Skip to content
2000
Volume 23, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Neurodegenerative diseases like Alzheimer's disease and Parkinson's disease are severe disorders characterized by progressive neuron degeneration, leading to cognitive decline, motor dysfunction, and other neurological issues, significantly impairing daily life and the quality of life. Despite advancements in understanding these mechanisms, many aspects remain unclear, and current treatments primarily manage symptoms without halting disease progression. Multiple biological pathways are implicated in neurodegeneration, including oxidative stress, neuroinflammation, mitochondrial dysfunction, and aberrant protein folding. Given the multifactorial nature of neurodegenerative diseases, a neuroprotective approach targeting various mechanisms holds significant promise for prevention. Natural products derived from plants, animals, and fungi, known for their antioxidant and anti-inflammatory properties, show substantial potential in the prevention of neurodegeneration. Unlike synthetic compounds, bioactive compounds from these natural sources offer diverse targets due to their varied structures and biological activities. This review focuses on the potential of bioactive compounds from plants with sedative and mood-modulating effects in preventing and/or slowing down neurodegeneration.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X345397241210103538
2025-02-11
2025-10-24
Loading full text...

Full text loading...

References

  1. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a02803528062563
    [Google Scholar]
  2. 2022 Alzheimer’s disease facts and figures.Alzheimers Dement.202218470078910.1002/alz.1263835289055
    [Google Scholar]
  3. MhyreT.R. BoydJ.T. HamillR.W. Maguire-ZeissK.A. Parkinson’s disease.Subcell. Biochem.20126538945510.1007/978‑94‑007‑5416‑4_1623225012
    [Google Scholar]
  4. InamdarN. ArulmozhiD. TandonA. BodhankarS. Parkinson’s disease: Genetics and beyond.Curr. Neuropharmacol.2007529911310.2174/15701590778086689318615181
    [Google Scholar]
  5. KlemmensenM.M. BorrowmanS.H. PearceC. PylesB. ChandraB. Mitochondrial dysfunction in neurodegenerative disorders.Neurotherapeutics2024211e0029210.1016/j.neurot.2023.10.00238241161
    [Google Scholar]
  6. ButterfieldD.A. HalliwellB. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci.201920314816010.1038/s41583‑019‑0132‑630737462
    [Google Scholar]
  7. KumarA. SidhuJ. LuiF. TsaoJ.W. Alzheimer disease.StatPearlsTreasure Island, FLStatPearls2024
    [Google Scholar]
  8. ChenY. YuY. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation.J. Neuroinflammation202320116510.1186/s12974‑023‑02853‑337452321
    [Google Scholar]
  9. TolarM. HeyJ. PowerA. AbushakraS. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression.Int. J. Mol. Sci.20212212635510.3390/ijms2212635534198582
    [Google Scholar]
  10. Gómez-BenitoM. GranadoN. García-SanzP. MichelA. DumoulinM. MoratallaR. Modeling Parkinson’s disease with the alpha-synuclein protein.Front. Pharmacol.20201135610.3389/fphar.2020.0035632390826
    [Google Scholar]
  11. FreireM.A.M. SantosJ.R. Parkinson’s disease: General features, effects of levodopa treatment and future directions.Front. Neuroanat.2010414610.3389/fnana.2010.0014621120063
    [Google Scholar]
  12. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.202020201656539610.1155/2020/656539632148547
    [Google Scholar]
  13. Sharifi-RadM. LankatillakeC. DiasD.A. DoceaA.O. MahomoodallyM.F. LobineD. ChazotP.L. KurtB. BoyunegmezT.T. CatarinaM.A. SharopovF. MartorellM. MartinsN. ChoW.C. CalinaD. Sharifi-RadJ. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics.J. Clin. Med.202094106110.3390/jcm904106132276438
    [Google Scholar]
  14. ChenX. GuoC. KongJ. Oxidative stress in neurodegenerative diseases.Neural Regen. Res.20127537638525774178
    [Google Scholar]
  15. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑937597078
    [Google Scholar]
  16. JonesD.P. Radical-free biology of oxidative stress.Am. J. Physiol. Cell Physiol.20082954C849C86810.1152/ajpcell.00283.200818684987
    [Google Scholar]
  17. PiccirilloS. MagiS. PreziusoA. SerfilippiT. CerqueniG. OrcianiM. AmorosoS. LaricciaV. The hidden notes of redox balance in neurodegenerative diseases.Antioxidants2022118145610.3390/antiox1108145635892658
    [Google Scholar]
