Skip to content
2000
Volume 23, Issue 13
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Disease-modifying therapies (DMTs) are aimed at controlling Multiple Sclerosis disease by modulating or suppressing the immune system. However, there is limited data on changes in immune cell subsets induced by these treatments.

Objective

To assess differences in myeloid, T-, and B-cell subsets in the peripheral blood of relapsing-remitting MS (RR-MS) patients treated with different DMTs.

Methods

This longitudinal study enrolled all RR-MS patients treated with cladribine (CLAD), dimethyl fumarate (DMF), and natalizumab (NTZ) between July 2022 and September 2022. All patients underwent blood sample collection with flow cytometry at baseline (T0; before starting treatment) and 24 ± 3 months after treatment initiation (T1).

Results

Forty-three RR-MS patients (83.7% women; mean age 34.7 ± 11.1 years; median EDSS: 2.0, IQR: 1.0-2.8) were enrolled. Among them, 24 (55.8%) were treated with DMF, 10 (23.3%) with NTZ, and 9 (20.9%) with CLAD. At T1, patients assigned to CLAD showed a reduction in B-cell memory-switched ( = .029), B-cell memory-unswitched ( = .08), and B-cell naïve resting ( = .029). Additionally, the T and NK cell compartments showed a reduction in the percentage of CD3/CD4/CD127/CD45RA/CD161+ ( = .057). In the NTZ group, a significant decrease in the percentage of CD3/CD4/CD127/CD45RA/CD161+ ( = .029) was observed. A reduced percentage of mature naïve B cells ( = .057) and B memory-unswitched ( = .059) was observed in the DMF group. No significant differences were found in the myeloid subsets.

Conclusion

DMTs induced significant modifications in B- and T-cell compartments. Characterizing these immunologic changes could deepen our understanding of the mechanisms of action of different therapies.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X360729250319064959
2025-07-04
2025-10-29
Loading full text...

Full text loading...

