel approach utilizing machine learning for the early diagnosis of Alzheimer’s disease.Biomed. Materials & Devices20231288289810.1007/s44174‑023‑00078‑937363136
    [Google Scholar]
  124. KavithaC. ManiV. SrividhyaS.R. KhalafO.I. Tavera RomeroC.A. Early-stage Alzheimer’s disease prediction using machine learning models.Front. Public Health20221085329410.3389/fpubh.2022.85329435309200
    [Google Scholar]
  125. AbrolA. FuZ. DuY. CalhounV.D. Multimodal data fusion of deep learning and dynamic functional connectivity features to predict Alzheimer’s disease progression.In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC).20194409441310.1109/EMBC.2019.8856500
    [Google Scholar]
  126. BiX. CaiR. WangY. LiuY. Effective diagnosis of Alzheimer’s disease via multimodal fusion analysis framework.Front. Genet.20191097610.3389/fgene.2019.0097631649738
    [Google Scholar]
  127. RahimN. El-SappaghS. AliS. MuhammadK. Del SerJ. AbuhmedT. Prediction of Alzheimer’s progression based on multimodal Deep-Learning-based fusion and visual explainability of time-series data.Inf. Fusion20239236338810.1016/j.inffus.2022.11.028
    [Google Scholar]
  128. BellantuonoL. MonacoA. AmorosoN. LacalamitaA. PantaleoE. TangaroS. BellottiR. Worldwide impact of lifestyle predictors of dementia prevalence: An explainable Artificial Intelligence analysis.Frontiers in. Big Data20225102778310.3389/fdata.2022.102778336567754
    [Google Scholar]
  129. El-SappaghS. AlonsoJ.M. IslamS.M.R. SultanA.M. KwakK.S. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease.Sci. Rep.2021111266010.1038/s41598‑021‑82098‑333514817
    [Google Scholar]
  130. JahanS. Abu TaherK. KaiserM.S. MahmudM. RahmanM.S. HosenA.S.M.S. RaI.H. Explainable AI-based Alzheimer’s prediction and management using multimodal data.PLoS One20231811e029425310.1371/journal.pone.029425337972072
    [Google Scholar]
  131. SalehH. ElRashidyN. Abd ElazizM. Genetic algorithm-based hybrid deep learning model for explainable Alzheimer’s disease prediction using temporal multimodal cognitive data.Int. J. Data Sci. Anal.2024131
    [Google Scholar]
  132. CummingsJ. AisenP.S. DuBoisB. FrölichL. JackC.R.Jr JonesR.W. MorrisJ.C. RaskinJ. DowsettS.A. ScheltensP. Drug development in Alzheimer’s disease: The path to 2025.Alzheimers Res. Ther.2016813910.1186/s13195‑016‑0207‑927646601
    [Google Scholar]
  133. CavalliA. BolognesiM.L. MinariniA. RosiniM. TumiattiV. RecanatiniM. MelchiorreC. Multi-target-directed ligands to combat neurodegenerative diseases.J. Med. Chem.200851334737210.1021/jm700936418181565
    [Google Scholar]
  134. KabirM.T. UddinM.S. MamunA.A. JeandetP. AleyaL. MansouriR.A. AshrafG.M. MathewB. Bin-JumahM.N. Abdel-DaimM.M. Combination drug therapy for the management of Alzheimer’s disease.Int. J. Mol. Sci.2020219327210.3390/ijms2109327232380758
    [Google Scholar]
  135. GharatR. DixitG. KhambeteM. PrabhuA. Targets, trials and tribulations in Alzheimer therapeutics.Eur. J. Pharmacol.202496217623010.1016/j.ejphar.2023.17623038042464
    [Google Scholar]
  136. MukherjeeA. BiswasS. RoyI. Immunotherapy: An emerging treatment option for neurodegenerative diseases.Drug Discov. Today202429510397410.1016/j.drudis.2024.10397438555032
    [Google Scholar]
  137. EmensL.A. AsciertoP.A. DarcyP.K. DemariaS. EggermontA.M.M. RedmondW.L. SeligerB. MarincolaF.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.Eur. J. Cancer20178111612910.1016/j.ejca.2017.01.03528623775
    [Google Scholar]
  138. AlamJ. SharmaL. Potential enzymatic targets in Alzheimer’s: A comprehensive review.Curr. Drug Targets201920331633910.2174/138945011966618082010472330124150
    [Google Scholar]
  139. OkanoH. MiyawakiA. KasaiK. Brain/MINDS: Brain-mapping project in Japan.Philos. Trans. R. Soc. Lond. B Biol. Sci.201537016682014031010.1098/rstb.2014.031025823872
    [Google Scholar]
  140. RomanV. ViktorS. The role of big brain science in the development of artificial intelligence technologies.Arch. Venez. Farmacol. Ter.2022412
    [Google Scholar]
  141. GosztylaM.L. BrothersH.M. RobinsonS.R. Alzheimer’s amyloid-β is an antimicrobial peptide: A review of the evidence.J. Alzheimers Dis.20186241495150610.3233/JAD‑17113329504537
    [Google Scholar]
  142. AndersonG. Why do anti-amyloid beta antibodies not work? Time to reconceptualize dementia pathophysiology by incorporating astrocyte melatonergic pathway desynchronization from amyloid-beta production Braz.J. Psychiatry2023452899210.47626/1516‑4446‑2022‑2949
    [Google Scholar]
  143. MarkusR.P. FernandesP.A. KinkerG.S. da Silveira Cruz-MachadoS. MarçolaM. Immune‐pineal axis – acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes.Br. J. Pharmacol.2018175163239325010.1111/bph.1408329105727
    [Google Scholar]
  144. MuxelS.M. Pires-LapaM.A. MonteiroA.W.A. CeconE. TamuraE.K. Floeter-WinterL.M. MarkusR.P. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene.PLoS One2012712e5201010.1371/journal.pone.005201023284853
    [Google Scholar]
  145. CalandriaJ.M. DoK.V. Kala-BhattacharjeeS. ObenausA. BelayevL. BazanN.G. cRel and Wnt5a/Frizzled 5 receptor-mediated inflammatory regulation reveal novel neuroprotectin D1 targets for neuroprotection.Cell. Mol. Neurobiol.20234331077109610.1007/s10571‑022‑01231‑635622188
    [Google Scholar]
  146. ChenD. LanG. LiR. MeiY. ShuiX. GuX. WangL. ZhangT. GanC.L. XiaY. HuL. TianY. ZhangM. LeeT.H. Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer’s disease.Transl. Neurodegener.20221112710.1186/s40035‑022‑00302‑435527277
    [Google Scholar]
  147. TeraoI. KodamaW. Comparative efficacy, tolerability, and acceptability of donanemab, lecanemab, aducanumab, melatonin, and aerobic exercise for a short time on cognitive function in mild cognitive impairment and mild Alzheimer’s disease: A systematic review and network meta-analysis.J. Alzheimers Dis.202498382583510.3233/JAD‑23091138461503
    [Google Scholar]
/content/journals/cn/10.2174/011570159X361867250313073624
Loading
/content/journals/cn/10.2174/011570159X361867250313073624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test