  18. GarbarinoV.R. OrrM.E. RodriguezK.A. BuffensteinR. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates.Arch. Biochem. Biophys.201557681610.1016/j.abb.2015.01.02925841340
    [Google Scholar]
  19. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox1202051736830075
    [Google Scholar]
  20. ButterfieldD.A. Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases.J. Alzheimers Dis.201864s1S469S47910.3233/JAD‑17991229504538
    [Google Scholar]
  21. JiangT. SunQ. ChenS. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease.Prog. Neurobiol.201614711910.1016/j.pneurobio.2016.07.00527769868
    [Google Scholar]
  22. SantosJ.R. GoisA.M. MendonçaD.M. FreireM.A. Nutritional status, oxidative stress and dementia: The role of selenium in Alzheimer’s disease.Front. Aging Neurosci.2014620610.3389/fnagi.2014.0020625221506
    [Google Scholar]
  23. GuoC. SunL. ChenX. ZhangD. Oxidative stress, mitochondrial damage and neurodegenerative diseases.Neural Regen. Res.20138212003201425206509
    [Google Scholar]
  24. MisraniA. TabassumS. YangL. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease.Front. Aging Neurosci.20211361758810.3389/fnagi.2021.61758833679375
    [Google Scholar]
  25. PiccirilloS. PreziusoA. AmorosoS. SerfilippiT. MiceliF. MagiS. LaricciaV. A new K+channel-independent mechanism is involved in the antioxidant effect of XE-991 in an in vitro model of glucose metabolism impairment: Implications for Alzheimer’s disease.Cell Death Discov.20228139110.1038/s41420‑022‑01187‑y36127342
    [Google Scholar]
  26. PiccirilloS. MagiS. PreziusoA. CastaldoP. AmorosoS. LaricciaV. Gateways for glutamate neuroprotection in Parkinson’s disease (PD): Essential role of EAAT3 and NCX1 revealed in an in vitro model of PD.Cells202099203710.3390/cells909203732899900
    [Google Scholar]
  27. Clemente-SuárezV. Redondo-FlórezL. Beltrán-VelascoA. Ramos-CampoD. Belinchón-deMiguelP. Martinez-GuardadoI. DalamitrosA. Yáñez-SepúlvedaR. Martín-RodríguezA. Tornero-AguileraJ. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities.Biomedicines2023119248810.3390/biomedicines1109248837760929
    [Google Scholar]
  28. EckertA. KeilU. MarquesC.A. BonertA. FreyC. SchüsselK. MüllerW.E. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease.Biochem. Pharmacol.20036681627163410.1016/S0006‑2952(03)00534‑314555243
    [Google Scholar]
  29. StreitW.J. MrakR.E. GriffinW.S.T. Microglia and neuroinflammation: A pathological perspective.J. Neuroinflammation2004111410.1186/1742‑2094‑1‑1415285801
    [Google Scholar]
  30. YanY-Q. MaC-G. DingZ-B. SongL-J. WangQ. KumarG. Astrocytes: A double-edged sword in neurodegenerative diseases.Neural Regen. Res.20211691702171010.4103/1673‑5374.30606433510058
    [Google Scholar]
  31. WangW.Y. TanM.S. YuJ.T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013626207229
    [Google Scholar]
  32. RatherM.A. KhanA. AlshahraniS. RashidH. QadriM. RashidS. AlsaffarR.M. KamalM.A. RehmanM.U. Inflammation and Alzheimer’s disease: Mechanisms and therapeutic implications by natural products.Mediators Inflamm.2021202112110.1155/2021/998295434381308
    [Google Scholar]
  33. ArenaG. SharmaK. AgyeahG. KrügerR. GrünewaldA. FitzgeraldJ.C. Neurodegeneration and neuroinflammation in parkinson’s disease: A self-sustained loop.Curr. Neurol. Neurosci. Rep.202222842744010.1007/s11910‑022‑01207‑535674870
    [Google Scholar]
  34. AdamuA. LiS. GaoF. XueG. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets.Front. Aging Neurosci.202416134798710.3389/fnagi.2024.134798738681666
    [Google Scholar]
  35. RiazM. KhalidR. AfzalM. AnjumF. FatimaH. ZiaS. RasoolG. EgbunaC. MtewaA.G. UcheC.Z. AslamM.A. Phytobioactive compounds as therapeutic agents for human diseases: A review.Food Sci. Nutr.20231162500252910.1002/fsn3.330837324906
    [Google Scholar]
  36. MuthaR.E. TatiyaA.U. SuranaS.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview.Future J. Pharm. Sci.2021712510.1186/s43094‑020‑00161‑833495733
    [Google Scholar]
  37. StagosD. Antioxidant activity of polyphenolic plant extracts.Antioxidants2019911910.3390/antiox901001931878236
    [Google Scholar]
  38. RudrapalM. KhairnarS.J. KhanJ. DukhyilA.B. AnsariM.A. AlomaryM.N. AlshabrmiF.M. PalaiS. DebP.K. DeviR. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action.Front. Pharmacol.20221380647010.3389/fphar.2022.80647035237163
    [Google Scholar]
  39. Waheed JanabiA.H. KambohA.A. SaeedM. XiaoyuL. BiBiJ. MajeedF. NaveedM. MughalM.J. KorejoN.A. KambohR. AlagawanyM. LvH. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases.Iran. J. Basic Med. Sci.202023214015332405356
