Skip to content
2000
Volume 23, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The review focuses on the ways that ontologies are revolutionising precision medicine in their effort to understand neurodegenerative illnesses. Ontologies, which are structured frameworks that outline the relationships between concepts in a certain field, offer a crucial foundation for combining different biological data. Novel insights into the construction of a precision medicine approach to treat neurodegenerative diseases (NDDs) are given by growing advancements in the area of pharmacogenomics. Affected parts of the central nervous system may develop neurological disorders, including Alzheimer's, Parkinson's, autism spectrum, and attention-deficit/hyperactivity disorder. These models allow for standard and helpful data marking, which is needed for cross-disciplinary study and teamwork. With case studies, you can see how ontologies have been used to find biomarkers, understand how sicknesses work, and make models for predicting how drugs will work and how the disease will get worse. For example, problems with data quality, meaning variety, and the need for constant changes to reflect the growing body of scientific knowledge are discussed in this review. It also looks at how semantic data can be mixed with cutting-edge computer methods such as artificial intelligence and machine learning to make brain disease diagnostic and prediction models more exact and accurate. These collaborative networks aim to identify patients at risk, identify patients in the preclinical or early stages of illness, and develop tailored preventative interventions to enhance patient quality of life and prognosis. They also seek to identify new, robust, and effective methods for these patient identification tasks. To this end, the current study has been considered to examine the essential components that may be part of precise and tailored therapy plans used for neurodegenerative illnesses.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X353727250314065140
2025-07-14
2025-12-25
Loading full text...

Full text loading...

References

  1. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a02803528062563
    [Google Scholar]
  2. PrzedborskiS. VilaM. Jackson-LewisV. Series introduction: Neurodegeneration: What is it and where are we?J. Clin. Invest.2003111131010.1172/JCI20031752212511579
    [Google Scholar]
  3. BerryR.W. QuinnB. JohnsonN. CochranE.J. GhoshalN. BinderL.I. Pathological glial tau accumulations in neurodegenerative disease: Review and case report.Neurochem. Int.2001395-646947910.1016/S0197‑0186(01)00054‑711578782
    [Google Scholar]
  4. LiG.H. LiP. LuL. LiZ. MoM.S. ChenX. PengG.Y. GuoW.Y. LinY.W. QiuJ.W. YangX.L. LiuX.T. XuP.Y. The outcome and burden of Chinese patients with neurodegenerative diseases: A 10‐year clinical feature study.Int. J. Clin. Pract.2020749e1353410.1111/ijcp.1353432418282
    [Google Scholar]
  5. StephanB. BrayneC. Prevalence and Projections of Dementia.McGraw Hill2008
    [Google Scholar]
  6. SavelieffM.G. NamG. KangJ. LeeH.J. LeeM. LimM.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade.Chem. Rev.201911921221132210.1021/acs.chemrev.8b0013830095897
    [Google Scholar]
  7. RayanR.A. ZafarI. Precision medicine in the context of ontology.Semantic Web for Effective Healthcare.Wiley202119121310.1002/9781119764175.ch9
    [Google Scholar]
  8. Al-BusaidiA. GrayA. FiddianN. Personalizing web information for patients: Linking patient medical data with the web via a patient personal knowledge base.Health Informatics J.2006121273910.1177/146045820606120217023396
