Skip to content
2000
image of Neural Networks of Knowledge: Ontologies Pioneering Precision Medicine in Neurodegenerative Diseases

Abstract

The review focuses on the ways that ontologies are revolutionising precision medicine in their effort to understand neurodegenerative illnesses. Ontologies, which are structured frameworks that outline the relationships between concepts in a certain field, offer a crucial foundation for combining different biological data. Novel insights into the construction of a precision medicine approach to treat neurodegenerative diseases (NDDs) are given by growing advancements in the area of pharmacogenomics. Affected parts of the central nervous system may develop neurological disorders, including Alzheimer's, Parkinson's, autism spectrum, and attention-deficit/hyperactivity disorder. These models allow for standard and helpful data marking, which is needed for cross-disciplinary study and teamwork. With case studies, you can see how ontologies have been used to find biomarkers, understand how sicknesses work, and make models for predicting how drugs will work and how the disease will get worse. For example, problems with data quality, meaning variety, and the need for constant changes to reflect the growing body of scientific knowledge are discussed in this review. It also looks at how semantic data can be mixed with cutting-edge computer methods such as artificial intelligence and machine learning to make brain disease diagnostic and prediction models more exact and accurate. These collaborative networks aim to identify patients at risk, identify patients in the preclinical or early stages of illness, and develop tailored preventative interventions to enhance patient quality of life and prognosis. They also seek to identify new, robust, and effective methods for these patient identification tasks. To this end, the current study has been considered to examine the essential components that may be part of precise and tailored therapy plans used for neurodegenerative illnesses.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X353727250314065140
2025-07-14
2025-09-13
Loading full text...

Full text loading...

References

  1. Dugger B.N. Dickson D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  2. Przedborski S. Vila M. Jackson-Lewis V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest. 2003 111 1 3 10 10.1172/JCI200317522 12511579
    [Google Scholar]
  3. Berry R.W. Quinn B. Johnson N. Cochran E.J. Ghoshal N. Binder L.I. Pathological glial tau accumulations in neurodegenerative disease: Review and case report. Neurochem. Int. 2001 39 5-6 469 479 10.1016/S0197‑0186(01)00054‑7 11578782
    [Google Scholar]
  4. Li G.H. Li P. Lu L. Li Z. Mo M.S. Chen X. Peng G.Y. Guo W.Y. Lin Y.W. Qiu J.W. Yang X.L. Liu X.T. Xu P.Y. The outcome and burden of Chinese patients with neurodegenerative diseases: A 10‐year clinical feature study. Int. J. Clin. Pract. 2020 74 9 e13534 10.1111/ijcp.13534 32418282
    [Google Scholar]
  5. Stephan B. Brayne C. Prevalence and Projections of Dementia. McGraw Hill 2008
    [Google Scholar]
  6. Savelieff M.G. Nam G. Kang J. Lee H.J. Lee M. Lim M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 2019 119 2 1221 1322 10.1021/acs.chemrev.8b00138 30095897
    [Google Scholar]
  7. Rayan R.A. Zafar I. Precision medicine in the context of ontology. Semantic Web for Effective Healthcare Wiley 2021 191 213 10.1002/9781119764175.ch9
    [Google Scholar]