    [Google Scholar]
  40. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  41. DeviS. KumarV. SinghS.K. DubeyA.K. KimJ.J. Flavonoids: Potential candidates for the treatment of neurodegenerative disorders.Biomedicines2021929910.3390/biomedicines902009933498503
    [Google Scholar]
  42. de Andrade TelesR.B. DinizT.C. Costa PintoT.C. de Oliveira JúniorR.G. Gama e SilvaM. de LavorÉ.M. FernandesA.W.C. de OliveiraA.P. de Almeida RibeiroF.P.R. da SilvaA.A.M. CavalcanteT.C.F. Quintans JúniorL.J. da Silva AlmeidaJ.R.G. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: A systematic review of preclinical evidences.Oxid. Med. Cell. Longev.201820181704321310.1155/2018/704321329861833
    [Google Scholar]
  43. Meng-zhenS. JuL. Lan-chunZ. Cai-fengD. Shu-daY. Hao-feiY. Wei-yanH. Potential therapeutic use of plant flavonoids in AD and PD.Heliyon2022811e1144010.1016/j.heliyon.2022.e1144036387565
    [Google Scholar]
  44. SpencerJ.P.E. Flavonoids and brain health: Multiple effects underpinned by common mechanisms.Genes Nutr.20094424325010.1007/s12263‑009‑0136‑319685255
    [Google Scholar]
  45. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.949820716914
    [Google Scholar]
  46. Nájera-MaldonadoJ.M. SalazarR. Alvarez-FitzP. Acevedo-QuirozM. Flores-AlfaroE. Hernández-SoteloD. Espinoza-RojoM. RamírezM. Phenolic compounds of therapeutic interest in neuroprotection.J. Xenobiot.202414122724610.3390/jox1401001438390994
    [Google Scholar]
  47. Grabska-KobyłeckaI. SzpakowskiP. KrólA. Książek-WiniarekD. KobyłeckiA. GłąbińskiA. NowakD. Polyphenols and their impact on the prevention of neurodegenerative diseases and development.Nutrients20231515345410.3390/nu1515345437571391
    [Google Scholar]
  48. OnoK. LiL. TakamuraY. YoshiikeY. ZhuL. HanF. MaoX. IkedaT. TakasakiJ. NishijoH. TakashimaA. TeplowD.B. ZagorskiM.G. YamadaM. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding.J. Biol. Chem.201228718146311464310.1074/jbc.M111.32545622393064
    [Google Scholar]
  49. NakajimaA. OhizumiY. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease.Int. J. Mol. Sci.20192014338010.3390/ijms2014338031295812
    [Google Scholar]
  50. MaherP. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease.Food Funct.2017893033304210.1039/C7FO00809K28714503
    [Google Scholar]
  51. CiminiA. GentileR. D’AngeloB. BenedettiE. CristianoL. AvantaggiatiM.L. GiordanoA. FerriC. DesideriG. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway.J. Cell. Biochem.2013114102209222010.1002/jcb.2454823554028
    [Google Scholar]
  52. CortiR. FlammerA.J. HollenbergN.K. LüscherT.F. Cocoa and cardiovascular health.Circulation2009119101433144110.1161/CIRCULATIONAHA.108.82702219289648
    [Google Scholar]
  53. AndújarI. RecioM.C. GinerR.M. RíosJ.L. Cocoa polyphenols and their potential benefits for human health.Oxid. Med. Cell. Longev.2012201212310.1155/2012/90625223150750
    [Google Scholar]
  54. BoncanD.A.T. TsangS.S.K. LiC. LeeI.H.T. LamH.M. ChanT.F. HuiJ.H.L. Terpenes and terpenoids in plants: Interactions with environment and insects.Int. J. Mol. Sci.20202119738210.3390/ijms2119738233036280
    [Google Scholar]
  55. YooK.Y. ParkS.Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics.Molecules20121733524353810.3390/molecules1703352422430119
    [Google Scholar]
  56. BalakrishnanR. AzamS. ChoD.Y. Su-KimI. ChoiD.K. Natural phytochemicals as novel therapeutic strategies to prevent and treat Parkinson’s disease: Current knowledge and future perspectives.Oxid. Med. Cell. Longev.202120211668093510.1155/2021/668093534122727
    [Google Scholar]
  57. Lai Shi MinS. LiewS.Y. ChearN.J.Y. GohB.H. TanW.N. KhawK.Y. Plant terpenoids as the promising source of cholinesterase inhibitors for anti-AD therapy.Biology (Basel)202211230710.3390/biology1102030735205173
    [Google Scholar]
  58. ChangW.H. HsuH.T. LinC.C. AnL.M. LeeC.H. KoH.H. LinC.L. LoY.C. Linalool, a fragrance compound in plants, protects dopaminergic neurons and improves motor function and skeletal muscle strength in experimental models of Parkinson’s disease.Int. J. Mol. Sci.2024255251410.3390/ijms2505251438473763
    [Google Scholar]
  59. MonyT.J. ElahiF. ChoiJ.W. ParkS.J. Neuropharmacological effects of terpenoids on preclinical animal models of psychiatric disorders: A review.Antioxidants2022119183410.3390/antiox1109183436139909
    [Google Scholar]