    [Google Scholar]
  9. HuangS. HoodL. Personalized, precision, and N-of-one medicine: A clarification of terminology and concepts.Perspect. Biol. Med.201962461763910.1353/pbm.2019.003631761797
    [Google Scholar]
  10. KumarD. BansalG. NarangA. BasakT. AbbasT. DashD. Integrating transcriptome and proteome profiling: Strategies and applications.Proteomics201616192533254410.1002/pmic.20160014027343053
    [Google Scholar]
  11. AzarmM. A patient-centered framework for system-level sharing of health records.Thesis University of Ottawa2020
    [Google Scholar]
  12. RinaldiA.M. A multimedia ontology model based on linguistic properties and audio-visual features.Inf. Sci.201427723424610.1016/j.ins.2014.02.017
    [Google Scholar]
  13. WangR.C. WangZ. Precision medicine: Disease subtyping and tailored treatment.Cancers20231515383710.3390/cancers1515383737568653
    [Google Scholar]
  14. RadovichM. Decoding the transcriptional landscape of triple-negative breast cancer using next generation whole transcriptome sequencing.Thesis Indiana University-Purdue University Indianapolis (IUPUI)2012
    [Google Scholar]
  15. ChesbroughH.W. Open innovation: The New Imperative for Creating and Profiting from Technology.Harvard Business Press2003
    [Google Scholar]
  16. AristodemouL. TietzeF. The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data.World Pat. Inf.201855375110.1016/j.wpi.2018.07.002
    [Google Scholar]
  17. HadzicM. WongthongthamP. DillonT. ChangE. Ontology-Based Multi-Agent Systems.Springer200910.1007/978‑3‑642‑01904‑3
    [Google Scholar]
  18. CristaniM. CuelR. A survey on ontology creation methodologies.Int. J. Semantic Web Inf. Syst.200512496910.4018/jswis.2005040103
    [Google Scholar]
  19. AsimM.N. WasimM. KhanM.U.G. MahmoodW. AbbasiH.M. A survey of ontology learning techniques and applications.Database (Oxford)20182018bay10110.1093/database/bay10130295720
    [Google Scholar]
  20. PathakJ. WeissL.C. DurskiM.J. ZhuQ. FreimuthR.R. ChuteC.G. Integrating va’s ndf-rt drug terminology with pharmgkb: Preliminary results.Pac. Symp. Biocomput.201240040922174295
    [Google Scholar]
  21. LevyS.E. MyersR.M. Advancements in next-generation sequencing.Annu. Rev. Genomics Hum. Genet.20161719511510.1146/annurev‑genom‑083115‑02241327362342
    [Google Scholar]
  22. KumarR. AadilK.R. MondalK. MishraY.K. OupickyD. RamakrishnaS. KaushikA. Neurodegenerative disorders management: State-of-art and prospects of nano-biotechnology.Crit. Rev. Biotechnol.20224281180121210.1080/07388551.2021.199312634823433
    [Google Scholar]
  23. BadheR.V. ChejarD.R. KumarP. ChoonaraY.E. PillayV. Neurodegenerative disease conditions and genomic treatment for better health.Genomics-Driven Healthcare: Trends in Disease Prevention and TreatmentAdis: Singapore201810.1007/978‑981‑10‑7506‑3_15
    [Google Scholar]
  24. AshrafA. Analysis of support group availability for adult-onset neurological disorders in central Appalachian region of the United States.University of Pittsburgh2015
    [Google Scholar]
  25. StrafellaC. CaputoV. GalotaM.R. ZampattiS. MarellaG. MaurielloS. CascellaR. GiardinaE. Application of precision medicine in neurodegenerative diseases.Front. Neurol.2018970110.3389/fneur.2018.0070130190701
    [Google Scholar]
  26. StrianeseO. RizzoF. CiccarelliM. GalassoG. D’AgostinoY. SalvatiA. Del GiudiceC. TesorioP. RuscianoM.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease.Genes202011774710.3390/genes1107074732640513
