Skip to content
2000
Volume 23, Issue 13
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Introduction

Quercetin, a naturally occurring flavonoid, has been reported to possess several pharmacological activities including neuroprotective properties. Chronic alcohol exposure is known to cause apoptotic neurodegeneration. In this study, docking studies were used to investigate the ligand-protein affinity against various neuroinflammatory targets like ChAt, TNF, IL-6, and IL-1β. Next, molecular studies were performed to determine quercetin activity against chronic ethanol-induced neurodegeneration in the adult rat cortex.

Methods

Adult rats were treated with ethanol for 3 months while quercetin was treated for the last 20 days along with ethanol to the respective experimental groups. Elements of the mitochondrial apoptotic pathway . pro-apoptotic protein Bax, cytochrome C release, and activation of caspase-9 and caspase-3 were determined after respective drug treatment. Our docking results revealed that quercetin possesses neuroprotective potential by targeting neuroinflammatory proteins inhibiting neurodegeneration.

Results

Western blot results showed that ethanol administration increased the protein expressions of Bax, cytochrome C, caspase-9, and caspase-3. Furthermore, DNA damage was also observed by chronic ethanol treatment with increased expression of PARP-1. Quercetin treatment offered neuroprotection in the cortex against ethanol-induced neurodegeneration. Quercetin reversed the ethanol-induced apoptotic trend down-regulating Bax, preventing cytochrome C release and inhibition of caspase cascade.

Conclusion

Immunohistological findings . caspase-3 immunoreactivity, Nissl staining, and Fluoro-Jade B staining also revealed significant neuronal survival with quercetin treatment against ethanol-induced neuronal cell death. Our and findings suggest that quercetin has the potential capability to be used as a neuroprotective agent against alcoholic neurotoxicity.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X349349250118152027
2025-05-29
2025-10-28
Loading full text...

Full text loading...