  60. ChenC.C. LeeH.C. ChangJ.H. ChenS.S. LiT.C. TsaiC.H. ChoD.Y. HsiehC.L. Chinese herb astragalus membranaceus enhances recovery of hemorrhagic stroke: Double-blind, placebo-controlled, randomized study.Evid. Based Complement. Alternat. Med.2012201270845222474516
    [Google Scholar]
  61. CostaI.M. LimaF.O.V. FernandesL.C.B. NorraraB. NetaF.I. AlvesR.D. CavalcantiJ.R.L.P. LucenaE.E.S. CavalcanteJ.S. RegoA.C.M. FilhoI.A. QueirozD.B. FreireM.A.M. GuzenF.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: A systematic review.Curr. Neuropharmacol.201917764866510.2174/1570159X1666618091112334130207235
    [Google Scholar]
  62. AryalB. RautB.K. BhattaraiS. BhandariS. TandanP. GyawaliK. SharmaK. RanabhatD. ThapaR. AryalD. OjhaA. DevkotaH.P. ParajuliN. Potential therapeutic applications of plant-derived alkaloids against inflammatory and neurodegenerative diseases.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/729977835310033
    [Google Scholar]
  63. YatooM.I. GopalakrishnanA. SaxenaA. ParrayO.R. TufaniN.A. ChakrabortyS. TiwariR. DhamaK. IqbalH.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - A review.Recent Pat. Inflamm. Allergy Drug Discov.2018121395810.2174/1872213X1266618011515363529336271
    [Google Scholar]
  64. ZhaoL. WangL. DiS. XuQ. RenQ. ChenS. HuangN. JiaD. ShenX. Steroidal alkaloid solanine A from Solanum nigrum Linn. exhibits anti-inflammatory activity in lipopolysaccharide/interferon γ-activated murine macrophages and animal models of inflammation.Biomed. Pharmacother.201810560661510.1016/j.biopha.2018.06.01929890469
    [Google Scholar]
  65. HussainG. RasulA. AnwarH. AzizN. RazzaqA. WeiW. AliM. LiJ. LiX. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders.Int. J. Biol. Sci.201814334135710.7150/ijbs.2324729559851
    [Google Scholar]
  66. LindaE. Fellows 1 EAB. 5-hydroxy-l-tryptophan, 5-hydroxytryptamine and l-tryptophan-5-hydroxylase in Griffonia simplicifolia.Phytochemistry197091123892396
    [Google Scholar]
  67. MuszyńskaB. ŁojewskiM. RojowskiJ. OpokaW. Sułkowska-ZiajaK. Natural products of relevance in the prevention and supportive treatment of depression.Psychiatr. Pol.201549343545310.12740/PP/2936726276913
    [Google Scholar]
  68. RodondiP.Y. GrazB. BonvinE. Should we collaborate with alternative medicines?Rev. Med. Suisse2012832522422510.53738/REVMED.2012.8.325.022422338526
    [Google Scholar]
  69. RondanelliM. OpizziA. FalivaM. BucciM. PernaS. Relationship between the absorption of 5-hydroxytryptophan from an integrated diet, by means of Griffonia simplicifolia extract, and the effect on satiety in overweight females after oral spray administration.Eat. Weight Disord.2012171e22e2822142813
    [Google Scholar]
  70. WangX.Z. WuF.H. QuW. LiangJ.Y. A new β-carboline alkaloid from the seeds of Griffonia simplicifolia.Chin. J. Nat. Med.201311440140510.1016/S1875‑5364(13)60059‑X23845550
    [Google Scholar]
  71. RollandK.G. PandeyH.S. RostandO.M. ViniT. DianeK. PriyankaS. JosephD.A. SethP. Cytoprotective action of Griffonia simplicifolia (DC.) Baill. against the oxidative stress caused by hydrogen peroxide (H2O2) on neurons and astrocytes.GSC Biol. Pharm. Sci.20185261210.30574/gscbps.2018.5.2.0093
    [Google Scholar]
  72. ManninoG. SerioG. GaglioR. MaffeiM.E. SettanniL. Di StefanoV. GentileC. Biological activity and metabolomics of Griffonia simplicifolia seeds extracted with different methodologies.Antioxidants2023129170910.3390/antiox1209170937760012
    [Google Scholar]
  73. MłynarczykK. Walkowiak-TomczakD. ŁysiakG.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry.J. Funct. Foods20184037739010.1016/j.jff.2017.11.02532362939
    [Google Scholar]
  74. Mikulic-PetkovsekM. SamotichaJ. ElerK. StamparF. VebericR. Traditional elderflower beverages: A rich source of phenolic compounds with high antioxidant activity.J. Agric. Food Chem.20156351477148710.1021/jf506005b25646848
    [Google Scholar]
  75. CharleboisD.B.P. FinnC.E. ThomasA.L. Elderberry: Botany, horticulture, potential.Hortic. Rev. (Am. Soc. Hortic. Sci.)201037213280
    [Google Scholar]
  76. Uncini ManganelliR.E. ZaccaroL. TomeiP.E. Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L.J. Ethnopharmacol.200598332332710.1016/j.jep.2005.01.02115814267
    [Google Scholar]
  77. IzzoA.A. di CarloG. BiscardiD. de FuscoR. MascoloN. BorrelliF. CapassoF. FasuloM.P. AutoreG. Biological screening of Italian medicinal plants for antibacterial activity.Phytother. Res.19959428128610.1002/ptr.2650090410
    [Google Scholar]