    [Google Scholar]
  27. SinghK. GuptaJ.K. KumarS. SoniU. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of bioactive peptides.Curr. Protein Pept. Sci.202425750752610.2174/011389203727522124032704235338561605
    [Google Scholar]
  28. SajjadR. ArifR. ShahA.A. ManzoorI. MustafaG. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein.Indian J. Pharm. Sci.201880458159110.4172/pharmaceutical‑sciences.1000397
    [Google Scholar]
  29. PeiY.A. DaviesJ. ZhangM. ZhangH.T. The role of synaptic dysfunction in Alzheimer’s disease.J. Alzheimers Dis.2020761496210.3233/JAD‑19133432417776
    [Google Scholar]
  30. TulvingE. MarkowitschH.J. Episodic and declarative memory: Role of the hippocampus.Hippocampus19988319820410.1002/(SICI)1098‑1063(1998)8:3<198::AID‑HIPO2>3.0.CO;2‑G9662134
    [Google Scholar]
  31. SamotusO. Characterization and personalization of botulinum toxin type A therapy for upper limb tremor in Parkinson disease and essential tremor patients using multi-sensor kinematic technology.The University of Western Ontario2016
    [Google Scholar]
  32. CortiO. LesageS. BriceA. What genetics tells us about the causes and mechanisms of Parkinson’s disease.Physiol. Rev.20119141161121810.1152/physrev.00022.201022013209
    [Google Scholar]
  33. RanaA.Q. Natural Therapies for Parkinson’s Disease.FriesenPress2013
    [Google Scholar]
  34. LuB. PalacinoJ. A novel human embryonic stem cell‐derived Huntington’s disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT‐dependent neurodegeneration.FASEB J.20132751820182910.1096/fj.12‑21922023325320
    [Google Scholar]
  35. WildE.J. BoggioR. LangbehnD. RobertsonN. HaiderS. MillerJ.R.C. ZetterbergH. LeavittB.R. KuhnR. TabriziS.J. MacdonaldD. WeissA. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients.J. Clin. Invest.201512551979198610.1172/JCI8074325844897
    [Google Scholar]
  36. SilvaA. de AlmeidaA.V. Macedo-RibeiroS. Polyglutamine expansion diseases: More than simple repeats.J. Struct. Biol.2018201213915410.1016/j.jsb.2017.09.00628928079
    [Google Scholar]
  37. WangL. FangX. LingB. WangF. XiaY. ZhangW. ZhongT. WangX. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases.Front. Cell. Neurosci.202418135945310.3389/fncel.2024.135945338515787
    [Google Scholar]
  38. TanS.H. KarriV. TayN.W.R. ChangK.H. AhH.Y. NgP.Q. HoH.S. KehH.W. CandasamyM. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease.Biomed. Pharmacother.201911176577710.1016/j.biopha.2018.12.10130612001
    [Google Scholar]
  39. MarcusE.M. JacobsonS. Learning, memory, amnesia, dementia, instinctive behavior and the effects of early experience.Integrated Neuroscience.BostonSpringer200367369210.1007/978‑1‑4615‑1077‑2_30
    [Google Scholar]
  40. SantangeloG. Apathy in movement disorders (Parkinson’s disease, Huntington’s disease).Apathy: Clinical and Neuroscientific Perspectives from Neurology and Psychiatry.Oxford University Press2021557610.1093/med/9780198841807.003.0004
    [Google Scholar]
  41. BillesV.A. KovácsT. HotziB. ManzégerA. TagschererK. KomlósM. TarnóciA. ErdősA. BjelikA. PádárZ. AUTEN- 67 (Autophagy Enhancer-67) hampers the progression of neurodegenerative symptoms in a Drosophila model of Huntington's Disease.J. Huntingtons Dis20175213210.3233/JHD‑150180
    [Google Scholar]
  42. TabriziS.J. FlowerM.D. RossC.A. WildE.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities.Nat. Rev. Neurol.2020161052954610.1038/s41582‑020‑0389‑432796930
    [Google Scholar]
