Skip to content
2000
Volume 23, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Microglia are the innate immune cells of the brain. Recent single cell and nucleus sequencing along with other omics technologies are leading the way for new discoveries related to microglial function and diversity. The Nogo-signaling system is a prime target for investigation with these tools as it has previously been neglected in microglia. The Nogo-signaling system consists of approximately 20 proteins, including ligands, receptors, co-receptors, and endogenous inhibitors known for their neuronal plasticity restricting properties RhoA and ROCK1/ROCK2 activation, and have recently been implicated in microglial function. Here, we explore expression patterns of Nogo-family genes in the mouse and human brain. In mice, we focus on brain cell type enrichment, patterns of expression in microglia from embryonic stages to adulthood, sex differences, and changes in expression in acute and chronic inflammatory contexts from publicly available RNAseq and RiboTag translational profiling datasets. We identified differential expression of Nogo-family genes across age, sex, and disease/injury in mice. To analyze human microglia, we utilize a new tool, the , to aggregate 21 single cell sequencing datasets of human brain cells in Alzheimer’s (AD) and control patients. In humans, is highly enriched in human AD microglia, a previously undescribed finding. We used (TACA) to further verify if this enrichment correlates to disease state, severity of human AD diagnosis, or sex of patients. The current work provides a comprehensive analysis of Nogo-family genes in microglia and identifies as a potential therapeutic target for AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X359944250722061312
2025-07-30
2025-12-09
Loading full text...

Full text loading...

References

  1. BavelierD. LeviD.M. LiR.W. DanY. HenschT.K. Removing brakes on adult brain plasticity: From molecular to behavioral interventions.J. Neurosci.20103045149641497110.1523/JNEUROSCI.4812‑10.2010 21068299
    [Google Scholar]
  2. FeldmanD.E. Synaptic mechanisms for plasticity in neocortex.Annu. Rev. Neurosci.2009321335510.1146/annurev.neuro.051508.135516 19400721
    [Google Scholar]
  3. GrutzendlerJ. KasthuriN. GanW.B. Long-term dendritic spine stability in the adult cortex.Nature2002420691781281610.1038/nature01276 12490949
    [Google Scholar]
  4. McKerracherL. WintonM.J. Nogo on the go.Neuron200236334534810.1016/s0896‑6273(02)01018‑8
    [Google Scholar]
  5. DoddD.A. NiederoestB. BloechlingerS. DupuisL. LoefflerJ.P. SchwabM.E. Nogo-A, -B, and -C are found on the cell surface and interact together in many different cell types.J. Biol. Chem.200528013124941250210.1074/jbc.M411827200 15640160
    [Google Scholar]
  6. MironovaY.A. GigerR.J. Where no synapses go: Gatekeepers of circuit remodeling and synaptic strength.Trends Neurosci.201336636337310.1016/j.tins.2013.04.003 23642707
    [Google Scholar]
  7. KarlssonT.E. WellfeltK. OlsonL. Spatiotemporal and long lasting modulation of 11 key nogo signaling genes in response to strong neuroexcitation.Front. Mol. Neurosci.2017109410.3389/fnmol.2017.00094 28442990
    [Google Scholar]
  8. KempfA. TewsB. ArztM.E. WeinmannO. ObermairF.J. PernetV. ZagrebelskyM. DelekateA. IobbiC. ZemmarA. RisticZ. GulloM. SpiesP. DoddD. GygaxD. KorteM. SchwabM.E. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity.PLoS Biol.2014121100176310.1371/journal.pbio.1001763 24453941
    [Google Scholar]
  9. FujitaY. YamashitaT. Axon growth inhibition by RhoA/ROCK in the central nervous system.Front. Neurosci.2014833810.3389/fnins.2014.00338 25374504
    [Google Scholar]
  10. WikströmK. KavanaghD.J. ReidH.M. KinsellaB.T. Differential regulation of RhoA-mediated signaling by the TPα and TPβ isoforms of the human thromboxane A2 receptor: Independent modulation of TPα signaling by prostacyclin and nitric oxide.Cell. Signal.20082081497151210.1016/j.cellsig.2008.04.006 18502100
    [Google Scholar]
  11. ShiJ. WuX. SurmaM. VemulaS. ZhangL. YangY. KapurR. WeiL. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment.Cell Death Dis.201342e483e48310.1038/cddis.2013.10 23392171
    [Google Scholar]
  12. ZhouX. ZhengY. Cell type-specific signaling function of RhoA GTPase: Lessons from mouse gene targeting.J. Biol. Chem.201328851361793618810.1074/jbc.R113.515486 24202176
    [Google Scholar]
  13. BellenguezC. KüçükaliF. JansenI.E. KleineidamL. Moreno-GrauS. AminN. NajA.C. Campos-MartinR. Grenier-BoleyB. AndradeV. HolmansP.A. BolandA. DamotteV. van der LeeS.J. CostaM.R. KuulasmaaT. YangQ. de RojasI. BisJ.C. YaqubA. ProkicI. ChapuisJ. AhmadS. GiedraitisV. AarslandD. Garcia-GonzalezP. AbdelnourC. Alarcón-MartínE. AlcoleaD. AlegretM. AlvarezI. ÁlvarezV. ArmstrongN.J. TsolakiA. AntúnezC. AppollonioI. ArcaroM. ArchettiS. PastorA.A. ArosioB. AthanasiuL. BaillyH. BanajN. BaqueroM. BarralS. BeiserA. PastorA.B. BelowJ.E. BenchekP. BenussiL. BerrC. BesseC. BessiV. BinettiG. BizarroA. BlesaR. BoadaM. BoerwinkleE. BorroniB. BoschiS. BossùP. BråthenG. BresslerJ. BresnerC. BrodatyH. BrookesK.J. BruscoL.I. Buiza-RuedaD. BûrgerK. BurholtV. BushW.S. CaleroM. CantwellL.B. CheneG. ChungJ. CuccaroM.L. CarracedoÁ. CecchettiR. Cervera-CarlesL. CharbonnierC. ChenH.H. ChillottiC. CicconeS. ClaassenJ.A.H.R. ClarkC. ContiE. Corma-GómezA. CostantiniE. CustoderoC. DaianD. DalmassoM.C. DanieleA. DardiotisE. DartiguesJ.F. de DeynP.P. de Paiva LopesK. de WitteL.D. DebetteS. DeckertJ. del SerT. DenningN. DeStefanoA. DichgansM. Diehl-SchmidJ. Diez-FairenM. RossiP.D. DjurovicS. DuronE. DüzelE. DufouilC. EiriksdottirG. EngelborghsS. Escott-PriceV. EspinosaA. EwersM. FaberK.M. FabrizioT. NielsenS.F. FardoD.W. FarottiL. FenoglioC. Fernández-FuertesM. FerrariR. FerreiraC.B. FerriE. FinB. FischerP. FladbyT. FließbachK. FongangB. FornageM. ForteaJ. ForoudT.M. FostinelliS. FoxN.C. Franco-MacíasE. BullidoM.J. Frank-GarcíaA. FroelichL. Fulton-HowardB. GalimbertiD. García-AlbercaJ.M. García-GonzálezP. Garcia-MadronaS. Garcia-RibasG. GhidoniR. GieglingI. GiorgioG. GoateA.M. GoldhardtO. Gomez-FonsecaD. González-PérezA. GraffC. GrandeG. GreenE. GrimmerT. GrünblattE. GruninM. GudnasonV. Guetta-BaranesT. HaapasaloA. HadjigeorgiouG. HainesJ.L. Hamilton-NelsonK.L. HampelH. HanonO. HardyJ. HartmannA.M. HausnerL. HarwoodJ. Heilmann-HeimbachS. HelisalmiS. HenekaM.T. HernándezI. HerrmannM.J. HoffmannP. HolmesC. HolstegeH. VilasR.H. HulsmanM. HumphreyJ. BiesselsG.J. JianX. JohanssonC. JunG.R. KastumataY. KauweJ. KehoeP.G. KilanderL. StåhlbomA.K. KivipeltoM. KoivistoA. KornhuberJ. KosmidisM.H. KukullW.A. KuksaP.P. KunkleB.W. KuzmaA.B. LageC. LaukkaE.J. LaunerL. LauriaA. LeeC.Y. LehtisaloJ. LerchO. LleóA. LongstrethW. LopezO. de