  8. Al-Busaidi A. Gray A. Fiddian N. Personalizing web information for patients: Linking patient medical data with the web via a patient personal knowledge base. Health Informatics J. 2006 12 1 27 39 10.1177/1460458206061202 17023396
    [Google Scholar]
  9. Huang S. Hood L. Personalized, precision, and N-of-one medicine: A clarification of terminology and concepts. Perspect. Biol. Med. 2019 62 4 617 639 10.1353/pbm.2019.0036 31761797
    [Google Scholar]
  10. Kumar D. Bansal G. Narang A. Basak T. Abbas T. Dash D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 2016 16 19 2533 2544 10.1002/pmic.201600140 27343053
    [Google Scholar]
  11. Azarm M. A patient-centered framework for system-level sharing of health records. Thesis University of Ottawa 2020
    [Google Scholar]
  12. Rinaldi A.M. A multimedia ontology model based on linguistic properties and audio-visual features. Inf. Sci. 2014 277 234 246 10.1016/j.ins.2014.02.017
    [Google Scholar]
  13. Wang R.C. Wang Z. Precision medicine: Disease subtyping and tailored treatment. Cancers 2023 15 15 3837 10.3390/cancers15153837 37568653
    [Google Scholar]
  14. Radovich M. Decoding the transcriptional landscape of triple-negative breast cancer using next generation whole transcriptome sequencing. Thesis Indiana University-Purdue University Indianapolis (IUPUI) 2012
    [Google Scholar]
  15. Chesbrough H.W. Open innovation: The new imperative for creating and profiting from technology. Harvard Business Press 2003
    [Google Scholar]
  16. Aristodemou L. Tietze F. The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Pat. Inf. 2018 55 37 51 10.1016/j.wpi.2018.07.002
    [Google Scholar]
  17. Hadzic M. Wongthongtham P. Dillon T. Chang E. Ontology-based multi-agent systems. Springer 2009 10.1007/978‑3‑642‑01904‑3
    [Google Scholar]
  18. Cristani M. Cuel R. A survey on ontology creation methodologies. Int. J. Semantic Web Inf. Syst. 2005 1 2 49 69 10.4018/jswis.2005040103
    [Google Scholar]
  19. Asim M.N. Wasim M. Khan M.U.G. Mahmood W. Abbasi H.M. A survey of ontology learning techniques and applications. Database (Oxford) 2018 2018 bay101 10.1093/database/bay101 30295720
    [Google Scholar]
  20. Pathak J. Weiss L.C. Durski M.J. Zhu Q. Freimuth R.R. Chute C.G.. Integrating va’s ndf-rt drug terminology with pharmgkb: Preliminary results. Pac Symp Biocomput. 2012 400 409 22174295
    [Google Scholar]
  21. Levy S.E. Myers R.M. Advancements in next-generation sequencing. Annu. Rev. Genomics Hum. Genet. 2016 17 1 95 115 10.1146/annurev‑genom‑083115‑022413 27362342
    [Google Scholar]
  22. Kumar R. Aadil K.R. Mondal K. Mishra Y.K. Oupicky D. Ramakrishna S. Kaushik A. Neurodegenerative disorders management: State-of-art and prospects of nano-biotechnology. Crit. Rev. Biotechnol. 2022 42 8 1180 1212 10.1080/07388551.2021.1993126 34823433
    [Google Scholar]
  23. Badhe R.V. Chejar D.R. Kumar P. Choonara Y.E. Pillay V. Neurodegenerative disease conditions and genomic treatment for better health. Genomics-Driven Healthcare: Trends in Disease Prevention and Treatment Adis Singapore 2018 10.1007/978‑981‑10‑7506‑3_15
    [Google Scholar]
  24. Ashraf A. Analysis of support group availability for adult-onset neurological disorders in central Appalachian region of the United States. University of Pittsburgh 2015
    [Google Scholar]
  25. Strafella C. Caputo V. Galota M.R. Zampatti S. Marella G. Mauriello S. Cascella R. Giardina E. Application of precision medicine in neurodegenerative diseases. Front. Neurol. 2018 9 701 10.3389/fneur.2018.00701 30190701
    [Google Scholar]