  78. HarokopakisE. AlbzrehM.H. HaaseE.M. ScannapiecoF.A. HajishengallisG. Inhibition of proinflammatory activities of major periodontal pathogens by aqueous extracts from elder flower (Sambucus nigra).J. Periodontol.200677227127910.1902/jop.2006.05023216460254
    [Google Scholar]
  79. BeauxD. FleurentinJ. MortierF. Effect of extracts ofOrthosiphon stamineus benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) spreng. in rats.Phytother. Res.199913322222510.1002/(SICI)1099‑1573(199905)13:3<222::AID‑PTR447>3.0.CO;2‑P10353162
    [Google Scholar]
  80. PalominoO. García-AguilarA. GonzálezA. GuillénC. BenitoM. GoyaL. Biological actions and molecular mechanisms of Sambucus nigra L. in neurodegeneration: A cell culture approach.Molecules20212616482910.3390/molecules2616482934443417
    [Google Scholar]
  81. Khadeer AhamedM.B. KrishnaV. DandinC.J. In vitro antioxidant and in vivo prophylactic effects of two γ-lactones isolated from Grewia tiliaefolia against hepatotoxicity in carbon tetrachloride intoxicated rats.Eur. J. Pharmacol.20106311-3425210.1016/j.ejphar.2009.12.03420064503
    [Google Scholar]
  82. Sheeja MalarD. Beema ShafreenR. Karutha PandianS. Pandima DeviK. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia – An in vitro and in silico study.Pharm. Biol.201755138139310.1080/13880209.2016.124181127931177
    [Google Scholar]
  83. RajputA. SharmaP. KumarN. KaurS. AroraS. Neuroprotective activity of novel phenanthrene derivative from Grewia tiliaefolia by in vitro and in silico studies.Sci. Rep.2023131244410.1038/s41598‑023‑29446‑736765125
    [Google Scholar]
  84. ButterfieldD.A. Boyd-KimballD. Mitochondrial oxidative and nitrosative stress and Alzheimer disease.Antioxidants20209981810.3390/antiox909081832887505
    [Google Scholar]
  85. FonsecaL.R. RodriguesR.A. RamosA.S. da CruzJ.D. FerreiraJ.L.P. SilvaJ.R.A. AmaralA.C.F. Herbal medicinal products from Passiflora for anxiety: An unexploited potential.Sci. World J.2020202011810.1155/2020/659843432765195
    [Google Scholar]
  86. LeeJ. JungH.Y. LeeS.I. ChoiJ.H. KimS.G. Effects of Passiflora incarnata Linnaeus on polysomnographic sleep parameters in subjects with insomnia disorder: A double-blind randomized placebo-controlled study.Int. Clin. Psychopharmacol.2020351293510.1097/YIC.000000000000029131714321
    [Google Scholar]
  87. JandaK. WojtkowskaK. JakubczykK. AntoniewiczJ. Skonieczna-ŻydeckaK. Passiflora incarnata in neuropsychiatric disorders - A systematic review.Nutrients20201212389410.3390/nu1212389433352740
    [Google Scholar]
  88. dos Reis IzolanL. da SilvaD.M. OliveiraH.B.L. de Oliveira SalomonJ.L. PeruzziC.P. GarciaS.C. DallegraveE. ZanottoC. ElisabetskyE. GonçalvesC.A. ArboM.D. KonrathE.L. LealM.B. Sintocalmy, a Passiflora incarnata based herbal, attenuates morphine withdrawal in mice.Neurochem. Res.20214651092110010.1007/s11064‑021‑03237‑w33544325
    [Google Scholar]
  89. MiyasakaL.S. AtallahA.N. SoaresB.G. Passiflora for anxiety disorder.Cochrane Database Syst. Rev.20071CD00451817253512
    [Google Scholar]
  90. IngaleS. KastureS. Protective effect of standardized extract of Passiflora incarnata flower in Parkinson’s and Alzheimer’s disease.Anc. Sci. Life201736420020610.4103/asl.ASL_231_1629269972
    [Google Scholar]
  91. GadioliI.L. da CunhaM.S.B. de CarvalhoM.V.O. CostaA.M. PineliL.L.O. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine.Crit. Rev. Food Sci. Nutr.201858578580710.1080/10408398.2016.122480527645583
    [Google Scholar]
  92. KimG.H. LimK. YangH.S. LeeJ.K. KimY. ParkS.K. KimS.H. ParkS. KimT.H. MoonJ.S. HwangI.K. YoonY.S. SeoH.S. NamS.M. KimM.Y. YoonS.G. SeongJ.K. YiS.S. Improvement in neurogenesis and memory function by administration of Passiflora incarnata L. extract applied to sleep disorder in rodent models.J. Chem. Neuroanat.201998274010.1016/j.jchemneu.2019.03.00530951822
    [Google Scholar]
  93. Blecharz-KlinK. PyrzanowskaJ. PiechalA. Joniec-MaciejakI. WawerA. Jawna-ZboińskaK. Mirowska-GuzelD. Widy-TyszkiewiczE. Effect of Passiflora incarnata L. extract on exploratory behaviour and neurotransmitters level in structures involved in motor functions in rats.J. Preclin. Clin. Res.202418111010.26444/jpccr/178182
    [Google Scholar]
  94. MartinelliF. PerroneA. YousefiS. PapiniA. CastiglioneS. GuarinoF. CicatelliA. AelaeiM. AradN. GholamiM. SalamiS. Botanical, phytochemical, anti-microbial and pharmaceutical characteristics of hawthorn (Crataegus monogyna Jacq.), rosaceae.Molecules20212623726610.3390/molecules2623726634885847