References

  1. MalpasC.B. ManouchehriniaA. SharminS. RoosI. HorakovaD. HavrdovaE.K. TrojanoM. IzquierdoG. EichauS. BergamaschiR. SolaP. FerraroD. LugaresiA. PratA. GirardM. DuquetteP. GrammondP. Grand’MaisonF. OzakbasS. Van PeschV. GranellaF. HuppertsR. PucciE. BozC. SidhomY. GouiderR. SpitaleriD. SoysalA. PetersenT. VerheulF. KarabudakR. TurkogluR. Ramo-TelloC. TerziM. CristianoE. SleeM. McCombeP. MacdonellR. FragosoY. OlascoagaJ. AltintasA. OlssonT. ButzkuevenH. HillertJ. KalincikT. Early clinical markers of aggressive multiple sclerosis.Brain202014351400141310.1093/brain/awaa081 32386427
    [Google Scholar]
  2. FilippiM. AgostaF. Imaging biomarkers in multiple sclerosis.J. Magn. Reson. Imaging201031477078810.1002/jmri.22102 20373420
    [Google Scholar]
  3. JonesA.P. KermodeA.G. LucasR.M. CarrollW.M. NolanD. HartP.H. Circulating immune cells in multiple sclerosis.Clin. Exp. Immunol.2017187219320310.1111/cei.12878 27689339
    [Google Scholar]
  4. DaiJ. El GazzarM. LiG.Y. MoormanJ.P. YaoZ.Q. Myeloid-derived suppressor cells: Paradoxical roles in infection and immunity.J. Innate Immun.20157211612610.1159/000368233 25401944
    [Google Scholar]
  5. BronteV. BrandauS. ChenS.H. ColomboM.P. FreyA.B. GretenT.F. MandruzzatoS. MurrayP.J. OchoaA. Ostrand-RosenbergS. RodriguezP.C. SicaA. UmanskyV. VonderheideR.H. GabrilovichD.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards.Nat. Commun.2016711215010.1038/ncomms12150 27381735
    [Google Scholar]
  6. GabrilovichD.I. Myeloid-derived suppressor cells.Cancer Immunol. Res.2017513810.1158/2326‑6066.CIR‑16‑0297 28052991
    [Google Scholar]
  7. RederA.T. GençK. ByskoshP.V. PorriniA.M. Monocyte activation in multiple sclerosis.Mult. Scler.19984316216810.1177/135245859800400314 9762667
    [Google Scholar]
  8. González-OriaM.C. Márquez-CoelloM. Girón-OrtegaJ.A. ArgenteJ. MoyaM. Girón-GonzálezJ.A. Monocyte and lymphocyte activation and regulation in multiple sclerosis patients. therapy effects.J. Neuroimm. Pharmacol.201914341342210.1007/s11481‑018‑09832‑z 30649665
    [Google Scholar]
  9. ParisiL. GiniE. BaciD. TremolatiM. FanuliM. BassaniB. FarronatoG. BrunoA. MortaraL. Macrophage polarization in chronic inflammatory diseases: Killers or builders?J. Immunol. Res.2018201812510.1155/2018/8917804 29507865
    [Google Scholar]
  10. GjelstrupM.C. StilundM. PetersenT. MøllerH.J. PetersenE.L. ChristensenT. Subsets of activated monocytes and markers of inflammation in incipient and progressed multiple sclerosis.Immunol. Cell Biol.201896216017410.1111/imcb.1025 29363161
    [Google Scholar]
  11. Ziegler-HeitbrockL. Blood monocytes and their subsets: Established features and open questions.Front. Immunol.2015642310.3389/fimmu.2015.00423 26347746
    [Google Scholar]
  12. D’AmicoE. ZanghìA. ParrinelloN.L. RomanoA. PalumboG.A. ChisariC.G. ToscanoS. RaimondoF.D. ZappiaM. PattiF. Immunological subsets characterization in newly diagnosed relapsing–remitting multiple sclerosis.Front. Immunol.20221381913610.3389/fimmu.2022.819136 35273601
    [Google Scholar]
  13. SchweitzerF. LaurentS. FinkG.R. BarnettM.H. HartungH.P. WarnkeC. Effects of disease-modifying therapy on peripheral leukocytes in patients with multiple sclerosis.J. Neurol.202126872379238910.1007/s00415‑019‑09690‑6 32036423
    [Google Scholar]
  14. LongbrakeE.E. CrossA.H. Effect of multiple sclerosis disease-modifying therapies on B cells and humoral immunity.JAMA Neurol.201673221922510.1001/jamaneurol.2015.3977 26720195
    [Google Scholar]
  15. Canto-GomesJ. BoleixaD. TeixeiraC. Martins da SilvaA. González-SuárezI. CerqueiraJ. Correia-NevesM. NobregaC. Distinct disease-modifying therapies are associated with different blood immune cell profiles in people with relapsing-remitting multiple sclerosis.Int. Immunopharmacol.202413111182610.1016/j.intimp.2024.111826 38461632