  26. Strianese O. Rizzo F. Ciccarelli M. Galasso G. D’Agostino Y. Salvati A. Del Giudice C. Tesorio P. Rusciano M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes 2020 11 7 747 10.3390/genes11070747 32640513
    [Google Scholar]
  27. Singh K. Gupta J.K. Kumar S. Soni U. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of bioactive peptides. Curr. Protein Pept. Sci. 2024 25 7 507 526 10.2174/0113892037275221240327042353 38561605
    [Google Scholar]
  28. Sajjad R. Arif R. Shah A.A. Manzoor I. Mustafa G. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein. Indian J. Pharm. Sci. 2018 80 4 581 591 10.4172/pharmaceutical‑sciences.1000397
    [Google Scholar]
  29. Pei Y.A. Davies J. Zhang M. Zhang H.T. The role of synaptic dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 2020 76 1 49 62 10.3233/JAD‑191334 32417776
    [Google Scholar]
  30. Tulving E. Markowitsch H.J. Episodic and declarative memory: Role of the hippocampus. Hippocampus 1998 8 3 198 204 10.1002/(SICI)1098‑1063(1998)8:3<198::AID‑HIPO2>3.0.CO;2‑G 9662134
    [Google Scholar]
  31. Samotus O. Characterization and personalization of botulinum toxin type A therapy for upper limb tremor in Parkinson disease and essential tremor patients using multi-sensor kinematic technology. The University of Western Ontario 2016
    [Google Scholar]
  32. Corti O. Lesage S. Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol. Rev. 2011 91 4 1161 1218 10.1152/physrev.00022.2010 22013209
    [Google Scholar]
  33. Rana A.Q. Natural Therapies for Parkinson’s Disease. FriesenPress 2013
    [Google Scholar]
  34. Lu B. Palacino J. A novel human embryonic stem cell‐derived Huntington’s disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT‐dependent neurodegeneration. FASEB J. 2013 27 5 1820 1829 10.1096/fj.12‑219220 23325320
    [Google Scholar]
  35. Wild E.J. Boggio R. Langbehn D. Robertson N. Haider S. Miller J.R.C. Zetterberg H. Leavitt B.R. Kuhn R. Tabrizi S.J. Macdonald D. Weiss A. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J. Clin. Invest. 2015 125 5 1979 1986 10.1172/JCI80743 25844897
    [Google Scholar]
  36. Silva A. de Almeida A.V. Macedo-Ribeiro S. Polyglutamine expansion diseases: More than simple repeats. J. Struct. Biol. 2018 201 2 139 154 10.1016/j.jsb.2017.09.006 28928079
    [Google Scholar]
  37. Wang L. Fang X. Ling B. Wang F. Xia Y. Zhang W. Zhong T. Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front. Cell. Neurosci. 2024 18 1359453 10.3389/fncel.2024.1359453 38515787
    [Google Scholar]
  38. Tan S.H. Karri V. Tay N.W.R. Chang K.H. Ah H.Y. Ng P.Q. Ho H.S. Keh H.W. Candasamy M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed. Pharmacother. 2019 111 765 777 10.1016/j.biopha.2018.12.101 30612001
    [Google Scholar]
  39. Marcus E.M. Jacobson S. Learning, memory, amnesia, dementia, instinctive behavior and the effects of early experience. Integrated Neuroscience Springer Boston 2003 673 692 10.1007/978‑1‑4615‑1077‑2_30
    [Google Scholar]
  40. Santangelo G. Apathy in movement disorders (Parkinson’s disease, Huntington’s disease). Apathy: Clinical and neuroscientific perspectives from neurology and psychiatry. Oxford University Press. 2021 55 76 10.1093/med/9780198841807.003.0004
    [Google Scholar]
  41. Billes V.A. Kovács T. Hotzi B. Manzéger A. Tagscherer K. Komlós M. Tarnóci A. Erdős A. Bjelik A. Pádár Z. AUTEN-67 (Autophagy Enhancer-67) hampers the progression of neurodegenerative symptoms in a Drosophila model of Huntington's Disease. J. Huntingtons Dis 2017 5 2 132 10.3233/JHD‑150180.