References

  1. KrumanI.I. HendersonG.I. BergesonS.E. DNA damage and neurotoxicity of chronic alcohol abuse.Exp. Biol. Med. (Maywood)2012237774074710.1258/ebm.2012.011421 22829701
    [Google Scholar]
  2. FaddaF. RossettiZ.L. Chronic ethanol consumption: From neuroadaptation to neurodegeneration.Prog. Neurobiol.199856438543110.1016/S0301‑0082(98)00032‑X 9775400
    [Google Scholar]
  3. BeracocheaD. DurkinT.P. JaffardR. On the involvement of the central cholinergic system in memory deficits induced by long term ethanol consumption in mice.Pharmacol. Biochem. Behav.198624351952410.1016/0091‑3057(86)90551‑4 3703888
    [Google Scholar]
  4. PhillipsS.C. CraggB.G. Chronic consumption of alcohol by adult mice: Effect on hippocampal cells and synapses.Exp. Neurol.198380121822610.1016/0014‑4886(83)90018‑3 6682045
    [Google Scholar]
  5. WalkerD.W. BarnesD.E. ZornetzerS.F. HunterB.E. KubanisP. Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats.Science1980209445771171310.1126/science.7394532 7394532
    [Google Scholar]
  6. WalkerD.W. HunterB.E. AbrahamW.C. Neuroanatomical and functional deficits subsequent to chronic ethanol administration in animals.Alcohol. Clin. Exp. Res.19815226728210.1111/j.1530‑0277.1981.tb04901.x 7018310
    [Google Scholar]
  7. VallésS.L. BlancoA.M. PascualM. GuerriC. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes.Brain Pathol.200414436537110.1111/j.1750‑3639.2004.tb00079.x 15605983
    [Google Scholar]
  8. ObernierJ.A. BouldinT.W. CrewsF.T. Binge ethanol exposure in adult rats causes necrotic cell death.Alcohol. Clin. Exp. Res.200226454755710.1111/j.1530‑0277.2002.tb02573.x 11981132
    [Google Scholar]
  9. HaorahJ. RamirezS.H. FloreaniN. GorantlaS. MorseyB. PersidskyY. Mechanism of alcohol-induced oxidative stress and neuronal injury.Free Radic. Biol. Med.200845111542155010.1016/j.freeradbiomed.2008.08.030 18845238
    [Google Scholar]
  10. NaseerM.I. UllahN. ZubairH. HassanM. YangB.C. KimM.O. Vitamin-C protect ethanol induced apoptotic neurodegeneration in post natal rat brain.Pak. J. Med. Sci.200925718722
    [Google Scholar]
  11. ChuJ. TongM. de la MonteS.M. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons.Acta Neuropathol.2007113665967310.1007/s00401‑007‑0199‑4 17431646
    [Google Scholar]
  12. RamachandranV. WattsL.T. MaffiS.K. ChenJ. SchenkerS. HendersonG. Ethanol‐induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons.J. Neurosci. Res.200374457758810.1002/jnr.10767 14598302
    [Google Scholar]
  13. RathinamM.L. WattsL.T. StarkA.A. MahimainathanL. StewartJ. SchenkerS. HendersonG.I. Astrocyte control of fetal cortical neuron glutathione homeostasis: Up‐regulation by ethanol.J. Neurochem.20069651289130010.1111/j.1471‑4159.2006.03674.x 16464233
    [Google Scholar]
  14. SunA.Y. Ingelman-SundbergM. NeveE. MatsumotoH. NishitaniY. MinowaY. FukuiY. BaileyS.M. PatelV.B. CunninghamC.C. ZimaT. FialovaL. MikulikovaL. PopovP. MalbohanI. JanebovaM. NesporK. SunG.Y. Ethanol and oxidative stress.Alcohol. Clin. Exp. Res.200125s1)(Suppl ISBRA237S243S10.1111/j.1530‑0277.2001.tb02402.x 11391077
    [Google Scholar]
  15. GreenD.R. ReedJ.C. Mitochondria and apoptosis.Science199828153811309131210.1126/science.281.5381.1309 9721092
    [Google Scholar]
  16. WangX. The expanding role of mitochondria in apoptosis.Genes Dev.2001152229222933 11711427
    [Google Scholar]
  17. KaufmannS.H. EarnshawW.C. Induction of apoptosis by cancer chemotherapy.Exp. Cell Res.20002561424910.1006/excr.2000.4838 10739650
    [Google Scholar]
  18. DikranianK. IshimaruM.J. TenkovaT. LabruyereJ. QinY.Q. IkonomidouC. OlneyJ.W. Apoptosis in the in vivo mammalian forebrain.Neurobiol. Dis.20018335937910.1006/nbdi.2001.0411 11447994
    [Google Scholar]
  19. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  20. SaelensX. FestjensN. WalleL.V. GurpM. LooG. VandenabeeleP. Toxic proteins released from mitochondria in cell death.Oncogene200423162861287410.1038/sj.onc.1207523 15077149
    [Google Scholar]
  21. O’RourkeB. CortassaS. AonM.A. Mitochondrial ion channels: Gatekeepers of life and death.Physiology (Bethesda)200520530331510.1152/physiol.00020.2005 16174870
    [Google Scholar]
  22. EcheverryC. ArredondoF. Abin-CarriquiryJ.A. MidiwoJ.O. OchiengC. KeruboL. DajasF. Pretreatment with natural flavones and neuronal cell survival after oxidative stress: A structure-activity relationship study.J. Agric. Food Chem.20105842111211510.1021/jf902951v 20095615