    [Google Scholar]
  95. CuiT. NakamuraK. TianS. KayaharaH. TianY.L. Polyphenolic content and physiological activities of Chinese hawthorn extracts.Biosci. Biotechnol. Biochem.200670122948295610.1271/bbb.6036117151441
    [Google Scholar]
  96. SchüsslerM. HölzlJ. FrickeU. Myocardial effects of flavonoids from Crataegus species.Arzneimittelforschung19954588428457575743
    [Google Scholar]
  97. WeihmayrT. ErnstE. Therapeutic effectiveness of Crataegus.Fortschr. Med.19961141-227298647566
    [Google Scholar]
  98. RashidD.P.J. Antioxidant and antiradical activities assessment in two hawthorn species fruit components.Curr. Nutr. Food Sci.2013915258
    [Google Scholar]
  99. AliM. MuhammadS. ShahM.R. KhanA. RashidU. FarooqU. UllahF. SadiqA. AyazM. AliM. AhmadM. LatifA. Neurologically potent molecules from Crataegus oxyacantha; Isolation, anticholinesterase inhibition, and molecular docking.Front. Pharmacol.2017832710.3389/fphar.2017.0032728638340
    [Google Scholar]
  100. KostićD.A. VelickovićJ.M. MitićS.S. MitićM.N. RandelovićS.S. Phenolic content, and antioxidant and antimicrobial activities of Crataegus oxyacantha L. (Rosaceae) fruit extract from Southeast Serbia.Trop. J. Pharm. Res.201211111712410.4314/tjpr.v11i1.15
    [Google Scholar]
  101. SaoudiM. Slama-Ben SalemR.B. SalemM.B. BrahmiN. BadraouiR. NasriM. El FekiA. Beneficial effects of crataegus oxyacantha extract on neurobehavioral deficits and brain tissue damages induced by an insecticide mixture of deltamethrin and chlorpyrifos in adult wistar rats.Biomed. Pharmacother.201911410879510.1016/j.biopha.2019.10879530909143
    [Google Scholar]
  102. PaulS. SharmaS. PaliwalS.K. KastureS. Role of Crataegus oxyacantha (Hawthorn) on scopolamine induced memory deficit and monoamine mediated behaviour in rats.Orient. Pharm. Exp. Med.201717431532410.1007/s13596‑017‑0273‑y
    [Google Scholar]
  103. LanjeC.N. Medicinal natural drug of Valerian (Valerina officinalis): An-over review.Am. J. PharmTech. Res.2020101149172
    [Google Scholar]
  104. Sundaresan NandhiniK.B.N. KaliappanI. Valeriana officinalis: A review of its traditional uses, phytochemistry and pharmacology.Asian J. Pharm. Clin. Res.201811136
    [Google Scholar]
  105. DasG. ShinH.S. TundisR. GonçalvesS. TantengcoO.A.G. CamposM.G. AcquavivaR. MalfaG.A. RomanoA. RoblesJ.A.H. CloresM.Q. PatraJ.K. Plant species of sub-family valerianaceae - A review on its effect on the central nervous system.Plants202110584610.3390/plants1005084633922184
    [Google Scholar]
  106. KüpeliA.E. TatlıÇ.I. ŞekerK.G. CarparE. Sobarzo-SánchezE. CapassoR. Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases.Front. Pharmacol.20211266963810.3389/fphar.2021.66963834054540
    [Google Scholar]
  107. PatočkaJ. JaklJ. Biomedically relevant chemical constituents of Valeriana officinalis.J. Appl. Biomed.201081111810.2478/v10136‑009‑0002‑z
    [Google Scholar]
  108. GrossoC. ValentãoP. FerreresF. AndradeP. The use of flavonoids in central nervous system disorders.Curr. Med. Chem.201320374694471910.2174/0929867311320999015523834189
    [Google Scholar]
  109. de OliveriaD.M. BarretoG. De AndradeD.V.G. SaracenoE. Aon-BertolinoL. CapaniF. Dos Santos El BacháR. GiraldezL.D. Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease.Neurochem. Res.200934221522010.1007/s11064‑008‑9749‑y18512151
    [Google Scholar]
  110. MalvaJ.O. SantosS. MacedoT. Neuroprotective properties of Valeriana officinalis extracts.Neurotox. Res.20046213114010.1007/BF0303321515325965
    [Google Scholar]
  111. MarawneH. MohammadhassanR. MohammadalipourZ. Valerian (Valeriana officinalis) extract inhibits TNF-α and iNOS gene expression in mouse LPS-activated microglial cells.Trad. Med. Res.2022754710.53388/TMR20220320003
    [Google Scholar]
  112. LeeY. JungJ.C. JangS. KimJ. AliZ. KhanI.A. OhS. Anti-inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea.Evid. Based Complement. Alternat. Med.2013201351404923690847
    [Google Scholar]
  113. ZhuangW. YueL. DangX. ChenF. GongY. LinX. LuoY. Rosenroot (Rhodiola): Potential applications in aging-related diseases.Aging Dis.201910113414610.14336/AD.2018.051130705774
    [Google Scholar]
  114. QuZ.Q. ZhouY. ZengY.S. LiY. ChungP. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects.Biomed. Environ. Sci.200922431832610.1016/S0895‑3988(09)60062‑319950527
    [Google Scholar]