MunainA.L. LoveS. LöwemarkM. LuckcuckL. LunettaK.L. MaY. MacíasJ. MacLeodC.A. MaierW. MangialascheF. SpallazziM. MarquiéM. MarshallR. MartinE.R. MontesA.M. RodríguezC.M. MasulloC. MayeuxR. MeadS. MecocciP. MedinaM. MeggyA. MehrabianS. MendozaS. Menéndez-GonzálezM. MirP. MoebusS. MolM. Molina-PorcelL. MontrrealL. MorelliL. MorenoF. MorganK. MosleyT. NöthenM.M. MuchnikC. MukherjeeS. NacmiasB. NganduT. NicolasG. NordestgaardB.G. OlasoR. OrellanaA. OrsiniM. OrtegaG. PadovaniA. PaoloC. PapenbergG. ParnettiL. PasquierF. PastorP. PelosoG. Pérez-CordónA. Pérez-TurJ. PericardP. PetersO. PijnenburgY.A.L. PinedaJ.A. Piñol-RipollG. PisanuC. PolakT. PoppJ. PosthumaD. PrillerJ. PuertaR. QuenezO. QuintelaI. ThomassenJ.Q. RábanoA. RaineroI. RajabliF. RamakersI. RealL.M. ReindersM.J.T. ReitzC. Reyes-DumeyerD. RidgeP. Riedel-HellerS. RiedererP. RobertoN. Rodriguez-RodriguezE. RongveA. AllendeI.R. Rosende-RocaM. RoyoJ.L. RubinoE. RujescuD. SáezM.E. SakkaP. SaltvedtI. SanabriaÁ. Sánchez-ArjonaM.B. Sanchez-GarciaF. JuanP.S. Sánchez-ValleR. SandoS.B. SarnowskiC. SatizabalC.L. ScamosciM. ScarmeasN. ScarpiniE. ScheltensP. ScherbaumN. SchererM. SchmidM. SchneiderA. SchottJ.M. SelbækG. SeripaD. SerranoM. ShaJ. ShadrinA.A. SkrobotO. SliferS. SnijdersG.J.L. SoininenH. SolfrizziV. SolomonA. SongY. SorbiS. Sotolongo-GrauO. SpallettaG. SpottkeA. SquassinaA. StordalE. TartanJ.P. TárragaL. TesíN. ThalamuthuA. ThomasT. TostoG. TraykovL. TremolizzoL. Tybjærg-HansenA. UitterlindenA. UllgrenA. UlsteinI. ValeroS. ValladaresO. BroeckhovenC.V. VanceJ. VardarajanB.N. van der LugtA. DongenJ.V. van RooijJ. van SwietenJ. VandenbergheR. VerheyF. VidalJ.S. VogelgsangJ. VyhnalekM. WagnerM. WallonD. WangL.S. WangR. WeinholdL. WiltfangJ. WindleG. WoodsB. YannakouliaM. ZareH. ZhaoY. ZhangX. ZhuC. ZulaicaM. LaczoJ. MatoskaV. SerpenteM. AssognaF. PirasF. PirasF. CiulloV. ShofanyJ. FerrareseC. AndreoniS. SalaG. ZoiaC.P. ZompoM.D. BenussiA. BastianiP. TakaloM. NatunenT. LaatikainenT. TuomilehtoJ. AntikainenR. StrandbergT. LindströmJ. PeltonenM. AbrahamR. Al-ChalabiA. BassN.J. BrayneC. BrownK.S. CollingeJ. CraigD. DeloukasP. FoxN. GerrishA. GillM. GwilliamR. HaroldD. HollingworthP. JohnstonJ.A. JonesL. LawlorB. LivingstonG. LovestoneS. LuptonM. LynchA. MannD. McGuinnessB. McQuillinA. O’DonovanM.C. OwenM.J. PassmoreP. PowellJ.F. ProitsiP. RossorM. ShawC.E. SmithA.D. GurlingH. ToddS. MummeryC. RyanN. LacidognaG. Adarmes-GómezA. MauleónA. PanchoA. GailhajenetA. LafuenteA. Macias-GarcíaD. MartínE. PelejàE. CarrilloF. MerlínI.S. Garrote-EspinaL. VargasL. Carrion-ClaroM. MarínM. LabradorM. BuendiaM. AlonsoM.D. GuitartM. MorenoM. IbarriaM. PeriñánM. AguileraN. Gómez-GarreP. CañabateP. EscuelaR. Pineda-SánchezR. Vigo-OrtegaR. JesúsS. PrecklerS. Rodrigo-HerreroS. DiegoS. VaccaA. RovetaF. SalvadoriN. ChipiE. BoeckerH. LaskeC. PerneczkyR. AnastasiouC. JanowitzD. MalikR. AnastasiouA. ParveenK. LageC. López-GarcíaS. AntonellA. MihovaK.Y. BelezhanskaD. WeberH. KochenS. SolisP. MedelN. LissoJ. SevillanoZ. PolitisD.G. CoresV. CuestaC. OrtizC. BachaJ.I. RiosM. SaenzA. AbalosM.S. KohlerE. PalacioD.L. EtcheparebordaI. KohlerM. NovackG. PrestiaF.A. GaleanoP. CastañoE.M. GermaniS. TosoC.R. RojoM. InginoC. MangoneC. RubinszteinD.C. TeipelS. FievetN. DeramerourtV. ForsellC. ThonbergH. BjerkeM. RoeckE.D. Martínez-LarradM.T. OlivarN. AguileraN. CanoA. CañabateP. MaciasJ. MaroñasO. Nuñez-LlavesR. OlivéC. PelejáE. Adarmes-GómezA.D. AlonsoM.D. Amer-FerrerG. AntequeraM. BurgueraJ.A. CarrilloF. Carrión-ClaroM. CasajerosM.J. Martinez de PancorboM. EscuelaR. Garrote-EspinaL. Gómez-GarreP. HevillaS. JesúsS. EspinosaM.A.L. LegazA. López-GarcíaS. Macias-GarcíaD. ManzanaresS. MarínM. Marín-MuñozJ. MarínT. MartínezB. MartínezV. Martínez-Lage ÁlvarezP. IriarteM.M. Periñán-TocinoM.T. Pineda-SánchezR. Real de AsúaD. RodrigoS. SastreI. VicenteM.P. Vigo-OrtegaR. VivancosL. EpelbaumJ. HannequinD. campion, D.; Deramecourt, V.; Tzourio, C.; Brice, A.; Dubois, B.; Williams, A.; Thomas, C.; Davies, C.; Nash, W.; Dowzell, K.; Morales, A.C.; Bernardo-Harrington, M.; Turton, J.; Lord, J.; Brown, K.; Vardy, E.; Fisher, E.; Warren, J.D.; Rossor, M.; Ryan, N.S.; Guerreiro, R.; Uphill, J.; Bass, N.; Heun, R.; Kölsch, H.; Schürmann, B.; Lacour, A.; Herold, C.; Johnston, J.A.; Passmore, P.; Powell, J.; Patel, Y.; Hodges, A.; Becker, T.; Warden, D.; Wilcock, G.; Clarke, R.; Deloukas, P.; Ben-Shlomo, Y.; Hooper, N.M.; Pickering-Brown, S.; Sussams, R.; Warner, N.; Bayer, A.; Heuser, I.; Drichel, D.; Klopp, N.; Mayhaus, M.; Riemenschneider, M.; Pinchler, S.; Feulner, T.; Gu, W.; van den Bussche, H.; Hüll, M.; Frölich, L.; Wichmann, H-E.; Jöckel, K-H.; O’Donovan, M.; Owen, M.; Bahrami, S.; Bosnes, I.; Selnes, P.; Bergh, S.; Palotie, A.; Daly, M.; Jacob, H.; Matakidou, A.; Runz, H.; John, S.; Plenge, R.; McCarthy, M.; Hunkapiller, J.; Ehm, M.; Waterworth, D.; Fox, C.; Malarstig, A.; Klinger, K.; Call, K.; Behrens, T.; Loerch, P.; Mäkelä, T.; Kaprio, J.; Virolainen, P.; Pulkki, K.; Kilpi, T.; Perola, M.; Partanen, J.; Pitkäranta, A.; Kaarteenaho, R.; Vainio, S.; Turpeinen, M.; Serpi, R.; Laitinen, T.; Mäkelä, J.; Kosma, V-M.; Kujala, U.; Tuovila, O.; Hendolin, M.; Pakkanen, R.; Waring, J.; Riley-Gillis, B.; Liu, J.; Biswas, S.; Diogo, D.; Marshall, C.; Hu, X.; Gossel, M.; Graham, R.; Cummings, B.; Ripatti, S.; Schleutker, J.; Arvas, M.; Carpén, O.; Hinttala, R.; Kettunen, J.; Mannermaa, A.; Laukkanen, J.; Julkunen, V.; Remes, A.; Kälviäinen, R.; Peltola, J.; Tienari, P.; Rinne, J.; Ziemann, A.; Waring, J.; Esmaeeli, S.; Smaoui, N.; Lehtonen, A.; Eaton, S.; Lahdenperä, S.; van