    [Google Scholar]
  23. MiddletonE.Jr KandaswamiC. TheoharidesT.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.Pharmacol. Rev.2000524673751 11121513
    [Google Scholar]
  24. LeriM. ScutoM. OntarioM.L. CalabreseV. CalabreseE.J. BucciantiniM. StefaniM. Healthy effects of plant polyphenols: Molecular mechanisms.Int. J. Mol. Sci.2020214125010.3390/ijms21041250 32070025
    [Google Scholar]
  25. ChuY.H. ChangC.L. HsuH.F. Flavonoid content of several vegetables and their antioxidant activity.J. Sci. Food Agric.200080556156610.1002/(SICI)1097‑0010(200004)80:5<561::AID‑JSFA574>3.0.CO;2‑#
    [Google Scholar]
  26. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m 11410016
    [Google Scholar]
  27. ZhengY. HaworthI.S. ZuoZ. ChowM.S.S. ChowA.H.L. Physicochemical and structural characterization of quercetin-beta-cyclodextrin complexes.J. Pharm. Sci.20059451079108910.1002/jps.20325 15793810
    [Google Scholar]
  28. IshigeK. SchubertD. SagaraY. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms.Free Radic. Biol. Med.200130443344610.1016/S0891‑5849(00)00498‑6 11182299
    [Google Scholar]
  29. WattanathoJ. PhachonpaiW. PripremA. SuthiparinS. Intranasal administration of quercetin liposome decreases anxiety-like behavior and increases spatial memory.Am. J. Agric. Biol. Sci.200721313510.3844/ajabssp.2007.31.35
    [Google Scholar]
  30. YoudimK.A. QaiserM.Z. BegleyD.J. Rice-EvansC.A. AbbottN.J. Flavonoid permeability across an in situ model of the blood–brain barrier.Free Radic. Biol. Med.200436559260410.1016/j.freeradbiomed.2003.11.023 14980703
    [Google Scholar]
  31. ChoJ.Y. KimI.S. JangY.H. KimA.R. LeeS.R. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia.Neurosci. Lett.2006404333033510.1016/j.neulet.2006.06.010 16806698
    [Google Scholar]
  32. HeoH.J. LeeC.Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration.J. Agric. Food Chem.200452257514751710.1021/jf049243r 15675797
    [Google Scholar]
  33. ZhangZ.J. CheangL.C. WangM.W. LeeS.M. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish.Int. J. Mol. Med.2011272195203 21132259
    [Google Scholar]
  34. ChenT.J. JengJ.Y. LinC.W. WuC.Y. ChenY.C. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells.Toxicology20062231-211312610.1016/j.tox.2006.03.007 16647178
    [Google Scholar]
  35. XiJ. ZhangB. LuoF. LiuJ. YangT. Quercetin protects neuroblastoma SH-SY5Y cells against oxidative stress by inhibiting expression of Krüppel-like factor 4.Neurosci. Lett.2012527211512010.1016/j.neulet.2012.08.082 22985515
    [Google Scholar]
  36. ShahS.A. YoonG.H. ChungS.S. AbidM.N. KimT.H. LeeH.Y. KimM.O. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve alzheimer’s disease neuropathological deficits.Mol. Psychiatry201722340741610.1038/mp.2016.23 27001618
    [Google Scholar]
  37. BadshahH. KimT.H. KimM.J. AhmadA. AliT. YoonG.H. NaseerM.I. KimM.O. Apomorphine attenuates ethanol-induced neurodegeneration in the adult rat cortex.Neurochem. Int.20147481510.1016/j.neuint.2014.04.009 24795108
    [Google Scholar]
  38. AliT. BadshahH. KimT.H. KimM.O. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model.J. Pineal Res.2014581718510.1111/jpi.12194 25401971
    [Google Scholar]
  39. BadshahH. AliT. RehmanS. AminF. UllahF. KimT.H. KimM.O. Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-jun N-terminal kinase pathway in the adult mouse brain.J. Neuroimmune Pharmacol.2016111486010.1007/s11481‑015‑9623‑z 26139594
    [Google Scholar]
  40. Vander HeidenM.G. ThompsonC.B. Bcl-2 proteins: Regulators of apoptosis or of mitochondrial homeostasis?Nat. Cell Biol.199918E209E21610.1038/70237 10587660
    [Google Scholar]
  41. LiP. NijhawanD. BudihardjoI. SrinivasulaS.M. AhmadM. AlnemriE.S. WangX. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.Cell199791447948910.1016/S0092‑8674(00)80434‑1 9390557
    [Google Scholar]
  42. AndersonK.J. MillerK.M. FugacciaI. ScheffS.W. Regional distribution of Fluoro-Jade B staining in the hippocampus following traumatic brain injury.Exp. Neurol.2005193112513010.1016/j.expneurol.2004.11.025 15817271
    [Google Scholar]
  43. RadiE. FormichiP. BattistiC. FedericoA. Apoptosis and oxidative stress in neurodegenerative diseases.J. Alzheimers Dis.201442s3Suppl. 3S125S15210.3233/JAD‑132738 25056458