    [Google Scholar]
  42. Tabrizi S.J. Flower M.D. Ross C.A. Wild E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020 16 10 529 546 10.1038/s41582‑020‑0389‑4 32796930
    [Google Scholar]
  43. Herbst M. Wanker E. Therapeutic approaches to polyglutamine diseases: Combating protein misfolding and aggregation. Curr. Pharm. Des. 2006 12 20 2543 2555 10.2174/138161206777698828 16842177
    [Google Scholar]
  44. Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 12 2977 2992 10.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  45. Lee J.M. Wheeler V.C. Chao M.J. Vonsattel J.P.G. Pinto R.M. Lucente D. Abu-Elneel K. Ramos E.M. Mysore J.S. Gillis T. MacDonald M.E. Gusella J.F. Harold D. Stone T.C. Escott-Price V. Han J. Vedernikov A. Holmans P. Jones L. Kwak S. Mahmoudi M. Orth M. Landwehrmeyer G.B. Paulsen J.S. Dorsey E.R. Shoulson I. Myers R.H. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 2015 162 3 516 526 10.1016/j.cell.2015.07.003 26232222
    [Google Scholar]
  46. Gadhave D.G. Sugandhi V.V. Jha S.K. Nangare S.N. Gupta G. Singh S.K. Dua K. Cho H. Hansbro P.M. Paudel K.R. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 2024 99 102357 10.1016/j.arr.2024.102357 38830548
    [Google Scholar]
  47. Gotovac K. Hajnšek S. Pašić M.B. Pivac N. Borovečki F. Personalized medicine in neurodegenerative diseases: How far away? Mol. Diagn. Ther. 2014 18 1 17 24 10.1007/s40291‑013‑0058‑z 24122102
    [Google Scholar]
  48. Foroutan B. Personalized medicine: A review with regard to biomarkers. J. Bioequivalence Bioavailab. 2015 7 6 244 256 10.4172/jbb.1000248
    [Google Scholar]
  49. Koníčková D. Menšíková K. Tučková L. Hényková E. Strnad M. Friedecký D. Stejskal D. Matěj R. Kaňovský P. Biomarkers of neurodegenerative diseases: Biology, taxonomy, clinical relevance, and current research status. Biomedicines 2022 10 7 1760 10.3390/biomedicines10071760 35885064
    [Google Scholar]
  50. Ahmed M.U. Saaem I. Wu P.C. Brown A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014 34 2 180 196 10.3109/07388551.2013.778228 23607309
    [Google Scholar]
  51. Ginsburg G.S. Phillips K.A. Precision medicine: From science to value. Health Aff. (Millwood) 2018 37 5 694 701 10.1377/hlthaff.2017.1624 29733705
    [Google Scholar]
  52. Poovaiah N. Davoudi Z. Peng H. Schlichtmann B. Mallapragada S. Narasimhan B. Wang Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018 10 36 16962 16983 10.1039/C8NR04073G 30182106
    [Google Scholar]
  53. Delgado-Morales R. Agís-Balboa R.C. Esteller M. Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenetics 2017 9 1 67 10.1186/s13148‑017‑0365‑z 28670349
    [Google Scholar]
  54. Roski J. Hamilton B.A Chapman W. Heffner J. Trivedi R. Fiol D.G. Kukafka R. Bleicher P. Klann J. How artificial intelligence is changing health and healthcare. Health Care: The Hope, the Hype, the Promise, the Peril. National Academies Press (US) 2019
    [Google Scholar]
  55. Veerabhadrappa B. Delaby C. Hirtz C. Vialaret J. Alcolea D. Lleó A. Fortea J. Santosh M.S. Choubey S. Lehmann S. Detection of amyloid beta peptides in body fluids for the diagnosis of alzheimer’s disease: Where do we stand? Crit. Rev. Clin. Lab. Sci. 2020 57 2 99 113 10.1080/10408363.2019.1678011 31661652
    [Google Scholar]
  56. Alonso A.C. Grundke-Iqbal I. Barra H.S. Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. USA 1997 94 1 298 303 10.1073/pnas.94.1.298 8990203
    [Google Scholar]
  57. Gaiottino J. Norgren N. Dobson R. Topping J. Nissim A. Malaspina A. Bestwick J.P. Monsch A.U. Regeniter A. Lindberg R.L. Kappos L. Leppert D. Petzold A. Giovannoni G. Kuhle J. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 2013 8 9 e75091 10.1371/journal.pone.0075091 24073237