    [Google Scholar]
  16. OrrùV. SerraV. MarongiuM. LaiS. LoddeV. ZoledziewskaM. SteriM. LoizeddaA. LobinaM. PirasM.G. VirdisF. DeloguG. MariniM.G. MingoiaM. FlorisM. MasalaM. CastelliM.P. MostallinoR. FrauJ. LoreficeL. FarinaG. FronzaM. CarmagniniD. CartaE. PilottoS. ChessaP. DevotoM. CastigliaP. SollaP. ZarboR.I. IddaM.L. PitzalisM. CoccoE. FiorilloE. CuccaF. Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination.Front. Immunol.202415141646410.3389/fimmu.2024.1416464 39076966
    [Google Scholar]
  17. HöpnerL. ProschmannU. InojosaH. ZiemssenT. AkgünK. Corticosteroid-depending effects on peripheral immune cell subsets vary according to disease modifying strategies in multiple sclerosis.Front. Immunol.202415140431610.3389/fimmu.2024.1404316 38938576
    [Google Scholar]
  18. TraubJ.W. PellkoferH.L. GrondeyK. SeegerI. RowoldC. BrückW. HusseiniL. Häusser-KinzelS. WeberM.S. Natalizumab promotes activation and pro-inflammatory differentiation of peripheral B cells in multiple sclerosis patients.J. Neuroinflammation201916122810.1186/s12974‑019‑1593‑2 31733652
    [Google Scholar]
  19. DaeiS.A. KomijaniE. SarkeshA. GhaderiS.P. Aghebati-MalekiA. Aghebati-MalekiL. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: Rationale and practice.Cell Commun. Signal.202321132110.1186/s12964‑023‑01289‑9 37946301
    [Google Scholar]
  20. MillsE.A. OgrodnikM.A. PlaveA. Mao-DraayerY. Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis.Front. Neurol.20189510.3389/fneur.2018.00005 29410647
    [Google Scholar]
  21. LeistT.P. WeissertR. Cladribine.Clin. Neuropharmacol.2011341283510.1097/WNF.0b013e318204cd90 21242742
    [Google Scholar]
  22. BottaC. MaiaC. GarcésJ.J. TerminiR. PerezC. ManriqueI. BurgosL. ZabaletaA. AlignaniD. SarvideS. MerinoJ. PuigN. CedenaM.T. RossiM. TassoneP. GentileM. CorrealeP. BorrelloI. TerposE. JelinekT. PaivaA. RoccaroA. GoldschmidtH. Avet-LoiseauH. RosinolL. MateosM.V. Martinez-LopezJ. LahuertaJ.J. BladéJ. San-MiguelJ.F. PaivaB. FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology.Blood Adv.20226269070310.1182/bloodadvances.2021005198 34587246
    [Google Scholar]
  23. BottaC. PerezC. LarrayozM. PuigN. CedenaM.T. TerminiR. GoicoecheaI. RodriguezS. ZabaletaA. LopezA. SarvideS. BlancoL. PapettiD.M. NobileM.S. BesozziD. GentileM. CorrealeP. SiragusaS. OriolA. González-GarciaM.E. SuredaA. de ArribaF. Rios TamayoR. MoraledaJ.M. GironellaM. HernandezM.T. BargayJ. PalomeraL. Pérez-MontañaA. GoldschmidtH. Avet-LoiseauH. RoccaroA. OrfaoA. Martinez-LopezJ. RosiñolL. LahuertaJ.J. BladeJ. MateosM.V. San-MiguelJ.F. Martinez ClimentJ.A. PaivaB. Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance.Nat. Commun.2023141582510.1038/s41467‑023‑41562‑6 37730678
    [Google Scholar]
  24. RomanoA. ParrinelloN.L. BarchittaM. ManueleR. PuglisiF. MaugeriA. BarbatoA. TrioloA.M. GiallongoC. TibulloD. La FerlaL. BottaC. SiragusaS. IacobelloC. MontineriA. VoltiG.L. AgodiA. PalumboG.A. Di RaimondoF. In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection.Sci. Rep.2022121723710.1038/s41598‑022‑11157‑0 35508575
    [Google Scholar]
  25. WiendlH. SchmiererK. HodgkinsonS. DerfussT. ChanA. SellebjergF. AchironA. MontalbanX. PratA. De StefanoN. BarkhofF. LeocaniL. VermerschP. ChudeckaA. MwapeC. HolmbergK.H. BoschertU. RoyS. Specific patterns of immune cell dynamics may explain the early onset and prolonged efficacy of cladribine tablets.Neurol. Neuroimmunol. Neuroinflamm.2023101e20004810.1212/NXI.0000000000200048 36411081
    [Google Scholar]
  26. PetersonL. FujinamiR. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis.J. Neuroimmunol.20071841-2374410.1016/j.jneuroim.2006.11.015 17196667