  43. HerbstM. WankerE. Therapeutic approaches to polyglutamine diseases: Combating protein misfolding and aggregation.Curr. Pharm. Des.200612202543255510.2174/13816120677769882816842177
    [Google Scholar]
  44. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.01227646922
    [Google Scholar]
  45. LeeJ.M. WheelerV.C. ChaoM.J. VonsattelJ.P.G. PintoR.M. LucenteD. Abu-ElneelK. RamosE.M. MysoreJ.S. GillisT. MacDonaldM.E. GusellaJ.F. HaroldD. StoneT.C. Escott-PriceV. HanJ. VedernikovA. HolmansP. JonesL. KwakS. MahmoudiM. OrthM. LandwehrmeyerG.B. PaulsenJ.S. DorseyE.R. ShoulsonI. MyersR.H. Identification of genetic factors that modify clinical onset of Huntington’s disease.Cell2015162351652610.1016/j.cell.2015.07.00326232222
    [Google Scholar]
  46. GadhaveD.G. SugandhiV.V. JhaS.K. NangareS.N. GuptaG. SinghS.K. DuaK. ChoH. HansbroP.M. PaudelK.R. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance.Ageing Res. Rev.20249910235710.1016/j.arr.2024.10235738830548
    [Google Scholar]
  47. GotovacK. HajnšekS. PašićM.B. PivacN. BorovečkiF. Personalized medicine in neurodegenerative diseases: How far away?Mol. Diagn. Ther.2014181172410.1007/s40291‑013‑0058‑z24122102
    [Google Scholar]
  48. ForoutanB. Personalized medicine: A review with regard to biomarkers.J. Bioequivalence Bioavailab.20157624425610.4172/jbb.1000248
    [Google Scholar]
  49. KoníčkováD. MenšíkováK. TučkováL. HénykováE. StrnadM. FriedeckýD. StejskalD. MatějR. KaňovskýP. Biomarkers of neurodegenerative diseases: Biology, taxonomy, clinical relevance, and current research status.Biomedicines2022107176010.3390/biomedicines1007176035885064
    [Google Scholar]
  50. AhmedM.U. SaaemI. WuP.C. BrownA.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine.Crit. Rev. Biotechnol.201434218019610.3109/07388551.2013.77822823607309
    [Google Scholar]
  51. GinsburgG.S. PhillipsK.A. Precision medicine: From science to value.Health Aff. (Millwood)201837569470110.1377/hlthaff.2017.162429733705
    [Google Scholar]
  52. PoovaiahN. DavoudiZ. PengH. SchlichtmannB. MallapragadaS. NarasimhanB. WangQ. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers.Nanoscale20181036169621698310.1039/C8NR04073G30182106
    [Google Scholar]
  53. Delgado-MoralesR. Agís-BalboaR.C. EstellerM. BerdascoM. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders.Clin. Epigenetics2017916710.1186/s13148‑017‑0365‑z28670349
    [Google Scholar]
  54. RoskiJ. HamiltonB.A. ChapmanW. HeffnerJ. TrivediR. FiolD.G. KukafkaR. BleicherP. KlannJ. How Artificial Intelligence is Changing Health and Healthcare; Health Care: The Hope, the Hype, the Promise, the Peril.USNational Academies Press2019
    [Google Scholar]
  55. VeerabhadrappaB. DelabyC. HirtzC. VialaretJ. AlcoleaD. LleóA. ForteaJ. SantoshM.S. ChoubeyS. LehmannS. Detection of amyloid beta peptides in body fluids for the diagnosis of alzheimer’s disease: Where do we stand?Crit. Rev. Clin. Lab. Sci.20205729911310.1080/10408363.2019.167801131661652
    [Google Scholar]
  56. AlonsoA.C. Grundke-IqbalI. BarraH.S. IqbalK. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau.Proc. Natl. Acad. Sci. USA199794129830310.1073/pnas.94.1.2988990203
    [Google Scholar]
  57. GaiottinoJ. NorgrenN. DobsonR. ToppingJ. NissimA. MalaspinaA. BestwickJ.P. MonschA.U. RegeniterA. LindbergR.L. KapposL. LeppertD. PetzoldA. GiovannoniG. KuhleJ. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases.PLoS One201389e7509110.1371/journal.pone.007509124073237
    [Google Scholar]