  115. BocquetL. SahpazS. HilbertJ.L. RambaudC. RivièreC. Humulus lupulus L., a very popular beer ingredient and medicinal plant: Overview of its phytochemistry, its bioactivity, and its biotechnology.Phytochem. Rev.20181751047109010.1007/s11101‑018‑9584‑y
    [Google Scholar]
  116. YenT.L. HsuC.K. LuW.J. HsiehC.Y. HsiaoG. ChouD.S. WuG.J. SheuJ.R. Neuroprotective effects of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), in ischemic stroke of rats.J. Agric. Food Chem.20126081937194410.1021/jf204909p22300539
    [Google Scholar]
  117. SasaokaN. SakamotoM. KanemoriS. KanM. TsukanoC. TakemotoY. KakizukaA. Long-term oral administration of hop flower extracts mitigates Alzheimer phenotypes in mice.PLoS One201491e8718510.1371/journal.pone.008718524489866
    [Google Scholar]
  118. PalmioliA. MazzoniV. De LuigiA. BruzzoneC. SalaG. ColomboL. BazziniC. ZoiaC.P. InserraM. SalmonaM. De NoniI. FerrareseC. DiomedeL. AiroldiC. Alzheimer’s disease prevention through natural compounds: Cell-free, in vitro, and in vivo dissection of hop (Humulus lupulus L.) multitarget activity.ACS Chem. Neurosci.202213223152316710.1021/acschemneuro.2c0044436283035
    [Google Scholar]
  119. TungM.C. FungK.M. HsuH.M. TsengT.S. Discovery of 8-prenylnaringenin from hop ( Humulus lupulus L.) as a potent monoacylglycerol lipase inhibitor for treatments of neuroinflammation and Alzheimer’s disease.RSC Advances20211149310623107210.1039/D1RA05311F35498911
    [Google Scholar]
  120. El MihyaouiA. Esteves da SilvaJ.C.G. CharfiS. CandelaC.M.E. LamartiA. ArnaoM.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses.Life (Basel)202212447910.3390/life1204047935454969
    [Google Scholar]
  121. DaiY.L. LiY. WangQ. NiuF.J. LiK.W. WangY.Y. WangJ. ZhouC.Z. GaoL.N. Chamomile: A review of its traditional uses, chemical constituents, pharmacological activities and quality control studies.Molecules202228113310.3390/molecules2801013336615326
    [Google Scholar]
  122. SaeediM.K.M. ShahsavariK. ManayiA. Matricaria chamomilla: An updated review on biological activities of the plant and constituents.Res. J. Pharmacogn.2023111109136
    [Google Scholar]
  123. SahA. NaseefP.P. KuruniyanM.S. JainG.K. ZakirF. AggarwalG. A comprehensive study of therapeutic applications of chamomile.Pharmaceuticals (Basel)20221510128410.3390/ph1510128436297396
    [Google Scholar]
  124. AlahmadyN.F. AlkhulaifiF.M. AbdullahM.M. Ali AlharbiA. AllohibiA. AlsubhiN.H. AhmedA.W. Biochemical characterization of chamomile essential oil: Antioxidant, antibacterial, anticancer and neuroprotective activity and potential treatment for Alzheimer’s disease.Saudi J. Biol. Sci.202431210391210.1016/j.sjbs.2023.10391238229887
    [Google Scholar]
  125. IonitaR. PostuP.A. MihasanM. GorganD.L. HancianuM. CioancaO. HritcuL. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study.Phytomedicine20184711312010.1016/j.phymed.2018.04.04930166095
    [Google Scholar]
  126. ShakeriA. SahebkarA. JavadiB. Melissa officinalis L. – A review of its traditional uses, phytochemistry and pharmacology.J. Ethnopharmacol.201618820422810.1016/j.jep.2016.05.01027167460
    [Google Scholar]
  127. SiposS. MoacăE.A. PavelI.Z. AvramŞ. CrețuO.M. CoricovacD. RacoviceanuR.M. GhiulaiR. PanăR.D. ŞoicaC.M. BorcanF. DeheleanC.A. CrăiniceanuZ. Melissa officinalis L. aqueous extract exerts antioxidant and antiangiogenic effects and improves physiological skin parameters.Molecules2021268236910.3390/molecules2608236933921730
    [Google Scholar]
  128. PatoraJ. KlimekB. Flavonoids from lemon balm (Melissa officinalis L., Lamiaceae).Acta Pol. Pharm.200259213914312365606
    [Google Scholar]
  129. DraginicN. AndjicM. JeremicJ. ZivkovicV. KocovicA. TomovicM. BozinB. KladarN. BolevichS. JakovljevicV. MilosavljevicI. Anti-inflammatory and antioxidant effects of Melissa officinalis extracts: A comparative study.Iran. J. Pharm. Res.2022211e12656110.5812/ijpr‑12656136060902
    [Google Scholar]
  130. OzarowskiM. MikolajczakP.L. PiaseckaA. KachlickiP. KujawskiR. BogaczA. Bartkowiak-WieczorekJ. SzulcM. KaminskaE. KujawskaM. Jodynis-LiebertJ. GryszczynskaA. OpalaB. LowickiZ. Seremak-MrozikiewiczA. CzernyB. Influence of the Melissa officinalis leaf extract on long‐term memory in scopolamine animal model with assessment of mechanism of action.Evid. Based Complement. Alternat. Med.201620161972981810.1155/2016/972981827239217
    [Google Scholar]