    [Google Scholar]
  27. MoserT. SchwenkerK. SeiberlM. FeigeJ. AkgünK. Haschke-BecherE. ZiemssenT. SellnerJ. Long‐term peripheral immune cell profiling reveals further targets of oral cladribine in MS.Ann. Clin. Transl. Neurol.20207112199221210.1002/acn3.51206 33002321
    [Google Scholar]
  28. DobreanuM. ManuD.R. MănescuI.B. GaborM.R. HuţanuA. BărcuţeanL. BălaşaR. Treatment with cladribine selects IFNγ+IL17+ T cells in RRMS patients – An in vitro study.Front. Immunol.20211274301010.3389/fimmu.2021.743010 34970256
    [Google Scholar]
  29. KemmererC.L. PernpeintnerV. RuschilC. AbdelhakA. SchollM. ZiemannU. KrumbholzM. HemmerB. KowarikM.C. Differential effects of disease modifying drugs on peripheral blood B cell subsets: A cross sectional study in multiple sclerosis patients treated with interferon-β, glatiramer acetate, dimethyl fumarate, fingolimod or natalizumab.PLoS One2020157e023544910.1371/journal.pone.0235449 32716916
    [Google Scholar]
  30. Montes DiazG. FraussenJ. Van WijmeerschB. HuppertsR. SomersV. Dimethyl fumarate induces a persistent change in the composition of the innate and adaptive immune system in multiple sclerosis patients.Sci. Rep.201881819410.1038/s41598‑018‑26519‑w 29844361
    [Google Scholar]
  31. Nakhaei-NejadM. BarillaD. LeeC.H. BlevinsG. GiulianiF. Characterization of lymphopenia in patients with MS treated with dimethyl fumarate and fingolimod.Neurol. Neuroimmunol. Neuroinflamm.201852e43210.1212/NXI.0000000000000432 29296636
    [Google Scholar]
  32. LundyS.K. WuQ. WangQ. DowlingC.A. TaitanoS.H. MaoG. Mao-DraayerY. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets.Neurol. Neuroimmunol. Neuroinflamm.201632e21110.1212/NXI.0000000000000211 27006972
    [Google Scholar]
  33. SmithM.D. MartinK.A. CalabresiP.A. BhargavaP. Dimethyl fumarate alters B‐cell memory and cytokine production in MS patients.Ann. Clin. Transl. Neurol.20174535135510.1002/acn3.411 28491903
    [Google Scholar]
  34. Sainz de la MazaS. MedinaS. VillarrubiaN. Costa-FrossardL. MonrealE. Tejeda-VelardeA. Rodríguez-MartínE. RoldánE. Álvarez-CermeñoJ.C. VillarL.M. Factors associated with dimethyl fumarate-induced lymphopenia.J. Neurol. Sci.20193984810.1016/j.jns.2019.01.007 30658226
    [Google Scholar]
  35. HofmannK. ClauderA.K. ManzR.A. Targeting B cells and plasma cells in autoimmune diseases.Front. Immunol.2018983510.3389/fimmu.2018.00835 29740441
    [Google Scholar]
  36. SpencerC.M. Crabtree-HartmanE.C. Lehmann-HornK. CreeB.A.C. ZamvilS.S. Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate.Neurol. Neuroimmunol. Neuroinflamm.201523e7610.1212/NXI.0000000000000076 25738172
    [Google Scholar]
  37. FleischerV. FriedrichM. RezkA. BühlerU. WitschE. UphausT. BittnerS. GroppaS. TackenbergB. Bar-OrA. ZippF. LuessiF. Treatment response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS.Mult. Scler.201824563264110.1177/1352458517703799 28436295
    [Google Scholar]
  38. WrightK. WinklerM.D. NewtonB.D. SormaniM.P. OkudaD.T. Patient outcomes influenced by reduced lymphocyte counts after dimethyl fumarate initiation.Neurol. Neuroimmunol. Neuroinflamm.201746e39710.1212/NXI.0000000000000397 28959705
    [Google Scholar]
  39. WuQ. WangQ. MaoG. DowlingC.A. LundyS.K. Mao-DraayerY. Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients.J. Immunol.201719883069308010.4049/jimmunol.1601532 28258191
    [Google Scholar]
  40. KimJ.M. RasmussenJ.P. RudenskyA.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice.Nat. Immunol.20078219119710.1038/ni1428 17136045
    [Google Scholar]