Adelsberg, J.; Michon, J.; Kerchner, G.; Bowers, N.; Teng, E.; Eicher, J.; Mehta, V.; Gormley, P.; Linden, K.; Whelan, C.; Xu, F.; Pulford, D.; Färkkilä, M.; Pikkarainen, S.; Jussila, A.; Blomster, T.; Kiviniemi, M.; Voutilainen, M.; Georgantas, B.; Heap, G.; Rahimov, F.; Usiskin, K.; Lu, T.; Oh, D.; Kalpala, K.; Miller, M.; McCarthy, L.; Eklund, K.; Palomäki, A.; Isomäki, P.; Pirilä, L.; Kaipiainen-Seppänen, O.; Huhtakangas, J.; Lertratanakul, A.; Hochfeld, M.; Bing, N.; Gordillo, J.E.; Mars, N.; Pelkonen, M.; Kauppi, P.; Kankaanranta, H.; Harju, T.; Close, D.; Greenberg, S.; Chen, H.; Betts, J.; Ghosh, S.; Salomaa, V.; Niiranen, T.; Juonala, M.; Metsärinne, K.; Kähönen, M.; Junttila, J.; Laakso, M.; Pihlajamäki, J.; Sinisalo, J.; Taskinen, M-R.; Tuomi, T.; Challis, B.; Peterson, A.; Chu, A.; Parkkinen, J.; Muslin, A.; Joensuu, H.; Meretoja, T.; Aaltonen, L.; Mattson, J.; Auranen, A.; Karihtala, P.; Kauppila, S.; Auvinen, P.; Elenius, K.; Popovic, R.; Schutzman, J.; Loboda, A.; Chhibber, A.; Lehtonen, H.; McDonough, S.; Crohns, M.; Kulkarni, D.; Kaarniranta, K.; Turunen, J.A.; Ollila, T.; Seitsonen, S.; Uusitalo, H.; Aaltonen, V.; Uusitalo-Järvinen, H.; Luodonpää, M.; Hautala, N.; Loomis, S.; Strauss, E.; Chen, H.; Podgornaia, A.; Hoffman, J.; Tasanen, K.; Huilaja, L.; Hannula-Jouppi, K.; Salmi, T.; Peltonen, S.; Koulu, L.; Harvima, I.; Wu, Y.; Choy, D.; Pussinen, P.; Salminen, A.; Salo, T.; Rice, D.; Nieminen, P.; Palotie, U.; Siponen, M.; Suominen, L.; Mäntylä, P.; Gursoy, U.; Anttonen, V.; Sipilä, K.; Davis, J.W.; Quarless, D.; Petrovski, S.; Wigmore, E.; Chen, C-Y.; Bronson, P.; Tsai, E.; Huang, Y.; Maranville, J.; Shaikho, E.; Mohammed, E.; Wadhawan, S.; Kvikstad, E.; Caliskan, M.; Chang, D.; Bhangale, T.; Pendergrass, S.; Holzinger, E.; Chen, X.; Hedman, Å.; King, K.S.; Wang, C.; Xu, E.; Auge, F.; Chatelain, C.; Rajpal, D.; Liu, D.; Call, K.; Xia, T.; Brauer, M.; Kurki, M.; Karjalainen, J.; Havulinna, A.; Jalanko, A.; Palta, P.; della Briotta Parolo, P.; Zhou, W.; Lemmelä, S.; Rivas, M.; Harju, J.; Lehisto, A.; Ganna, A.; Llorens, V.; Laivuori, H.; Rüeger, S.; Niemi, M.E.; Tukiainen, T.; Reeve, M.P.; Heyne, H.; Palin, K.; Garcia-Tabuenca, J.; Siirtola, H.; Kiiskinen, T.; Lee, J.; Tsuo, K.; Elliott, A.; Kristiansson, K.; Hyvärinen, K.; Ritari, J.; Koskinen, M.; Pylkäs, K.; Kalaoja, M.; Karjalainen, M.; Mantere, T.; Kangasniemi, E.; Heikkinen, S.; Laakkonen, E.; Sipeky, C.; Heron, S.; Karlsson, A.; Jambulingam, D.; Rathinakannan, V.S.; Kajanne, R.; Aavikko, M.; Jiménez, M.G.; della Briotta Parola, P.; Lehistö, A.; Kanai, M.; Kaunisto, M.; Kilpeläinen, E.; Sipilä, T.P.; Brein, G.; Awaisa, G.; Shcherban, A.; Donner, K.; Loukola, A.; Laiho, P.; Sistonen, T.; Kaiharju, E.; Laukkanen, M.; Järvensivu, E.; Lähteenmäki, S.; Männikkö, L.; Wong, R.; Mattsson, H.; Hiekkalinna, T.; Paajanen, T.; Pärn, K.; Gracia-Tabuenca, J.; Abner, E.; Adams, P.M.; Aguirre, A.; Albert, M.S.; Albin, R.L.; Allen, M.; Alvarez, L.; Apostolova, L.G.; Arnold, S.E.; Asthana, S.; Atwood, C.S.; Ayres, G.; Baldwin, C.T.; Barber, R.C.; Barnes, L.L.; Barral, S.; Beach, T.G.; Becker, J.T.; Beecham, G.W.; Beekly, D.; Below, J.E.; Benchek, P.; Benitez, B.A.; Bennett, D.; Bertelson, J.; Margaret, F.E.; Bird, T.D.; Blacker, D.; Boeve, B.F.; Bowen, J.D.; Boxer, A.; Brewer, J.; Burke, J.R.; Burns, J.M.; Bush, W.S.; Buxbaum, J.D.; Cairns, N.J.; Cao, C.; Carlson, C.S.; Carlsson, C.M.; Carney, R.M.; Carrasquillo, M.M.; Chasse, S.; Chesselet, M-F.; Chesi, A.; Chin, N.A.; Chui, H.C.; Chung, J.; Craft, S.; Crane, P.K.; Cribbs, D.H.; Crocco, E.A.; Cruchaga, C.; Cuccaro, M.L.; Cullum, M.; Darby, E.; Davis, B.; De Jager, P.L.; DeCarli, C.; DeToledo, J.; Dick, M.; Dickson, D.W.; Dombroski, B.A.; Doody, R.S.; Duara, R.; Ertekin-Taner, N.; Evans, D.A.; Fairchild, T.J.; Fallon, K.B.; Farlow, M.R.; Farrell, J.J.; Fernandez-Hernandez, V.; Ferris, S.; Frosch, M.P.; Fulton-Howard, B.; Galasko, D.R.; Gamboa, A.; Gearing, M.; Geschwind, D.H.; Ghetti, B.; Gilbert, J.R.; Grabowski, T.J.; Graff-Radford, N.R.; Grant, S.F.A.; Green, R.C.; Growdon, J.H.; Haines, J.L.; Hakonarson, H.; Hall, J.; Hamilton, R.L.; Harari, O.; Harrell, L.E.; Haut, J.; Head, E.; Henderson, V.W.; Hernandez, M.; Hohman, T.; Honig, L.S.; Huebinger, R.M.; Huentelman, M.J.; Hulette, C.M.; Hyman, B.T.; Hynan, L.S.; Ibanez, L.; Jarvik, G.P.; Jayadev, S.; Jin, L-W.; Johnson, K.; Johnson, L.; Kamboh, M.I.; Karydas, A.M.; Katz, M.J.; Kaye, J.A.; Keene, C.D.; Khaleeq, A.; Kim, R.; Knebl, J.; Kowall, N.W.; Kramer, J.H.; Kuksa, P.P.; LaFerla, F.M.; Lah, J.J.; Larson, E.B.; Lee, C-Y.; Lee, E.B.; Lerner, A.; Leung, Y.Y.; Leverenz, J.B.; Levey, A.I.; Li, M.; Lieberman, A.P.; Lipton, R.B.; Logue, M.; Lyketsos, C.G.; Malamon, J.; Mains, D.; Marson, D.C.; Martiniuk, F.; Mash, D.C.; Masliah, E.; Massman, P.; Masurkar, A.; McCormick, W.C.; McCurry, S.M.; McDavid, A.N.; McDonough, S.; McKee, A.C.; Mesulam, M.; Mez, J.; Miller, B.L.; Miller, C.A.; Miller, J.W.; Montine, T.J.; Monuki, E.S.; Morris, J.C.; Myers, A.J.; Nguyen, T.; O’Bryant, S.; Olichney, J.M.; Ory, M.; Palmer, R.; Parisi, J.E.; Paulson, H.L.; Pavlik, V.; Paydarfar, D.; Perez, V.; Peskind, E.; Petersen, R.C.; Phillips-Cremins, J.E.; Pierce, A.; Polk, M.; Poon, W.W.; Potter, H.; Qu, L.; Quiceno, M.; Quinn, J.F.; Raj, A.; Raskind, M.; Reiman, E.M.; Reisberg, B.; Reisch, J.S.; Ringman, J.M.; Roberson, E.D.; Rodriguear, M.; Rogaeva, E.; Rosen, H.J.; Rosenberg, R.N.; Royall, D.R.; Sager, M.A.; Sano, M.; Saykin, A.J.; Schneider, J.A.; Schneider, L.S.; Seeley, W.W.; Slifer, S.H.; Small, S.; Smith, A.G.; Smith, J.P.; Song, Y.E.; Sonnen, J.A.; Spina, S.; George-Hyslop, P.S.; Stern, R.A.; Stevens, A.B.; Strittmatter, S.M.; Sultzer, D.; Swerdlow, R.H.; Tanzi, R.E.; Tilson, J.L.; Trojanowski, J.Q.; Troncoso, J.C.; Tsuang, D.W.; Valladares, O.; Van Deerlin, V.M.; van Eldik, L.J.; Vassar, R.; Vinters, H.V.; Vonsattel, J-P.; Weintraub, S.; Welsh-Bohmer, K.A.; Whitehead, P.L.; Wijsman, E.M.; Wilhelmsen, K.C.; Williams, B.; Williamson, J.; Wilms, H.; Wingo, T.S.; Wisniewski, T.; Woltjer, R.L.; Woon, M.; Wright, C.B.; Wu, C-K.; Younkin, S.G.; Yu, C-E.; Yu, L.; Zhang, Y.; Zhao, Y.; Zhu, X.; Adams, H.; Akinyemi, R.O.; Ali, M.; Armstrong, N.; Aparicio, H.J.; Bahadori, M.; Becker, J.T.; Breteler, M.; Chasman, D.; Chauhan, G.; Comic, H.; Cox, S.; Cupples, A.L.; Davies, G.; DeCarli, C.S.; Duperron, M-G.; Dupuis, J.; Evans, T.; Fan, F.; Fitzpatrick, A.; Fohner, A.E.; Ganguli, M.; Geerlings, M.; Glatt, S.J.; Gonzalez, H.M.; Goss, M.; Grabe, H.; Habes, M.; Heckbert, S.R.; Hofer, E.; Hong, E.; Hughes, T.; Kautz, T.F.; Knol, M.; Kremen, W.; Lacaze, P.; Lahti, J.; Grand, Q.L.; Litkowski, E.; Li, S.; Liu, D.; Liu, X.; Loitfelder, M.; Manning, A.; Maillard, P.; Marioni, R.; Mazoyer, B.; van