  58. HampelH. GoernitzA. BuergerK. Advances in the development of biomarkers for Alzheimer’s disease: From CSF total tau and Aβ1–42 proteins to phosphorylated tau protein.Brain Res. Bull.200361324325310.1016/S0361‑9230(03)00087‑X12909294
    [Google Scholar]
  59. McConnellL.M. SandersG.D. OwensD.K. Evaluation of genetic tests: APOE genotyping for the diagnosis of Alzheimer disease.Genet. Test.199931475310.1089/gte.1999.3.4710464577
    [Google Scholar]
  60. ListaS. HampelH. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease.Expert Rev. Neurother.2017171475710.1080/14737175.2016.120423427332958
    [Google Scholar]
  61. HampelH. ShenY. Beta‐site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease.Scand. J. Clin. Lab. Invest.200969181210.1080/0036551070186461018609117
    [Google Scholar]
  62. TwarowskiB. HerbetM. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review.Int. J. Mol. Sci.2023247651810.3390/ijms2407651837047492
    [Google Scholar]
  63. PrinsS. de KamM.L. TeunissenC.E. GroeneveldG.J. Inflammatory plasma biomarkers in subjects with preclinical Alzheimer’s disease.Alzheimers Res. Ther.202214110610.1186/s13195‑022‑01051‑235922871
    [Google Scholar]
  64. ZhaoY. ZhangY. ZhangL. DongY. JiH. ShenL. The potential markers of circulating microRNAs and long non-coding RNAs in Alzheimer’s disease.Aging Dis.20191061293130110.14336/AD.2018.110531788340
    [Google Scholar]
  65. ZhaoY. WuX. JiangL.L. GuiX. LiuY. SunY. ZhuB. Piña-CrespoJ.C. TREM2 is a receptor for β-amyloid that mediates microglial function.Neuron2018975103110.1016/j.neuron.2018.01.031
    [Google Scholar]
  66. SteinackerP. Al ShweikiM.H.D.R. OecklP. GrafH. LudolphA.C. Schönfeldt-LecuonaC. OttoM. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder.J. Psychiatr. Res.2021144545810.1016/j.jpsychires.2021.09.01234600287
    [Google Scholar]
  67. CaffinoL. MottarliniF. FumagalliF. Born to protect: Leveraging BDNF against cognitive deficit in Alzheimer’s disease.CNS Drugs202034328129710.1007/s40263‑020‑00705‑932052374
    [Google Scholar]
  68. JamesonJ.L. LongoD.L. Precision medicine--personalized, problematic, and promising.N. Engl. J. Med.2015372232229223410.1056/NEJMsb150310426014593
    [Google Scholar]
  69. SoldatovaL. PanovP. Neurodegenerative disease data ontology.Discovery Science.Springer201510.1007/978‑3‑030‑33778‑0_19
    [Google Scholar]
  70. NobreA.J.V. Ontologies for predictive maintenance with time-sensitive data.Thesis Porto Polytechnic Institute2022
    [Google Scholar]
  71. UsmanM.B. OjhaS. JhaS.K. ChellappanD.K. GuptaG. SinghS.K. DuaK. RoychoudhuryS. KumarN. KhanF.A. DurejaH. UpadhyeV. ZacconiF. PrasannaP. KesariK.K. AshrafG.M. AlexiouA. JhaN.K. Biological databases and tools for neurological disorders.J. Integr. Neurosci.20222114110.31083/j.jin210104135164477
    [Google Scholar]
  72. RichessonR.L. SunJ. PathakJ. KhoA.N. DennyJ.C. Clinical phenotyping in selected national networks: Demonstrating the need for high-throughput, portable, and computational methods.Artif. Intell. Med.201671576110.1016/j.artmed.2016.05.00527506131
    [Google Scholar]
  73. SilvaM.C. EugénioP. FariaD. PesquitaC. Ontologies and knowledge graphs in oncology research.Cancers2022148190610.3390/cancers1408190635454813
    [Google Scholar]
  74. Abu-ElkheirM. HayajnehM. AliN. Data management for the internet of things: Design primitives and solution.Sensors20131311155821561210.3390/s13111558224240599
    [Google Scholar]
