Skip to content
2000
Volume 23, Issue 13
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Alzheimer's disease (AD) is a neurological disorder characterized by cognitive decline and behavioral distrubance which are expected to significantly affect the patient's quality of life. Previous studies revealed the neuroprotective effects of progesterone. Furthermore, the aim of this study was to assess the neuroprotective potentials of new derivatives of progesterone (AN-1 to AN-5).

Methods

Following compound synthesis and structure elucidation, in vitro antioxidant (DPPH), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, as well as molecular docking studies, were performed, according to the standard procedures and the most potent compound was then subjected to more detailed behavioral studies, including the Y-Maze, Elevated Plus Maze (EPM), and open field tests in scopolamine-induced amnesic animals.

Results

In the DPPH assay, the AN-1 compound at 1000 µg/ml concentration exhibited 83.37 ± 2.03% inhibition of DPPH free radicals with an IC value of 57.21 µM. Likewise, the compound AN-1 demonstrated 88.94 ± 1.20% inhibition against AChE and 86.78 ± 1.24% inhibition against BChE enzymes at 1000 µg/ml with IC values of 56.52 and 43.33 µM, correspondingly. In behavioral studies, compound AN-1 demonstrated a significant decline in cognitive impairments and improved working memory as well as locomotor activities of the amnesic animals. Molecular docking studies also demonstrated that the compound AN-1 has promising inhibitory potentials against AChE and BChE enzymes by binding to their active site amino acid residues. The binding energies of AN-1 with both enzymes were -7.6 Kcal/mol for AChE and -8.1 Kcal/mol for BChE.

Conclusion

Based on our findings, it is concluded that the derivatives of progesterone exhibit neuroprotective potential, and further research is needed to extend their neuroprotective role in the treatment of AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X357722250212094900
2025-03-27
2025-11-04
Loading full text...

Full text loading...