Lent, D.M.; Mei, H.; Mishra, A.; Nyquist, P.; O’Connell, J.; Patel, Y.; Paus, T.; Pausova, Z.; Raikkonen-Talvitie, K.; Riaz, M.; Rich, S.; Rotter, J.; Romero, J.; Roshchupkin, G.; Saba, Y.; Sargurupremraj, M.; Schmidt, H.; Schmidt, R.; Shulman, J.M.; Smith, J.; Sekhar, H.; Rajula, R.; Shin, J.; Simino, J.; Sliz, E.; Teumer, A.; Thomas, A.; Tin, A.; Tucker-Drob, E.; Vojinovic, D.; Wang, Y.; Weinstein, G.; Williams, D.; Wittfeld, K.; Yanek, L.; Yang, Y.; Farrer, L.A.; Psaty, B.M.; Ghanbari, M.; Raj, T.; Sachdev, P.; Mather, K.; Jessen, F.; Ikram, M.A.; de Mendonça, A.; Hort, J.; Tsolaki, M.; Pericak-Vance, M.A.; Amouyel, P.; Williams, J.; Frikke-Schmidt, R.; Clarimon, J.; Deleuze, J-F.; Rossi, G.; Seshadri, S.; Andreassen, O.A.; Ingelsson, M.; Hiltunen, M.; Sleegers, K.; Schellenberg, G.D.; van Duijn, C.M.; Sims, R.; van der Flier, W.M.; Ruiz, A.; Ramirez, A.; Lambert, J-C. New insights into the genetic etiology of Alzheimer’s disease and related dementias.Nat. Genet.202254441243610.1038/s41588‑022‑01024‑z 35379992
    [Google Scholar]
  14. DiSabatoD.J. QuanN. GodboutJ.P. Neuroinflammation: The devil is in the details.J. Neurochem.2016139Suppl. 213615310.1111/jnc.13607
    [Google Scholar]
  15. FangY. YanJ. LiC. ZhouX. YaoL. PangT. YanM. ZhangL. MaoL. LiaoH. The Nogo/Nogo receptor (NgR) signal is involved in neuroinflammation through the regulation of microglial inflammatory activation.J. Biol. Chem.201529048289012891410.1074/jbc.M115.678326 26472924
    [Google Scholar]
  16. ZhangN. CuiY. LiY. MiY. A novel role of nogo proteins: Regulating macrophages in inflammatory disease.Cell. Mol. Neurobiol.20224282439244810.1007/s10571‑021‑01124‑0 34224050
    [Google Scholar]
  17. GlotfeltyE.J. Tovar-y-RomoL.B. HsuehS.C. TweedieD. LiY. HarveyB.K. HofferB.J. KarlssonT.E. OlsonL. GreigN.H. The RhoA-ROCK1/ROCK2 pathway exacerbates inflammatory signaling in immortalized and primary microglia.Cells20231210136710.3390/cells12101367 37408199
    [Google Scholar]
  18. GlotfeltyE.J. HsuehS-C. ClaybourneQ. Microglial Nogo delays recovery following traumatic brain injury in mice.Glia202371102473249410.1002/glia.24436
    [Google Scholar]
  19. XieY. JiangL. ZhangY. DengY. YangH. HeQ. ZhouY. ZhouC. LuoY. LiangX. WangJ. HuangD. ZhuL. TangY. ChaoF. Antagonizing LINGO-1 reduces activated microglia and alleviates dendritic spine loss in the hippocampus of APP/PS1 transgenic mice.Neurosci. Lett.202482013761210.1016/j.neulet.2023.137612 38142924
    [Google Scholar]
  20. YangH. JiangL. ZhangY. LiangX. TangJ. HeQ. LuoY.M. ZhouC.N. ZhuL. ZhangS.S. XiaoK. ZhuP.L. WangJ. LiY. ChaoF.L. TangY. Anti‐LINGO‐1 antibody treatment alleviates cognitive deficits and promotes maturation of oligodendrocytes in the hippocampus of APP/PS1 mice.J. Comp. Neurol.2022530101606162110.1002/cne.25299 35014704
    [Google Scholar]
  21. WangX.L. LiL. Cell type-specific potential pathogenic genes and functional pathways in Alzheimer’s Disease.BMC Neurol.202121138110.1186/s12883‑021‑02407‑1 34600516
    [Google Scholar]
  22. MathysH. AdaikkanC. GaoF. YoungJ.Z. ManetE. HembergM. De JagerP.L. RansohoffR.M. RegevA. TsaiL.H. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution.Cell Rep.201721236638010.1016/j.celrep.2017.09.039 29020624
    [Google Scholar]
  23. BelonwuS.A. LiY. BunisD. RaoA.A. SolsbergC.W. TangA. FragiadakisG.K. DubalD.B. OskotskyT. SirotaM. Sex-stratified single-cell rna-seq analysis identifies sex-specific and cell type-specific transcriptional responses in alzheimer’s disease across two brain regions.Mol. Neurobiol.202259127629310.1007/s12035‑021‑02591‑8 34669146
    [Google Scholar]
  24. SatohJ. TabunokiH. YamamuraT. ArimaK. KonnoH. TROY and LINGO‐1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions.Neuropathol. Appl. Neurobiol.20073319910710.1111/j.1365‑2990.2006.00787.x 17239012
    [Google Scholar]
  25. WangZ. PanJ.P. GengJ. LvS. ChenG. FangN. ZhangZ. LiJ. XuX. WangR. ZhengQ. YanL. ChenG. XiaoF. Nogo-A drives alzheimer’s disease progression by inducing tauopathy vulnerability.Aging Dis.202416211991215 38916730
    [Google Scholar]
  26. GonçalvesA. LinC.M. MuthusamyA. Fontes-RibeiroC. AmbrósioA.F. AbcouwerS.F. FernandesR. AntonettiD.A. Protective effect of a glp-1 analog on ischemia-reperfusion induced blood–retinal barrier breakdown and inflammation.Invest. Ophthalmol. Vis. Sci.20165762584259210.1167/iovs.15‑19006 27163772
    [Google Scholar]
  27. AbdullaS. AevermannB. AssisP. BadajozS. BellS.M. BezziE. CakirB. ChafferJ. ChambersS. CherryJ.M. ChiT. ChienJ. DormanL. Garcia-NietoP. GloriaN. HastieM. HegemanD. HiltonJ. HuangT. InfeldA. IstrateA.M. JelicI. KatsuyaK. KimY.J. LiangK. LinM. LombardoM. MarshallB. MartinB. McDadeF. MegillC. PatelN. PredeusA. RaymorB. RobatmiliB. RogersD. RutherfordE. SadgatD. ShinA. SmallC. SmithT. SridharanP. TarashanskyA. TavaresN. ThomasH. TolopkoA. UriskoM. YanJ. YeretssianG. ZamanianJ. ManiA. CoolJ. CarrA.CZ CELLxGENE Discover: A single-cell data platform for scalable exploration, analysis and modeling of aggregated data.Nucleic Acids Res.202553D1D886D90010.1093/nar/gkae1142 39607691
    [Google Scholar]
  28. ZhouY. XuJ. HouY. BekrisL. LeverenzJ.B. PieperA.A. CummingsJ. ChengF. The Alzheimer’s Cell Atlas (TACA): A single‐cell molecular map for translational therapeutics accelerator in Alzheimer’s disease.Alzheimers Dement.2022811235010.1002/trc2.12350 36254161
    [Google Scholar]
  29. LengK. LiE. EserR. PiergiesA. SitR. TanM. NeffN. LiS.H. RodriguezR.D. SuemotoC.K. LeiteR.E.P. EhrenbergA.J. PasqualucciC.A. SeeleyW.W. SpinaS. HeinsenH. GrinbergL.T. KampmannM. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease.Nat. Neurosci.202124227628710.1038/s41593‑020‑00764‑7 33432193
    [Google Scholar]
  30. GrubmanA. ChewG. OuyangJ.F. SunG. ChooX.Y. McLeanC. SimmonsR.K. BuckberryS. Vargas-LandinD.B. PoppeD. PfluegerJ. ListerR. RackhamO.J.L. PetrettoE. PoloJ.M. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation.Nat. Neurosci.201922122087209710.1038/s41593‑019‑0539‑4 31768052
    [Google Scholar]