    [Google Scholar]
  58. Hampel H. Goernitz A. Buerger K. Advances in the development of biomarkers for Alzheimer’s disease: From CSF total tau and Aβ1–42 proteins to phosphorylated tau protein. Brain Res. Bull. 2003 61 3 243 253 10.1016/S0361‑9230(03)00087‑X 12909294
    [Google Scholar]
  59. McCONNELL L.M. Sanders G.D. Owens D.K. Evaluation of genetic tests: APOE genotyping for the diagnosis of Alzheimer disease. Genet. Test. 1999 3 1 47 53 10.1089/gte.1999.3.47 10464577
    [Google Scholar]
  60. Lista S. Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev. Neurother. 2017 17 1 47 57 10.1080/14737175.2016.1204234 27332958
    [Google Scholar]
  61. Hampel H. Shen Y. Beta‐site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scand. J. Clin. Lab. Invest. 2009 69 1 8 12 10.1080/00365510701864610 18609117
    [Google Scholar]
  62. Twarowski B. Herbet M. Inflammatory processes in alzheimer’s disease—pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  63. Prins S. de Kam M.L. Teunissen C.E. Groeneveld G.J. Inflammatory plasma biomarkers in subjects with preclinical Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 106 10.1186/s13195‑022‑01051‑2 35922871
    [Google Scholar]
  64. Zhao Y. Zhang Y. Zhang L. Dong Y. Ji H. Shen L. The potential markers of circulating microRNAs and long non-coding RNAs in Alzheimer’s disease. Aging Dis. 2019 10 6 1293 1301 10.14336/AD.2018.1105 31788340
    [Google Scholar]
  65. Zhao Y. Wu X. Jiang L.L. Gui X. Liu Y. Sun Y. Zhu B. Piña-Crespo J.C. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron. 2018 97 5 1031 10.1016/j.neuron.2018.01.031
    [Google Scholar]
  66. Steinacker P. Al Shweiki M.H.D.R. Oeckl P. Graf H. Ludolph A.C. Schönfeldt-Lecuona C. Otto M. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder. J. Psychiatr. Res. 2021 144 54 58 10.1016/j.jpsychires.2021.09.012 34600287
    [Google Scholar]
  67. Caffino L. Mottarlini F. Fumagalli F. Born to protect: Leveraging BDNF against cognitive deficit in Alzheimer’s disease. CNS Drugs 2020 34 3 281 297 10.1007/s40263‑020‑00705‑9 32052374
    [Google Scholar]
  68. Jameson J.L. Longo D.L. Precision medicine--personalized, problematic, and promising. N. Engl. J. Med. 2015 372 23 2229 2234 10.1056/NEJMsb1503104 26014593
    [Google Scholar]
  69. Soldatova L. Panov P. Neurodegenerative Disease Data Ontology. Discovery Science Springer 2015 10.1007/978‑3‑030‑33778‑0_19
    [Google Scholar]
  70. Nobre A.J.V. Ontologies for predictive maintenance with time-sensitive data. Thesis Porto Polytechnic Institute 2022
    [Google Scholar]
  71. Usman M.B. Ojha S. Jha S.K. Chellappan D.K. Gupta G. Singh S.K. Dua K. Roychoudhury S. Kumar N. Khan F.A. Dureja H. Upadhye V. Zacconi F. Prasanna P. Kesari K.K. Ashraf G.M. Alexiou A. Jha N.K. Biological databases and tools for neurological disorders. J. Integr. Neurosci. 2022 21 1 41 10.31083/j.jin2101041 35164477
    [Google Scholar]
  72. Richesson R.L. Sun J. Pathak J. Kho A.N. Denny J.C. Clinical phenotyping in selected national networks: Demonstrating the need for high-throughput, portable, and computational methods. Artif. Intell. Med. 2016 71 57 61 10.1016/j.artmed.2016.05.005 27506131
    [Google Scholar]
  73. Silva M.C. Eugénio P. Faria D. Pesquita C. Ontologies and knowledge graphs in oncology research. Cancers 2022 14 8 1906 10.3390/cancers14081906 35454813
    [Google Scholar]
  74. Abu-Elkheir M. Hayajneh M. Ali N. Data management for the internet of things: Design primitives and solution. Sensors 2013 13 11 15582 15612 10.3390/s131115582 24240599
    [Google Scholar]