  75. HampelH. ToschiN. BabiloniC. BaldacciF. BlackK.L. BokdeA.L.W. BunR.S. CacciolaF. CavedoE. ChiesaP.A. ColliotO. ComanC.M. DuboisB. DuggentoA. DurrlemanS. FerrettiM.T. GeorgeN. GenthonR. HabertM.O. HerholzK. KoronyoY. Koronyo-HamaouiM. LamariF. LangevinT. LehéricyS. LorenceauJ. NeriC. NisticòR. Nyasse-MesseneF. RitchieC. RossiS. SantarnecchiE. SpornsO. VerdoonerS.R. VergalloA. VillainN. YounesiE. GaraciF. ListaS. Revolution of Alzheimer precision neurology. Passageway of systems biology and neurophysiology.J. Alzheimers Dis.201864s1S47S10510.3233/JAD‑17993229562524
    [Google Scholar]
  76. HampelH. O’BryantS.E. DurrlemanS. YounesiE. RojkovaK. Escott-PriceV. CorvolJ-C. BroichK. DuboisB. ListaS. A precision medicine initiative for Alzheimer’s disease: The road ahead to biomarker-guided integrative disease modeling.Climacteric201720210711810.1080/13697137.2017.128786628286989
    [Google Scholar]
  77. KanzaS. FreyJ.G. A new wave of innovation in semantic web tools for drug discovery.Expert Opin. Drug Discov.201914543344410.1080/17460441.2019.158688030884989
    [Google Scholar]
  78. QuX.A. Discovery and prioritization of drug candidates for repositioning using semantic web-based representation of integrated diseasome-pharmacome knowledge.Thesis University of Cincinnati2009
    [Google Scholar]
  79. McGintyH.K. Knowledge Acquisition and Representation Methodology (KNARM) and its applications.Thesis University of Miami2018
    [Google Scholar]
  80. BizzarriM. PensottiA. CucinaA. MontiN. FedeliV. Personalized treatments: Where patient’s history and biological background meet.Personalized Medicine in the Making, Philosophical Perspectives from Biology to Healthcare.Springer2022638610.1007/978‑3‑030‑74804‑3_4
    [Google Scholar]
  81. HarrisE.P. MacDonaldD.B. BolandL. BoetS. LaluM.M. McIsaacD.I. Personalized perioperative medicine: A scoping review of personalized assessment and communication of risk before surgery.Can. J. Anaesth.20196691026103710.1007/s12630‑019‑01432‑631240608
    [Google Scholar]
  82. KatsanisS.H. KatsanisN. Molecular genetic testing and the future of clinical genomics.Nat. Rev. Genet.201314641542610.1038/nrg349323681062
    [Google Scholar]
  83. Martínez-GarcíaM. Hernández-LemusE. Data integration challenges for machine learning in precision medicine.Front. Med. (Lausanne)2022878445510.3389/fmed.2021.78445535145977
    [Google Scholar]
  84. LenzeE.J. NicolG.E. BarbourD.L. KannampallilT. WongA.W.K. PiccirilloJ. DrysdaleA.T. SylvesterC.M. HaddadR. MillerJ.P. LowC.A. LenzeS.N. FreedlandK.E. RodebaughT.L. Precision clinical trials: A framework for getting to precision medicine for neurobehavioural disorders.J. Psychiatry Neurosci.2021461E97E11010.1503/jpn.20004233206039
    [Google Scholar]
  85. DoswellC.A.III SchultzD.M. On the use of indices and parameters in forecasting severe storms.Electron. J. Sev. Storms Meteorol.20211312210.55599/ejssm.v1i3.4
    [Google Scholar]
  86. NairP. PizzichiniM.M.M. KjarsgaardM. InmanM.D. EfthimiadisA. PizzichiniE. HargreaveF.E. O’ByrneP.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia.N. Engl. J. Med.20093601098599310.1056/NEJMoa080543519264687
    [Google Scholar]
  87. EdrisA. De FeyterS. MaesT. JoosG. LahousseL. Monoclonal antibodies in type 2 asthma: A systematic review and network meta-analysis.Respir. Res.201920117910.1186/s12931‑019‑1138‑331395084
    [Google Scholar]
  88. DaviesJ. FenselD. Van HarmelenF. Towards the Semantic Web: Ontology-driven Knowledge Management.Wiley200310.1002/0470858060
    [Google Scholar]
  89. TudoracheT. NoyN.F. MusenM.A. Supporting collaborative ontology development in Protégé.7th International Semantic Web Conference, ISWC 2008Karlsruhe, GermanyOctober 26-30, 200810.1007/978‑3‑540‑88564‑1_2