  41. HaasJ. HugA. ViehöverA. FritzschingB. FalkC.S. FilserA. VetterT. MilkovaL. KorporalM. FritzB. Storch-HagenlocherB. KrammerP.H. Suri-PayerE. WildemannB. Reduced suppressive effect of CD4+CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis.Eur. J. Immunol.200535113343335210.1002/eji.200526065 16206232
    [Google Scholar]
  42. VenkenK. HellingsN. BroekmansT. HensenK. RummensJ.L. StinissenP. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: Recovery of memory Treg homeostasis during disease progression.J. Immunol.200818096411642010.4049/jimmunol.180.9.6411 18424765
    [Google Scholar]
  43. FletcherJ.M. LalorS.J. SweeneyC.M. TubridyN. MillsK.H.G. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.Clin. Exp. Immunol.2010162111110.1111/j.1365‑2249.2010.04143.x 20682002
    [Google Scholar]
  44. BierhanslL. HartungH.P. AktasO. RuckT. RodenM. MeuthS.G. Thinking outside the box: Non-canonical targets in multiple sclerosis.Nat. Rev. Drug Discov.202221857860010.1038/s41573‑022‑00477‑5 35668103
    [Google Scholar]
  45. van LangelaarJ. Rijvers, L.; Smolders, J.; van Luijn, M.M. B and T cells driving multiple sclerosis: Identity, mechanisms and potential triggers.Front. Immunol.20201176010.3389/fimmu.2020.00760 32457742
    [Google Scholar]
  46. KrumbholzM. MeinlI. KümpfelT. HohlfeldR. MeinlE. Natalizumab disproportionately increases circulating pre-B and B cells in multiple sclerosis.Neurology200871171350135410.1212/01.wnl.0000327671.91357.96 18936427
    [Google Scholar]
  47. ZanottiC. ChiariniM. SeranaF. SottiniA. GarrafaE. TorriF. CaimiL. RasiaS. CapraR. ImbertiL. Peripheral accumulation of newly produced T and B lymphocytes in natalizumab-treated multiple sclerosis patients.Clin. Immunol.20121451192610.1016/j.clim.2012.07.007 22892399
    [Google Scholar]
  48. PlanasR. JelcicI. SchipplingS. MartinR. SospedraM. Natalizumab treatment perturbs memory‐ and marginal zone‐like B‐cell homing in secondary lymphoid organs in multiple sclerosis.Eur. J. Immunol.201242379079810.1002/eji.201142108 22144343
    [Google Scholar]
  49. Ramos-CejudoJ. Oreja-GuevaraC. Stark AroeiraL. Rodriguez de AntonioL. ChamorroB. Diez-TejedorE. Treatment with natalizumab in relapsing-remitting multiple sclerosis patients induces changes in inflammatory mechanism.J. Clin. Immunol.201131462363110.1007/s10875‑011‑9522‑x 21491095
    [Google Scholar]
  50. KunickiM.A. Amaya HernandezL.C. DavisK.L. BacchettaR. RoncaroloM.G. Identity and diversity of human peripheral Th and T regulatory cells defined by single-cell mass cytometry.J. Immunol.2018200133634610.4049/jimmunol.1701025 29180490
    [Google Scholar]
  51. HaschkaD. TymoszukP. BstehG. PetzerV. BerekK. TheurlI. BergerT. WeissG. Expansion of neutrophils and classical and nonclassical monocytes as a hallmark in relapsing-remitting multiple sclerosis.Front. Immunol.20201159410.3389/fimmu.2020.00594 32411125
    [Google Scholar]
  52. WaschbischA. SchröderS. SchraudnerD. SammetL. WekslerB. MelmsA. PfeifenbringS. StadelmannC. SchwabS. LinkerR.A. Pivotal role for CD16+ monocytes in immune surveillance of the central nervous system.J. Immunol.201619641558156710.4049/jimmunol.1501960 26746191
    [Google Scholar]
  53. ChuluundorjD. HardingS.A. AbernethyD. La FlammeA.C. Expansion and preferential activation of the CD14+ CD16+ monocyte subset during multiple sclerosis.Immunol. Cell Biol.201492650951710.1038/icb.2014.15 24638064
    [Google Scholar]
  54. AjamiB. SteinmanL. Nonclassical monocytes: Are they the next therapeutic targets in multiple sclerosis?Immunol. Cell Biol.201896212512710.1111/imcb.12004 29352485
    [Google Scholar]
/content/journals/cn/10.2174/011570159X360729250319064959
Loading
/content/journals/cn/10.2174/011570159X360729250319064959
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test