  75. Hampel H. Toschi N. Babiloni C. Baldacci F. Black K.L. Bokde A.L.W. Bun R.S. Cacciola F. Cavedo E. Chiesa P.A. Colliot O. Coman C.M. Dubois B. Duggento A. Durrleman S. Ferretti M.T. George N. Genthon R. Habert M.O. Herholz K. Koronyo Y. Koronyo-Hamaoui M. Lamari F. Langevin T. Lehéricy S. Lorenceau J. Neri C. Nisticò R. Nyasse-Messene F. Ritchie C. Rossi S. Santarnecchi E. Sporns O. Verdooner S.R. Vergallo A. Villain N. Younesi E. Garaci F. Lista S. Alzheimer Precision Medicine Initiative (APMI) Revolution of Alzheimer precision neurology. Passageway of systems biology and neurophysiology. J. Alzheimers Dis. 2018 64 s1 S47 S105 10.3233/JAD‑179932 29562524
    [Google Scholar]
  76. Hampel H. O’Bryant S.E. Durrleman S. Younesi E. Rojkova K. Escott-Price V. Corvol J-C. Broich K. Dubois B. Lista S. Alzheimer Precision Medicine Initiative A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric 2017 20 2 107 118 10.1080/13697137.2017.1287866 28286989
    [Google Scholar]
  77. Kanza S. Frey J.G. A new wave of innovation in Semantic web tools for drug discovery. Expert Opin. Drug Discov. 2019 14 5 433 444 10.1080/17460441.2019.1586880 30884989
    [Google Scholar]
  78. Qu X.A. Discovery and prioritization of drug candidates for repositioning using semantic web-based representation of integrated diseasome-pharmacome knowledge. Thesis University of Cincinnati 2009
    [Google Scholar]
  79. McGinty H.K. KNowledge Acquisition and Representation Methodology (KNARM) and its applications. Thesis University of Miami 2018
    [Google Scholar]
  80. Bizzarri M. Pensotti A. Cucina A. Monti N. Fedeli V. Personalized treatments: Where patient’s history and biological background meet. Personalized Medicine in the Making, Philosophical Perspectives from Biology to Healthcare. Springer 2022 63 86 10.1007/978‑3‑030‑74804‑3_4
    [Google Scholar]
  81. Harris E.P. MacDonald D.B. Boland L. Boet S. Lalu M.M. McIsaac D.I. Personalized perioperative medicine: A scoping review of personalized assessment and communication of risk before surgery. Can. J. Anaesth. 2019 66 9 1026 1037 10.1007/s12630‑019‑01432‑6 31240608
    [Google Scholar]
  82. Katsanis S.H. Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 2013 14 6 415 426 10.1038/nrg3493 23681062
    [Google Scholar]
  83. Martínez-García M. Hernández-Lemus E. Data integration challenges for machine learning in precision medicine. Front. Med. (Lausanne) 2022 8 784455 10.3389/fmed.2021.784455 35145977
    [Google Scholar]
  84. Lenze E.J. Nicol G.E. Barbour D.L. Kannampallil T. Wong A.W.K. Piccirillo J. Drysdale A.T. Sylvester C.M. Haddad R. Miller J.P. Low C.A. Lenze S.N. Freedland K.E. Rodebaugh T.L. Precision clinical trials: A framework for getting to precision medicine for neurobehavioural disorders. J. Psychiatry Neurosci. 2021 46 1 E97 E110 10.1503/jpn.200042 33206039
    [Google Scholar]
  85. Doswell C.A. III Schultz D.M. On the use of indices and parameters in forecasting severe storms. Electron. J. Sev. Storms Meteorol. 2021 1 3 1 22 10.55599/ejssm.v1i3.4
    [Google Scholar]
  86. Nair P. Pizzichini M.M.M. Kjarsgaard M. Inman M.D. Efthimiadis A. Pizzichini E. Hargreave F.E. O’Byrne P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009 360 10 985 993 10.1056/NEJMoa0805435 19264687
    [Google Scholar]
  87. Edris A. De Feyter S. Maes T. Joos G. Lahousse L. Monoclonal antibodies in type 2 asthma: A systematic review and network meta-analysis. Respir. Res. 2019 20 1 179 10.1186/s12931‑019‑1138‑3 31395084
    [Google Scholar]
  88. Davies J. Fensel D. Van Harmelen F. Towards the Semantic Web: Ontology-driven Knowledge Management Wiley 2003 10.1002/0470858060
    [Google Scholar]
  89. Tudorache T. Noy N.F. Musen M.A. Supporting collaborative ontology development in Protégé. 7th International Semantic Web Conference, ISWC 2008 Karlsruhe, Germany, October 26-30, 2008 10.1007/978‑3‑540‑88564‑1_2