  31. ZhangY. ChenK. SloanS.A. BennettM.L. ScholzeA.R. O’KeeffeS. PhatnaniH.P. GuarnieriP. CanedaC. RuderischN. DengS. LiddelowS.A. ZhangC. DanemanR. ManiatisT. BarresB.A. WuJ.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex.J. Neurosci.20143436119291194710.1523/JNEUROSCI.1860‑14.2014 25186741
    [Google Scholar]
  32. BennettM.L. BennettF.C. LiddelowS.A. AjamiB. ZamanianJ.L. FernhoffN.B. MulinyaweS.B. BohlenC.J. AdilA. TuckerA. WeissmanI.L. ChangE.F. LiG. GrantG.A. Hayden GephartM.G. BarresB.A. New tools for studying microglia in the mouse and human CNS.Proc. Natl. Acad. Sci. USA201611312E1738E174610.1073/pnas.1525528113 26884166
    [Google Scholar]
  33. CahoyJ.D. EmeryB. KaushalA. FooL.C. ZamanianJ.L. ChristophersonK.S. XingY. LubischerJ.L. KriegP.A. KrupenkoS.A. ThompsonW.J. BarresB.A. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function.J. Neurosci.200828126427810.1523/JNEUROSCI.4178‑07.2008 18171944
    [Google Scholar]
  34. DugasJ.C. TaiY.C. SpeedT.P. NgaiJ. BarresB.A. Functional genomic analysis of oligodendrocyte differentiation.J. Neurosci.20062643109671098310.1523/JNEUROSCI.2572‑06.2006 17065439
    [Google Scholar]
  35. SanzE. YangL. SuT. MorrisD.R. McKnightG.S. AmieuxP.S. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues.Proc. Natl. Acad. Sci. USA200910633139391394410.1073/pnas.0907143106 19666516
    [Google Scholar]
  36. KangS.S. EbbertM.T.W. BakerK.E. CookC. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau.J. Exp. Med.201821592235224510.1084/jem.20180653
    [Google Scholar]
  37. JäkelS. AgirreE. Mendanha FalcãoA. van BruggenD. LeeK.W. KnueselI. MalhotraD. ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered human oligodendrocyte heterogeneity in multiple sclerosis.Nature2019566774554354710.1038/s41586‑019‑0903‑2 30747918
    [Google Scholar]
  38. OlahM. PatrickE. VillaniA.C. XuJ. WhiteC.C. RyanK.J. PiehowskiP. KapasiA. NejadP. CimpeanM. ConnorS. YungC.J. FrangiehM. McHenryA. ElyamanW. PetyukV. SchneiderJ.A. BennettD.A. De JagerP.L. BradshawE.M. A transcriptomic atlas of aged human microglia.Nat. Commun.20189153910.1038/s41467‑018‑02926‑5 29416036
    [Google Scholar]
  39. SeekerL.A. Bestard-CucheN. JäkelS. KazakouN.L. BøstrandS.M.K. WagstaffL.J. Cholewa-WaclawJ. KilpatrickA.M. Van BruggenD. KabbeM. Baldivia PohlF. MoslehiZ. HendersonN.C. VallejosC.A. La MannoG. Castelo-BrancoG. WilliamsA. Brain matters: Unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function.Acta Neuropathol. Commun.20231118410.1186/s40478‑023‑01568‑z 37217978
    [Google Scholar]
  40. AldingerK.A. ThomsonZ. PhelpsI.G. HaldipurP. DengM. TimmsA.E. HiranoM. SantpereG. RocoC. RosenbergA.B. Lorente-GaldosB. GuldenF.O. O’DayD. OvermanL.M. LisgoS.N. AlexandreP. SestanN. DohertyD. DobynsW.B. SeeligG. GlassI.A. MillenK.J. Spatial and cell type transcriptional landscape of human cerebellar development.Nat. Neurosci.20212481163117510.1038/s41593‑021‑00872‑y 34140698
    [Google Scholar]
  41. SeppM. LeissK. MuratF. OkonechnikovK. JoshiP. LeushkinE. SpänigL. MbengueN. SchneiderC. SchmidtJ. TrostN. SchauerM. KhaitovichP. LisgoS. PalkovitsM. GiereP. KutscherL.M. AndersS. Cardoso-MoreiraM. SarropoulosI. PfisterS.M. KaessmannH. Cellular development and evolution of the mammalian cerebellum.Nature2024625799678879610.1038/s41586‑023‑06884‑x 38029793
    [Google Scholar]
  42. CaoP. ChenC. LiuA. ShanQ. ZhuX. JiaC. PengX. ZhangM. FarzinpourZ. ZhouW. WangH. ZhouJ.N. SongX. WangL. TaoW. ZhengC. ZhangY. DingY.Q. JinY. XuL. ZhangZ. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines.Neuron20211091625732589.e910.1016/j.neuron.2021.06.012 34233151
    [Google Scholar]
  43. GittingsL.M. AlsopE.B. AntoneJ. SingerM. WhitsettT.G. SattlerR. Van Keuren-JensenK. Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum.Acta Neuropathol.2023146343345010.1007/s00401‑023‑02599‑5 37466726
    [Google Scholar]
  44. PhanB.N. RayM.H. XueX. FuC. FensterR.J. KohutS.J. BergmanJ. HaberS.N. McCulloughK.M. FishM.K. GlausierJ.R. SuQ. TiptonA.E. LewisD.A. FreybergZ. TsengG.C. RussekS.J. AlekseyevY. ResslerK.J. SeneyM.L. PfenningA.R. LoganR.W. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder.Nat. Commun.202415187810.1038/s41467‑024‑45165‑7 38296993
    [Google Scholar]
  45. BhaduriA. Sandoval-EspinosaC. Otero-GarciaM. OhI. YinR. EzeU.C. NowakowskiT.J. KriegsteinA.R. An atlas of cortical arealization identifies dynamic molecular signatures.Nature2021598787920020410.1038/s41586‑021‑03910‑8 34616070
    [Google Scholar]
  46. JorstadN.L. CloseJ. JohansenN. YannyA.M. BarkanE.R. TravagliniK.J. BertagnolliD. CamposJ. CasperT. CrichtonK. DeeN. DingS.L. GelfandE. GoldyJ. HirschsteinD. KiickK. KrollM. KunstM. LathiaK. LongB. MartinN. McMillenD. PhamT. RimorinC. RuizA. ShapovalovaN. ShehataS. SilettiK. SomasundaramS. SulcJ. TieuM. TorkelsonA. TungH. CallawayE.M. HofP.R. KeeneC.D. LeviB.P. LinnarssonS. MitraP.P. SmithK. HodgeR.D. BakkenT.E. LeinE.S. Transcriptomic cytoarchitecture reveals principles of human neocortex organization.Science20233826667eadf681210.1126/science.adf6812 37824655
    [Google Scholar]
  47. KamathT. AbdulraoufA. BurrisS.J. LangliebJ. GazestaniV. NadafN.M. BalderramaK. VanderburgC. MacoskoE.Z. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease.Nat. Neurosci.202225558859510.1038/s41593‑022‑01061‑1 35513515
    [Google Scholar]
  48. VelmeshevD. PerezY. YanZ. ValenciaJ.E. Castaneda-CastellanosD.R. WangL. SchirmerL. MayerS. WickB. WangS. NowakowskiT.J. ParedesM. HuangE.J. KriegsteinA.R. Single-cell analysis of prenatal and postnatal human cortical development.Science20233826667eadf083410.1126/science.adf0834 37824647
    [Google Scholar]
  49. MaS. SkaricaM. LiQ. XuC. RisgaardR.D. TebbenkampA.T.N. Mato-BlancoX. KovnerR. KrsnikŽ. de MartinX. LuriaV. Martí-PérezX. LiangD. KargerA. SchmidtD.K. Gomez-SanchezZ. QiC. GobeskeK.T. PochareddyS. DebnathA. HottmanC.J. SpurrierJ. TeoL. BoghdadiA.G. Homman-LudiyeJ. ElyJ.J. DaadiE.W. MiD. DaadiM. MarínO. HofP.R. RasinM.R. BourneJ. SherwoodC.C. SantpereG. GirgentiM.J. StrittmatterS.M. SousaA.M.M. SestanN. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex.Science20223776614eabo725710.1126/science.abo7257 36007006
    [Google Scholar]