    [Google Scholar]
  90. ZafeiropoulosN. BitilisP. TsekourasG.E. KotisK. Evaluating ontology-based pd monitoring and alerting in personal health knowledge graphs and graph neural networks.Information202415210010.3390/info15020100
    [Google Scholar]
  91. ScottR. ArmstrongJ.H. Alzheimer’s disease research grant advisory board.Available from: https://www.floridahealth.gov/provider-and-partner-resources/research/FINAL-Alzheimers-Annual-Report2014-2015.pdf
  92. ForloniG. Alzheimer’s disease: From basic science to precision medicine approach.BMJ Neurol. Open202022e00007910.1136/bmjno‑2020‑00007933681801
    [Google Scholar]
  93. StoesslA.J. Neuroimaging in Parkinson’s disease: From pathology to diagnosis.Parkinsonism Relat. Disord.201218Suppl. 1S55S5910.1016/S1353‑8020(11)70019‑022166455
    [Google Scholar]
  94. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease.WashingtonNational Academies Press2011
    [Google Scholar]
  95. Gómez-LópezG. DopazoJ. CigudosaJ.C. ValenciaA. Al-ShahrourF. Precision medicine needs pioneering clinical bioinformaticians.Brief. Bioinform.201920375276610.1093/bib/bbx14429077790
    [Google Scholar]
  96. OwenD.J. Individual differences and medication-mediation in chronic illness conditions: A mixed methods approach to the development of a novel, conceptual framework.PhD Thesis University of Derby2021
    [Google Scholar]
  97. SivakJ.M. The aging eye: Common degenerative mechanisms between the Alzheimer’s brain and retinal disease.Invest. Ophthalmol. Vis. Sci.201354187188010.1167/iovs.12‑1082723364356
    [Google Scholar]
  98. ChowS.L. MaiselA.S. AnandI. BozkurtB. de BoerR.A. FelkerG.M. FonarowG.C. GreenbergB. JanuzziJ.L.Jr KiernanM.S. LiuP.P. WangT.J. YancyC.W. ZileM.R. Role of biomarkers for the prevention, assessment, and management of heart failure: A scientific statement from the American Heart Association.Circulation201713522e1054e109110.1161/CIR.000000000000049028446515
    [Google Scholar]
  99. MullaneK. CurtisM.J. WilliamsM. Reproducibility in biomedical research.Research in the Biomedical Sciences.Elsevier201816610.1016/B978‑0‑12‑804725‑5.00001‑X
    [Google Scholar]
  100. Access to new medicines in Europe: Technical review of policy initiatives and opportunities for collaboration and research.2015Available from: https://iris.who.int/handle/10665/159405
  101. ŞıkA.S. A conceptual design for genetic information exchange coding standards in Türkiye.Ph.D Thesis Middle East Technical University2023
    [Google Scholar]
  102. ButlerC. Human rights ethics: A rational approach.Purdue University Press2008
    [Google Scholar]
  103. AroraB. Big data analytics: The underlying technologies used by organizations for value generation.Understanding the Role of Business Analytics.Springer201993010.1007/978‑981‑13‑1334‑9_2
    [Google Scholar]
  104. BennettC.J. BayleyR.M. Privacy protection in the era of ‘big data’: Regulatory challenges and social assessments.Exploring the Boundaries of Big Data.Amsterdam University Press2016
    [Google Scholar]
  105. VegterM. Big and Intimate: Selfhood in times of precision medicine2019Available from: https://repository.ubn.ru.nl/bitstream/handle/2066/213679/213679.pdf
/content/journals/cn/10.2174/011570159X353727250314065140
Loading
/content/journals/cn/10.2174/011570159X353727250314065140
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's; Huntington's; Neurodegenerative; ontologies; Parkinson's; precision medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test