    [Google Scholar]
  90. Zafeiropoulos N. Bitilis P. Tsekouras G.E. Kotis K. Evaluating ontology-based pd monitoring and alerting in personal health knowledge graphs and graph neural networks. Information 2024 15 2 100 10.3390/info15020100
    [Google Scholar]
  91. Scott R. Armstrong J.H. Alzheimer’s disease research grant advisory board. Available from: https://www.floridahealth.gov/provider-and-partner-resources/research/FINAL-Alzheimers-Annual-Report2014-2015.pdf
  92. Forloni G. Alzheimer’s disease: From basic science to precision medicine approach. BMJ Neurol. Open 2020 2 2 e000079 10.1136/bmjno‑2020‑000079 33681801
    [Google Scholar]
  93. Stoessl A.J. Neuroimaging in Parkinson’s disease: From pathology to diagnosis. Parkinsonism Relat. Disord. 2012 18 Suppl. 1 S55 S59 10.1016/S1353‑8020(11)70019‑0 22166455
    [Google Scholar]
  94. National Research Council (US) Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. National Academies Press Washington 2011
    [Google Scholar]
  95. Gómez-López G. Dopazo J. Cigudosa J.C. Valencia A. Al-Shahrour F. Precision medicine needs pioneering clinical bioinformaticians. Brief. Bioinform. 2019 20 3 752 766 10.1093/bib/bbx144 29077790
    [Google Scholar]
  96. Owen D.J. Individual differences and medication-mediation in chronic illness conditions: A mixed methods approach to the development of a novel, conceptual framework. PhD Thesis University of Derby 2021
    [Google Scholar]
  97. Sivak J.M. The aging eye: Common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest. Ophthalmol. Vis. Sci. 2013 54 1 871 880 10.1167/iovs.12‑10827 23364356
    [Google Scholar]
  98. Chow S.L. Maisel A.S. Anand I. Bozkurt B. de Boer R.A. Felker G.M. Fonarow G.C. Greenberg B. Januzzi J.L. Jr Kiernan M.S. Liu P.P. Wang T.J. Yancy C.W. Zile M.R. Role of biomarkers for the prevention, assessment, and management of heart failure: A scientific statement from the American Heart Association. Circulation 2017 135 22 e1054 e1091 10.1161/CIR.0000000000000490 28446515
    [Google Scholar]
  99. Mullane K. Curtis M.J. Williams M. Reproducibility in biomedical research. Research in the Biomedical Sciences. Elsevier 2018 1 66 10.1016/B978‑0‑12‑804725‑5.00001‑X
    [Google Scholar]
  100. World Health Organization. Access to new medicines in Europe: Technical review of policy initiatives and opportunities for collaboration and research. 2015 Available from: https://iris.who.int/handle/10665/159405
    [Google Scholar]
  101. Şık A.S. A conceptual design for genetic information exchange coding standards in Türkiye. Ph.D Thesis Middle East Technical University 2023
    [Google Scholar]
  102. Butler C. Human rights ethics: A rational approach. Purdue University Press 2008
    [Google Scholar]
  103. Arora B. Big data analytics: The underlying technologies used by organizations for value generation. Understanding the Role of Business Analytics Springer 2019 9 30 10.1007/978‑981‑13‑1334‑9_2
    [Google Scholar]
  104. Bennett C.J. Bayley R.M. Privacy protection in the era of ‘big data’: Regulatory challenges and social assessments. Exploring the Boundaries of Big Data. Amsterdam University Press 2016
    [Google Scholar]
  105. Vegter M. Big and Intimate: Selfhood in times of precision medicine 2019 Available from: https://repository.ubn.ru.nl/bitstream/handle/2066/213679/213679.pdf
/content/journals/cn/10.2174/011570159X353727250314065140
Loading
/content/journals/cn/10.2174/011570159X353727250314065140
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Alzheimer's ; ontologies ; Parkinson's ; precision medicine ; Huntington's ; Neurodegenerative
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test