  50. RexachJ.E. ChengY. ChenL. PolioudakisD. LinL.C. MitriV. ElkinsA. HanX. YamakawaM. YinA. CaliniD. KawaguchiR. OuJ. HuangJ. WilliamsC. RobinsonJ. GausS.E. SpinaS. LeeE.B. GrinbergL.T. VintersH. TrojanowskiJ.Q. SeeleyW.W. MalhotraD. GeschwindD.H. Cross-disorder and disease-specific pathways in dementia revealed by single-cell genomics.Cell20241872057535774.e2810.1016/j.cell.2024.08.019 39265576
    [Google Scholar]
  51. JohansenN. SomasundaramS. TravagliniK.J. YannyA.M. ShumyatcherM. CasperT. CobbsC. DeeN. EllenbogenR. FerreiraM. GoldyJ. GuzmanJ. GwinnR. HirschsteinD. JorstadN.L. KeeneC.D. KoA. LeviB.P. OjemannJ.G. PhamT. ShapovalovaN. SilbergeldD. SulcJ. TorkelsonA. TungH. SmithK. LeinE.S. BakkenT.E. HodgeR.D. MillerJ.A. Interindividual variation in human cortical cell type abundance and expression.Science20233826667eadf235910.1126/science.adf2359 37824649
    [Google Scholar]
  52. GabittoM.I. TravagliniK.J. RachleffV.M. KaplanE.S. LongB. ArizaJ. DingY. MahoneyJ.T. DeeN. GoldyJ. MeliefE.J. AgrawalA. KanaO. ZhenX. BarlowS.T. BrounerK. CamposJ. CamposJ. CarrA.J. CasperT. ChakrabartyR. ClarkM. CoolJ. DalleyR. DarvasM. DingS.L. DolbeareT. EgdorfT. EspositoL. FerrerR. FleckensteinL.E. GalaR. GaryA. GelfandE. GloeJ. GuilfordN. GuzmanJ. HirschsteinD. HoW. HuppM. JarskyT. JohansenN. KalmbachB.E. KeeneL.M. KhawandS. KilgoreM.D. KirklandA. KunstM. LeeB.R. LeytzeM. Mac DonaldC.L. MaloneJ. MaltzerZ. MartinN. McCueR. McMillenD. MenaG. MeyerdierksE. MeyersK.P. MollenkopfT. MontineM. NolanA.L. NyhusJ.K. OlsenP.A. PaclebM. PaganC.M. PeñaN. PhamT. PomC.A. PostupnaN. RimorinC. RuizA. SaldiG.A. SchantzA.M. ShapovalovaN.V. SorensenS.A. StaatsB. SullivanM. SunkinS.M. ThompsonC. TieuM. TingJ.T. TorkelsonA. TranT. Valera CuevasN.J. Walling-BellS. WangM.Q. WatersJ. WilsonA.M. XiaoM. HaynorD. GattoN.M. JayadevS. MuftiS. NgL. MukherjeeS. CraneP.K. LatimerC.S. LeviB.P. SmithK.A. CloseJ.L. MillerJ.A. HodgeR.D. LarsonE.B. GrabowskiT.J. HawrylyczM. KeeneC.D. LeinE.S. Integrated multimodal cell atlas of Alzheimer’s disease.Nat. Neurosci.202427122366238310.1038/s41593‑024‑01774‑5 39402379
    [Google Scholar]
  53. PhanA.T. XieW. ChapetonJ.I. InatiS.K. ZaghloulK.A. Dynamic patterns of functional connectivity in the human brain underlie individual memory formation.Nat. Commun.2024151896910.1038/s41467‑024‑52744‑1 39419972
    [Google Scholar]
  54. XuC. PreteM. WebbS. JardineL. StewartB.J. HooR. HeP. MeyerK.B. TeichmannS.A. Automatic cell-type harmonization and integration across Human Cell Atlas datasets.Cell20231862658765891.e2010.1016/j.cell.2023.11.026 38134877
    [Google Scholar]
  55. DharshiniS.A.P. Molecular Signatures of Resilience to Alzheimer’s Disease in Neocortical Layer 4 Neurons.bioRxiv2024
    [Google Scholar]
  56. SmedforsG. OlsonL. KarlssonT.E. A nogo-like signaling perspective from birth to adulthood and in old age: Brain expression patterns of ligands, receptors and modulators.Front. Mol. Neurosci.201811424210.3389/fnmol.2018.00042 29520216
    [Google Scholar]
  57. LiuG. NiJ. MaoL. YanM. PangT. LiaoH. Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury.Brain Res.20151627415110.1016/j.brainres.2015.09.006 26367446
    [Google Scholar]
  58. UkaiJ. ImagamaS. OhgomoriT. ItoZ. AndoK. IshiguroN. KadomatsuK. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons.Nagoya J. Med. Sci.2016783303311 27578914
    [Google Scholar]
  59. YangJ. HanY. YeW. LiuF. ZhuangK. WuG. Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury.J. Surg. Res.20131822e69e7710.1016/j.jss.2012.11.010 23207171
    [Google Scholar]
  60. HammondT.R. DufortC. Dissing-OlesenL. GieraS. YoungA. WysokerA. WalkerA.J. GergitsF. SegelM. NemeshJ. MarshS.E. SaundersA. MacoskoE. GinhouxF. ChenJ. FranklinR.J.M. PiaoX. McCarrollS.A. StevensB. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes.Immunity2019501253271.e610.1016/j.immuni.2018.11.004 30471926
    [Google Scholar]
  61. LehrmanE.K. WiltonD.K. LitvinaE.Y. WelshC.A. ChangS.T. FrouinA. WalkerA.J. HellerM.D. UmemoriH. ChenC. StevensB. CD47 protects synapses from excess microglia-mediated pruning during development.Neuron20181001120134.e610.1016/j.neuron.2018.09.017 30308165
    [Google Scholar]
  62. O’NeillP. WhalleyK. FerrettiP. Nogo and Nogo‐66 receptor in human and chick: Implications for development and regeneration.Dev. Dyn.2004231110912110.1002/dvdy.20116 15305291
    [Google Scholar]
  63. SchwabM.E. Functions of Nogo proteins and their receptors in the nervous system.Nat. Rev. Neurosci.2010111279981110.1038/nrn2936 21045861
    [Google Scholar]
  64. HuberA.B. WeinmannO. BrösamleC. OertleT. SchwabM.E. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions.J. Neurosci.20022293553356710.1523/JNEUROSCI.22‑09‑03553.2002 11978832
    [Google Scholar]
  65. WangX. ChunS.J. TreloarH. VartanianT. GreerC.A. StrittmatterS.M. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact.J. Neurosci.200222135505551510.1523/JNEUROSCI.22‑13‑05505.2002 12097502
    [Google Scholar]
  66. JeongY.H. ParkJ.S. KimD.H. KangJ.L. KimH.S. Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation.Pharmacol. Res.201711943144210.1016/j.phrs.2017.02.027 28288940
    [Google Scholar]
  67. HsuehS.C. LuoW. TweedieD. KimD.S. KimY.K. HwangI. GilJ.E. HanB.S. ChiangY.H. SelmanW. HofferB.J. GreigN.H. N-adamantyl phthalimidine: A new thalidomide-like drug that lacks cereblon binding and mitigates neuronal and synaptic loss, neuroinflammation, and behavioral deficits in traumatic brain injury and LPS challenge.ACS Pharmacol. Transl. Sci.202142980100010.1021/acsptsci.1c00042 33860215
    [Google Scholar]
  68. BohlenC.J. BennettF.C. TuckerA.F. CollinsH.Y. MulinyaweS.B. BarresB.A. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures.Neuron2017944759773.e810.1016/j.neuron.2017.04.043 28521131
    [Google Scholar]
  69. Keren-ShaulH. SpinradA. WeinerA. Matcovitch-NatanO. Dvir-SzternfeldR. UllandT.K. DavidE. BaruchK. Lara-AstaisoD. TothB. ItzkovitzS. ColonnaM. SchwartzM. AmitI. A unique microglia type associated with restricting development of Alzheimer’s disease.Cell2017169712761290.e1710.1016/j.cell.2017.05.018 28602351
    [Google Scholar]
  70. KrasemannS. MadoreC. CialicR. BaufeldC. CalcagnoN. El FatimyR. BeckersL. O’LoughlinE. XuY. FanekZ. GrecoD.J. SmithS.T. TweetG. HumulockZ. ZrzavyT. Conde-SanromanP. GaciasM. WengZ. ChenH. TjonE. MazaheriF. HartmannK. MadiA. UlrichJ.D. GlatzelM. WorthmannA. HeerenJ. BudnikB. LemereC. IkezuT. HeppnerF.L. LitvakV. HoltzmanD.M. LassmannH. WeinerH.L. OchandoJ. HaassC. ButovskyO. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases.Immunity2017473566581.e910.1016/j.immuni.2017.08.008 28930663