    [Google Scholar]
  44. YoungC. RothK.A. KlockeB.J. WestT. HoltzmanD.M. LabruyereJ. QinY.Q. DikranianK. OlneyJ.W. Role of caspase-3 in ethanol-induced developmental neurodegeneration.Neurobiol. Dis.200520260861410.1016/j.nbd.2005.04.014 15927478
    [Google Scholar]
  45. AntonioA.M. DruseM.J. Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons.Brain Res.20081204162310.1016/j.brainres.2008.02.018 18329634
    [Google Scholar]
  46. ChandlerL.J. SuttonG. NorwoodD. SumnersC. CrewsF.T. Chronic ethanol increases N-methyl-D-aspartate-stimulated nitric oxide formation but not receptor density in cultured cortical neurons.Mol. Pharmacol.199751573374010.1124/mol.51.5.733 9145911
    [Google Scholar]
  47. IkonomidouC. BittigauP. IshimaruM.J. WozniakD.F. KochC. GenzK. PriceM.T. StefovskaV. HörsterF. TenkovaT. DikranianK. OlneyJ.W. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome.Science200028754551056106010.1126/science.287.5455.1056 10669420
    [Google Scholar]
  48. BaileyS.M. PietschE.C. CunninghamC.C. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III.Free Radic. Biol. Med.1999277-889190010.1016/S0891‑5849(99)00138‑0 10515594
    [Google Scholar]
  49. GoodlettC.R. HornK.H. ZhouF.C. Alcohol teratogenesis: Mechanisms of damage and strategies for intervention.Exp. Biol. Med. (Maywood)2005230639440610.1177/15353702‑0323006‑07 15956769
    [Google Scholar]
  50. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  51. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  52. SatohM.S. LindahlT. Role of poly(ADP-ribose) formation in DNA repair.Nature1992356636735635810.1038/356356a0 1549180
    [Google Scholar]
  53. MandirA.S. PoitrasM.F. BerlinerA.R. HerringW.J. GuastellaD.B. FeldmanA. PoirierG.G. WangZ.Q. DawsonT.M. DawsonV.L. NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase.J. Neurosci.200020218005801110.1523/JNEUROSCI.20‑21‑08005.2000 11050121
    [Google Scholar]
  54. ZhangJ. DawsonV.L. DawsonT.M. SnyderS.H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity.Science1994263514768768910.1126/science.8080500 8080500
    [Google Scholar]
  55. DuL. ZhangX. HanY.Y. BurkeN.A. KochanekP.M. WatkinsS.C. GrahamS.H. CarcilloJ.A. SzabóC. ClarkR.S.B. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress.J. Biol. Chem.200327820184261843310.1074/jbc.M301295200 12626504
    [Google Scholar]
  56. BootsA.W. HaenenG.R.M.M. BastA. Health effects of quercetin: From antioxidant to nutraceutical.Eur. J. Pharmacol.20085852-332533710.1016/j.ejphar.2008.03.008 18417116
    [Google Scholar]
  57. LiuY.W. LiuX.L. KongL. ZhangM.Y. ChenY.J. ZhuX. HaoY.C. Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/] glyoxalase-1 pathway mediated by phosphorylation regulation.Biomed. Pharmacother.20191092145215410.1016/j.biopha.2018.11.066 30551472
    [Google Scholar]
  58. KhaledK.A. El-SayedY.M. Al-HadiyaB.M. Disposition of the flavonoid quercetin in rats after single intravenous and oral doses.Drug Dev. Ind. Pharm.200329439740310.1081/DDC‑120018375 12737533
    [Google Scholar]
  59. FinucaneD.M. Bossy-WetzelE. WaterhouseN.J. CotterT.G. GreenD.R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL.J. Biol. Chem.199927442225223310.1074/jbc.274.4.2225 9890985
    [Google Scholar]
  60. PastorinoJ.G. ChenS.T. TafaniM. SnyderJ.W. FarberJ.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition.J. Biol. Chem.1998273137770777510.1074/jbc.273.13.7770 9516487
    [Google Scholar]
  61. PolsterB.M. BasañezG. YoungM. SuzukiM. FiskumG. Inhibition of Bax-induced cytochrome c release from neural cell and brain mitochondria by dibucaine and propranolol.J. Neurosci.20032372735274310.1523/JNEUROSCI.23‑07‑02735.2003 12684459
    [Google Scholar]
  62. MartinA.G. NguyenJ. WellsJ.A. FearnheadH.O. Apo cytochrome c inhibits caspases by preventing apoptosome formation.Biochem. Biophys. Res. Commun.2004319394495010.1016/j.bbrc.2004.05.084 15184073
    [Google Scholar]
  63. ZhangJ. StanleyR.A. AdaimA. MeltonL.D. SkinnerM.A. Free radical scavenging and cytoprotective activities of phenolic antioxidants.Mol. Nutr. Food Res.20065011996100510.1002/mnfr.200600072 17039459
    [Google Scholar]
/content/journals/cn/10.2174/011570159X349349250118152027
Loading
/content/journals/cn/10.2174/011570159X349349250118152027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test