  131. AkhondzadehS. NoroozianM. MohammadiM. OhadiniaS. JamshidiA.H. KhaniM. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomised, placebo controlled trial.J. Neurol. Neurosurg. Psychiatry200374786386610.1136/jnnp.74.7.86312810768
    [Google Scholar]
  132. MartinsE.N. PessanoN.T.C. LealL. RoosD.H. FolmerV. PuntelG.O. RochaJ.B.T. AschnerM. ÁvilaD.S. PuntelR.L. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice.Brain Res. Bull.2012871747910.1016/j.brainresbull.2011.10.00322020131
    [Google Scholar]
  133. AmmonH. WahlM. Pharmacology of Curcuma longa.Planta Med.19915711710.1055/s‑2006‑9600042062949
    [Google Scholar]
  134. ZielińskaA. AlvesH. MarquesV. DurazzoA. LucariniM. AlvesT.F. MorsinkM. WillemenN. EderP. ChaudM.V. SeverinoP. SantiniA. SoutoE.B. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects.Medicina (Kaunas)202056733610.3390/medicina5607033632635279
    [Google Scholar]
  135. AdamiR. BottaiD. Curcumin and neurological diseases.Nutr. Neurosci.202225344146110.1080/1028415X.2020.176053132441587
    [Google Scholar]
  136. KimD.S.H.L. ParkS.Y. KimJ.Y. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from βA(1–42) insult.Neurosci. Lett.20013031576110.1016/S0304‑3940(01)01677‑911297823
    [Google Scholar]
  137. RajeswariA. Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Eur. Rev. Med. Pharmacol. Sci.200610415716116910344
    [Google Scholar]
  138. GenchiG. LauriaG. CatalanoA. CarocciA. SinicropiM.S. Neuroprotective effects of curcumin in neurodegenerative diseases.Foods20241311177410.3390/foods1311177438891002
    [Google Scholar]
  139. KunduP. DasM. TripathyK. SahooS.K. Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease.ACS Chem. Neurosci.20167121658167010.1021/acschemneuro.6b0020727642670
    [Google Scholar]
  140. da CostaI.M. de Moura FreireM.A. de Paiva CavalcantiJ.R.L. de AraújoD.P. NorraraB. Moreira RosaI.M.M. de AzevedoE.P. do RegoA.C.M. FilhoI.A. GuzenF.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of alzheimer’s disease: A systematic review.Curr. Neuropharmacol.201917540642110.2174/092986732566618011711261029338678
    [Google Scholar]
  141. ReddyP.H. ManczakM. YinX. GradyM.C. MitchellA. KandimallaR. KuruvaC.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease.J. Investig. Med.20166481220123410.1136/jim‑2016‑00024027521081
    [Google Scholar]
  142. ZahraW. BirlaH. SinghS.S. RathoreA.S. DilnashinH. SinghR. KeshriP.K. GautamP. SinghS.P. Neuroprotection by Mucuna pruriens in neurodegenerative diseases.Neurochem. Res.20224771816182910.1007/s11064‑022‑03591‑335380400
    [Google Scholar]
  143. DhanasekaranM. TharakanB. ManyamB.V. Antiparkinson drug – Mucuna pruriens shows antioxidant and metal chelating activity.Phytother. Res.200822161110.1002/ptr.210918064727
    [Google Scholar]
  144. MisraL. WagnerH. Extraction of bioactive principles from Mucuna pruriens seeds.Indian J. Biochem. Biophys.2007441566017385342
    [Google Scholar]
  145. ManyamB.V. DhanasekaranM. HareT.A. Neuroprotective effects of the antiparkinson drug Mucuna pruriens.Phytother. Res.200418970671210.1002/ptr.151415478206
    [Google Scholar]
  146. GuzenF.P. NetaF.I. Da CostaI.M. LimaF.O.V. FernandesL.C.B. CavalcantiJ.R.L.D.P. FreireM.A.D.M. De Souza LucenaE.E. Meneses Do RêgoA.C. FilhoI.A. De AzevedoE.P. Effects of Mucuna pruriens (L.) supplementation on experimental models of parkinson’s disease: A systematic review.Pharmacogn. Rev.20181223788410.4103/phrev.phrev_46_17
    [Google Scholar]
  147. NayakV.S. KumarN. D’SouzaA.S. NayakS.S. CherukuS.P. PaiK.S.R. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia.Neuroreport201728181195120110.1097/WNR.000000000000088828953092
    [Google Scholar]
  148. AhmedS. KhanH. MirzaeiH. HasanM.M. EddouksM. DagliaM. Herbal drug interaction: Mechanistic details through pharmacokinetic portfolio.CNS Neurol. Disord. Drug Targets202120867768610.2174/187152731966620100815171033032517
    [Google Scholar]
  149. AbolarinP.O. AminA. NafiuA.B. OgundeleO.M. OwoyeleB.V. Optimization of Parkinson’s disease therapy with plant extracts and nutrition’s evolving roles.IBRO Neurosci. Rep.20241711210.1016/j.ibneur.2024.05.01138872839
    [Google Scholar]
  150. AbebeW. Herbal medication: Potential for adverse interactions with analgesic drugs.J. Clin. Pharm. Ther.200227639140110.1046/j.1365‑2710.2002.00444.x12472978
    [Google Scholar]
/content/journals/cn/10.2174/011570159X345397241210103538
Loading
/content/journals/cn/10.2174/011570159X345397241210103538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test