    [Google Scholar]
  71. BraakH. BraakE. BohlJ. Staging of Alzheimer-related cortical destruction.Eur. Neurol.199333640340810.1159/000116984 8307060
    [Google Scholar]
  72. Baya MdzombaJ. JolyS. RodriguezL. DiraniA. LassiazP. Behar-CohenF. PernetV. Nogo-A-targeting antibody promotes visual recovery and inhibits neuroinflammation after retinal injury.Cell Death Dis.202011210110.1038/s41419‑020‑2302‑x 32029703
    [Google Scholar]
  73. YangY. LiuY. WeiP. PengH. WingerR. HussainR.Z. BenL.H. CravensP.D. GockeA.R. PuttaparthiK. RackeM.K. McTigueD.M. Lovett-RackeA.E. Silencing Nogo‐A promotes functional recovery in demyelinating disease.Ann. Neurol.201067449850710.1002/ana.21935 20437585
    [Google Scholar]
  74. ZhuJ. ZhuZ. RenY. DongY. LiY. YangX. LINGO-1 shRNA protects the brain against ischemia/reperfusion injury by inhibiting the activation of NF-κB and JAK2/STAT3.Hum. Cell20213441114112210.1007/s13577‑021‑00527‑x 33830473
    [Google Scholar]
  75. HuangL.J. LiG. DingY. SunJ.H. WuT.T. ZhaoW. ZengY.S. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice.Exp. Neurol.201932011296510.1016/j.expneurol.2019.112965 31132364
    [Google Scholar]
  76. UllahH.M.A. ElfadlA.K. ParkS. KimY.D. ChungM.J. SonJ.Y. YunH.H. ParkJ.M. YimJ.H. JungS.J. ChoiY.C. ShinJ.H. KimD.S. ParkJ.K. JeongK.S. Nogo-A is critical for pro-inflammatory gene regulation in myocytes and macrophages.Cells202110228210.3390/cells10020282 33572505
    [Google Scholar]
  77. ZhuY. TongQ. YeJ. NingY. XiongY. YangM. XiaoH. LuJ. XuW. LiJ. LiQ. Nogo-B facilitates LPS-mediated immune responses by up-regulation of TLR4-signaling in macrophage RAW264.7.Cell. Physiol. Biochem.201741127428510.1159/000456094 28214833
    [Google Scholar]
  78. ZhongJ. FanS. YanZ. XiaoS. WanL. ChenC. ZhongS. LiuL. LiuJ. Effects of Nogo-A silencing on TNF- α and IL-6 secretion and TH downregulation in lipopolysaccharide-stimulated PC12 cells.BioMed Res. Int.201520151610.1155/2015/817914 26583134
    [Google Scholar]
  79. LiebscherT. SchnellL. SchnellD. SchollJ. SchneiderR. GulloM. FouadK. MirA. RauschM. KindlerD. HamersF.P.T. SchwabM.E. Nogo‐A antibody improves regeneration and locomotion of spinal cord–injured rats.Ann. Neurol.200558570671910.1002/ana.20627 16173073
    [Google Scholar]
  80. TsaiS.Y. MarkusT.M. AndrewsE.M. CheatwoodJ.L. EmerickA.J. MirA.K. SchwabM.E. KartjeG.L. Intrathecal treatment with anti-Nogo-A antibody improves functional recovery in adult rats after stroke.Exp. Brain Res.2007182226126610.1007/s00221‑007‑1067‑0 17717658
    [Google Scholar]
  81. LiS. LiuB.P. BudelS. LiM. JiB. WalusL. LiW. JirikA. RabacchiS. ChoiE. WorleyD. SahD.W.Y. PepinskyB. LeeD. ReltonJ. StrittmatterS.M. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury.J. Neurosci.20042446105111052010.1523/JNEUROSCI.2828‑04.2004 15548666
    [Google Scholar]
  82. SozmenE.G. RosenzweigS. LlorenteI.L. DiTullioD.J. MachnickiM. VintersH.V. HavtonL.A. GigerR.J. HinmanJ.D. CarmichaelS.T. Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice.Proc. Natl. Acad. Sci. USA201611352E8453E846210.1073/pnas.1615322113 27956620
    [Google Scholar]
  83. MasliahE. XieF. DayanS. RockensteinE. ManteM. AdameA. PatrickC.M. ChanA.F. ZhengB. Genetic deletion of Nogo/RTN4 ameliorates behavioral and neuropathological outcomes in amyloid precursor protein transgenic mice.Neuroscience2010169148849410.1016/j.neuroscience.2010.04.045 20433905
    [Google Scholar]
  84. NiederöstB. OertleT. FritscheJ. McKinneyR.A. BandtlowC.E. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1.J. Neurosci.20022223103681037610.1523/JNEUROSCI.22‑23‑10368.2002 12451136
    [Google Scholar]
  85. DickendesherT.L. BaldwinK.T. MironovaY.A. KoriyamaY. RaikerS.J. AskewK.L. WoodA. GeoffroyC.G. ZhengB. LiepmannC.D. KatagiriY. BenowitzL.I. GellerH.M. GigerR.J. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans.Nat. Neurosci.201215570371210.1038/nn.3070 22406547
    [Google Scholar]
  86. ZhengB. HoC. LiS. KeirsteadH. StewardO. Tessier-LavigneM. Lack of enhanced spinal regeneration in Nogo-deficient mice.Neuron200338221322410.1016/S0896‑6273(03)00225‑3 12718856
    [Google Scholar]
  87. ZemmarA. ChenC.C. WeinmannO. KastB. VajdaF. BozemanJ. IsaadN. ZuoY. SchwabM.E. Oligodendrocyte- and neuron-specific nogo-a restrict dendritic branching and spine density in the adult mouse motor cortex.Cereb. Cortex20182862109211710.1093/cercor/bhx116 28505229
    [Google Scholar]
  88. MevesJ.M. GeoffroyC.G. KimN.D. KimJ.J. ZhengB. Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury.Exp. Neurol.2018309324310.1016/j.expneurol.2018.07.013 30055160
    [Google Scholar]
  89. Fernandez-EnrightF. AndrewsJ. Lingo-1: A novel target in therapy for Alzheimer′s disease?Neural Regen. Res.2016111888910.4103/1673‑5374.175048 26981092
    [Google Scholar]
  90. ZhouY.N. JiangL. ZhangY. ZhouC.N. YangH. HeQ. WangY.Y. XiaoQ. HuangD.J. LuoY.M. TangY. ChaoF.L. Anti-LINGO-1 antibody protects neurons and synapses in the medial prefrontal cortex of APP/PS1 transgenic mice.Neurosci. Res.2023193284010.1016/j.neures.2023.02.005 36804877
    [Google Scholar]
  91. XieQ.Q. FengX. HuangY.Y. FangN. YiH. WangZ.J. CaoQ.Y. LouG.F. PanJ.P. HuY. LiF.C. ZhengQ. XiaoF. Nogo 66 promotes β amyloid protein secretion via NgR/] ROCK dependent BACE1 activation.Mol. Med. Rep.202123318810.3892/mmr.2021.11827 33495810
    [Google Scholar]
  92. PavonM.V. NavakkodeS. WongL.W. SajikumarS. Inhibition of Nogo-A rescues synaptic plasticity and associativity in APP/PS1 animal model of Alzheimer’s disease.Semin. Cell Dev. Biol.202313911112010.1016/j.semcdb.2022.04.005 35431138
    [Google Scholar]
  93. HinkleJ.J. OlschowkaJ.A. LoveT.M. WilliamsJ.P. O’BanionM.K. Cranial irradiation mediated spine loss is sex-specific and complement receptor-3 dependent in male mice.Sci. Rep.201991188991889910.1038/s41598‑019‑55366‑6 31827187
    [Google Scholar]
  94. VillaA. GelosaP. CastiglioniL. CiminoM. RizziN. PepeG. LolliF. MarcelloE. SironiL. VegetoE. MaggiA. Sex-Specific Features of Microglia from Adult Mice.Cell Rep.201823123501351110.1016/j.celrep.2018.05.048 29924994
    [Google Scholar]
  95. BeamC.R. KaneshiroC. JangJ.Y. ReynoldsC.A. PedersenN.L. GatzM. Differences between women and men in incidence rates of dementia and alzheimer’s disease.J. Alzheimers Dis.20186441077108310.3233/JAD‑180141 30010124
    [Google Scholar]
  96. BandtlowC.E. DlaskaM. PirkerS. CzechT. BaumgartnerC. SperkG. Increased expression of Nogo‐A in hippocampal neurons of patients with temporal lobe epilepsy.Eur. J. Neurosci.200420119520610.1111/j.1460‑9568.2004.03470.x 15245492
    [Google Scholar]
  97. SatohJ.I. OnoueH. ArimaK. YamamuraT. Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis.J. Neuropathol. Exp. Neurol.200564212913810.1093/jnen/64.2.129 15751227
    [Google Scholar]
  98. NovakG. KimD. SeemanP. TallericoT. Schizophrenia and Nogo: Elevated mRNA in cortex, and high prevalence of a homozygous CAA insert.Brain Res. Mol. Brain Res.2002107218318910.1016/S0169‑328X(02)00492‑8 12425946
    [Google Scholar]
  99. GilV. NicolasO. MingoranceA. UreñaJ.M. TangB.L. HirataT. Sáez-ValeroJ. FerrerI. SorianoE. del RíoJ.A. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease.J. Neuropathol. Exp. Neurol.200665543344410.1097/01.jnen.0000222894.59293.98 16772867
    [Google Scholar]
  100. EyerG.C. Di SantoS. HewerE. AndereggenL. SeilerS. WidmerH.R. Co-expression of nogo-A in dopaminergic neurons of the human substantia nigra pars compacta is reduced in parkinson’s disease.Cells20211012336810.3390/cells10123368 34943877
    [Google Scholar]
  101. ZhuH.Y. GuoH.F. HouH.L. LiuY.J. ShengS.L. ZhouJ.N. Increased expression of the Nogo receptor in the hippocampus and its relation to the neuropathology in Alzheimer’s disease.Hum. Pathol.200738342643410.1016/j.humpath.2006.09.010 17188332
    [Google Scholar]
  102. ParkJ.H. WidiG.A. GimbelD.A. HarelN.Y. LeeD.H.S. StrittmatterS.M. Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice.J. Neurosci.20062651132791328610.1523/JNEUROSCI.4504‑06.2006 17182778
    [Google Scholar]
  103. KarlssonT.E. KarlénA. OlsonL. JosephsonA. Neuronal overexpression of Nogo receptor 1 in APPswe/PSEN1(ΔE9) mice impairs spatial cognition tasks without influencing plaque formation.J. Alzheimers Dis.201233114515510.3233/JAD‑2012‑120493 22903127
    [Google Scholar]
  104. NibuyaM. KezukaD. KannoY. WakamatsuS. SuzukiE. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats.J. Psychiatr. Res.202417020721610.1016/j.jpsychires.2023.12.019 38157668
    [Google Scholar]
  105. MaynardG. KannanR. LiuJ. WangW. LamT.K.T. WangX. AdamsonC. HackettC. SchwabJ.M. LiuC. LeslieD.P. ChenD. MarinoR. ZafonteR. FlandersA. BlockG. SmithE. StrittmatterS.M. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: A first-in-human and randomised clinical trial.Lancet Neurol.202322867268410.1016/S1474‑4422(23)00215‑6 37479373
    [Google Scholar]
  106. TengF.Y.H. TangB.L. Why do Nogo/Nogo-66 receptor gene knockouts result in inferior regeneration compared to treatment with neutralizing agents?J. Neurochem.2005865874
    [Google Scholar]
  107. DimouL. SchnellL. MontaniL. DuncanC. SimonenM. SchneiderR. LiebscherT. GulloM. SchwabM.E. Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration.J. Neurosci.200626215591560310.1523/JNEUROSCI.1103‑06.2006 16723516
    [Google Scholar]
  108. StewardO. ZhengB. BanosK. YeeK.M. Axon regeneration in young adult mice lacking Nogo-A/B.Neuron200754219119510.1016/j.neuron.2007.04.004 17442241
    [Google Scholar]
  109. KimC.K. LeeY.R. OngL. GoldM. KalaliA. SarkarJ. Alzheimer’s disease: Key insights from two decades of clinical trial failures.J. Alzheimers Dis.20228718310010.3233/JAD‑215699 35342092
    [Google Scholar]
  110. De BiaseL.M. BonciA. Region-specific phenotypes of microglia: The role of local regulatory cues.Neuroscientist2018107385841880099 30280638
    [Google Scholar]
  111. De BiaseL.M. SchuebelK.E. FusfeldZ.H. JairK. HawesI.A. CimbroR. ZhangH.Y. LiuQ.R. ShenH. XiZ.X. GoldmanD. BonciA. Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia.Neuron2017952341356.e610.1016/j.neuron.2017.06.020 28689984
    [Google Scholar]
  112. DoornK.J. BrevéJ.J. DrukarchB. BoddekeH.W. HuitingaI. LucassenP.J. van DamA.M. Brain region-specific gene expression profiles in freshly isolated rat microglia.Front. Cell. Neurosci.20159848410.3389/fncel.2015.00084 25814934
    [Google Scholar]
  113. YoungA.M.H. KumasakaN. CalvertF. HammondT.R. KnightsA. PanousisN. ParkJ.S. SchwartzentruberJ. LiuJ. KunduK. SegelM. MurphyN.A. McMurranC.E. BulstrodeH. CorreiaJ. BudohoskiK.P. JoannidesA. GuilfoyleM.R. TrivediR. KirollosR. MorrisR. GarnettM.R. TimofeevI. JallohI. HollandK. MannionR. MairR. WattsC. PriceS.J. KirkpatrickP.J. SantariusT. MountjoyE. GhoussainiM. SoranzoN. BayraktarO.A. StevensB. HutchinsonP.J. FranklinR.J.M. GaffneyD.J. A map of transcriptional heterogeneity and regulatory variation in human microglia.Nat. Genet.202153686186810.1038/s41588‑021‑00875‑2 34083789
    [Google Scholar]
  114. BöttcherC. SchlickeiserS. SneeboerM.A.M. KunkelD. KnopA. PazaE. FidzinskiP. KrausL. SnijdersG.J.L. KahnR.S. SchulzA.R. MeiH.E. HolE.M. SiegmundB. GlaubenR. SpruthE.J. de WitteL.D. PrillerJ. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry.Nat. Neurosci.2019221789010.1038/s41593‑018‑0290‑2 30559476
    [Google Scholar]
  115. MittelbronnM. DietzK. SchluesenerH.J. MeyermannR. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude.Acta Neuropathol.2001101324925510.1007/s004010000284 11307625
    [Google Scholar]
  116. GlotfeltyE.J. DelgadoT.E. Tovar-y-RomoL.B. LuoY. HofferB.J. OlsonL. KarlssonT.E. MattsonM.P. HarveyB.K. TweedieD. LiY. GreigN.H. Incretin mimetics as rational candidates for the treatment of traumatic brain injury.ACS Pharmacol. Transl. Sci.201922669110.1021/acsptsci.9b00003 31396586
    [Google Scholar]
  117. GlotfeltyE.J. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson’s disease.Expert Opin. Investig. Drugs2020595602
    [Google Scholar]
  118. KoppK.O. GlotfeltyE.J. LiY. GreigN.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment.Pharmacol. Res.202218610655010.1016/j.phrs.2022.106550 36372278
    [Google Scholar]
/content/journals/cn/10.2174/011570159X359944250722061312
Loading
/content/journals/cn/10.2174/011570159X359944250722061312
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test