References

  1. AyazM. JunaidM. UllahF. SubhanF. SadiqA. AliG. OvaisM. ShahidM. AhmadA. WadoodA. El-ShazlyM. AhmadN. AhmadS. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L.Front. Pharmacol.2017869710.3389/fphar.2017.00697 29056913
    [Google Scholar]
  2. DuboisB. FeldmanH.H. JacovaC. CummingsJ.L. DeKoskyS.T. Barberger-GateauP. DelacourteA. FrisoniG. FoxN.C. GalaskoD. GauthierS. HampelH. JichaG.A. MeguroK. O’BrienJ. PasquierF. RobertP. RossorM. SallowayS. SarazinM. de SouzaL.C. SternY. VisserP.J. ScheltensP. Revising the definition of Alzheimer’s disease: A new lexicon.Lancet Neurol.20109111118112710.1016/S1474‑4422(10)70223‑4 20934914
    [Google Scholar]
  3. WimoA. GuerchetM. AliG.C. WuY.T. PrinaA.M. WinbladB. JönssonL. LiuZ. PrinceM. The worldwide costs of dementia 2015 and comparisons with 2010.Alzheimers Dement.20171311710.1016/j.jalz.2016.07.150 27583652
    [Google Scholar]
  4. FrisoniG.B. BoccardiM. BarkhofF. BlennowK. CappaS. ChiotisK. DémonetJ.F. GaribottoV. GiannakopoulosP. GietlA. HanssonO. HerholzK. JackC.R.Jr NobiliF. NordbergA. SnyderH.M. Ten KateM. VarroneA. AlbaneseE. BeckerS. BossuytP. CarrilloM.C. CeramiC. DuboisB. GalloV. GiacobiniE. GoldG. HurstS. LönneborgA. LovbladK.O. MattssonN. MolinuevoJ.L. MonschA.U. MosimannU. PadovaniA. PiccoA. PorteriC. RatibO. Saint-AubertL. ScerriC. ScheltensP. SchottJ.M. SonniI. TeipelS. VineisP. VisserP.J. YasuiY. WinbladB. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers.Lancet Neurol.201716866167610.1016/S1474‑4422(17)30159‑X 28721928
    [Google Scholar]
  5. MushtaqA. AnwarR. AhmadM. Lavandula stoechas L alleviates dementia by preventing oxidative damage of cholinergic neurons in mice brain.Trop. J. Pharm. Res.20181781539154710.4314/tjpr.v17i8.11
    [Google Scholar]
  6. RossorM.N. FoxN.C. FreeboroughP.A. HarveyR.J. Clinical features of sporadic and familial Alzheimer’s disease.Neurodegeneration19965439339710.1006/neur.1996.0052 9117552
    [Google Scholar]
  7. SelkoeD.J. Alzheimer’s disease: Genes, proteins, and therapy.Physiol. Rev.200181274176610.1152/physrev.2001.81.2.741 11274343
    [Google Scholar]
  8. ReisbergB. DoodyR. StöfflerA. SchmittF. FerrisS. MöbiusH.J. Memantine in moderate-to-severe Alzheimer’s disease.N. Engl. J. Med.2003348141333134110.1056/NEJMoa013128 12672860
    [Google Scholar]
  9. MinatiL. EdgintonT. GraziaB.M. GiacconeG. Current concepts in Alzheimer’s disease: A multidisciplinary review.Am. J. Alzheimers Dis. Other Demen.20092429512110.1177/1533317508328602 19116299
    [Google Scholar]
  10. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.201606210 27025652
    [Google Scholar]
  11. De FerrariG.V. CanalesM.A. ShinI. WeinerL.M. SilmanI. InestrosaN.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation.Biochemistry20014035104471045710.1021/bi0101392 11523986
    [Google Scholar]
  12. YanM.H. WangX. ZhuX. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.Free Radic. Biol. Med.2013629010110.1016/j.freeradbiomed.2012.11.014 23200807
    [Google Scholar]
  13. BehlC. MoosmannB. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach.Free Radic. Biol. Med.200233218219110.1016/S0891‑5849(02)00883‑3 12106814
    [Google Scholar]
  14. BirksJ.S. Cholinesterase inhibitors for Alzheimer’s disease.Cochrane Database Syst. Rev.200620061CD00559310.1002/14651858.CD005593
    [Google Scholar]
  15. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  16. BondM. RogersG. PetersJ. AndersonR. HoyleM. MinersA. MoxhamT. DavisS. ThokalaP. WailooA. JeffreysM. HydeC. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model.Health Technol. Assess.20121621147010.3310/hta16210 22541366
    [Google Scholar]
  17. HuangY. MuckeL. Alzheimer mechanisms and therapeutic strategies.Cell201214861204122210.1016/j.cell.2012.02.040 22424230
    [Google Scholar]
  18. MelcangiR.C. Garcia-SeguraL.M. Mensah-NyaganA.G. Neuroactive steroids: State of the art and new perspectives.Cell. Mol. Life Sci.200865577779710.1007/s00018‑007‑7403‑5 18038216
    [Google Scholar]
  19. BorahP. BanikB.K. Diverse synthesis of medicinally active steroids.Green Approaches in Medicinal Chemistry for Sustainable Drug Design.Elsevier202044949010.1016/B978‑0‑12‑817592‑7.00012‑5
    [Google Scholar]
  20. MayoW. LemaireV. MalaterreJ. RodriguezJ.J. CayreM. StewartM.G. KharoubyM. RougonG. Le MoalM. PiazzaP.V. AbrousD.N. Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus.Neurobiol. Aging200526110311410.1016/j.neurobiolaging.2004.03.013 15585350
    [Google Scholar]
  21. SinghM. SumienN. KyserC. SimpkinsJ.W. Estrogens and progesterone as neuroprotectants: What animal models teach us.Front. Biosci.2008131083
    [Google Scholar]
  22. HersonP.S. KoernerI.P. HurnP.D. Sex, sex steroids, and brain injury.Seminars in reproductive medicine.Thieme Medical Publishers200922923910.1055/s‑0029‑1216276
    [Google Scholar]
  23. HeH. KulanthaivelP. BakerB.J. KalterK. DargesJ. CofieldD. WolffL. AdamsL. New antiproliferative and antiinflammatory 9,11-secosterols from the gorgonian Pseudopterogorgia sp.Tetrahedron1995511515810.1016/0040‑4020(94)00962‑T
    [Google Scholar]
  24. RoglioI. BianchiR. GottiS. ScuratiS. GiattiS. PesaresiM. CarusoD. PanzicaG.C. MelcangiR.C. Neuroprotective effects of dihydroprogesterone and progesterone in an experimental model of nerve crush injury.Neuroscience2008155367368510.1016/j.neuroscience.2008.06.034 18625290
    [Google Scholar]
  25. LeonelliE. BianchiR. CavalettiG. CarusoD. CrippaD. Garcia-SeguraL.M. LauriaG. MagnaghiV. RoglioI. MelcangiR.C. Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: A multimodal analysis.Neuroscience200714441293130410.1016/j.neuroscience.2006.11.014 17187935
    [Google Scholar]
  26. PerryE.K. The cholinergic hypothesis--ten years on.Br. Med. Bull.1986421636910.1093/oxfordjournals.bmb.a072100 3513895
    [Google Scholar]
  27. SchwarzM. GlickD. LoewensteinY. SoreqH. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons.Pharmacol. Ther.199567228332210.1016/0163‑7258(95)00019‑D 7494866
    [Google Scholar]
  28. AminM.J. MianaG.A. RashidU. RahmanK.M. KhanH. SadiqA. SAR based in-vitro anticholinesterase and molecular docking studies of nitrogenous progesterone derivatives.Steroids202015810859910.1016/j.steroids.2020.108599 32126219
    [Google Scholar]
  29. JabeenM. ChoudhryM.I. MianaG.A. RahmanK.M. RashidU.; Khan, H.; Arshia, ; Sadiq, A. Synthesis, pharmacological evaluation and docking studies of progesterone and testosterone derivatives as anticancer agents.Steroids2018136223110.1016/j.steroids.2018.05.008 29772243
    [Google Scholar]
  30. TrevisanM.T.S. MacedoFb. V.V.; Meent M.; Rhee, I.K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from plants to treat Alzheimer’s disease.QuÃmica Nova200326330130410.1590/S0100‑40422003000300002
    [Google Scholar]
  31. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  32. KamalZ. UllahF. AyazM. SadiqA. AhmadS. ZebA. HussainA. ImranM. Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of Atriplex laciniata L. potential effectiveness in Alzheimer’s and other neurological disorders.Biol. Res.20154812110.1186/s40659‑015‑0011‑1 25654588
    [Google Scholar]
  33. NicklasW. BaneuxP. BootR. DecelleT. DeenyA.A. FumanelliM. Illgen-WilckeB. Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units.Lab. Anim.2002361204210.1258/0023677021911740 11831737
    [Google Scholar]
  34. KilkennyC. BrowneW. CuthillI.C. EmersonM. AltmanD.G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines.Br. J. Pharmacol.201016071577157910.1111/j.1476‑5381.2010.00872.x 20649561
    [Google Scholar]
  35. AhmadN. SubhanF. IslamN.U. ShahidM. RahmanF.U. SewellR.D.E. Gabapentin and its salicylaldehyde derivative alleviate allodynia and hypoalgesia in a cisplatin-induced neuropathic pain model.Eur. J. Pharmacol.201781430231210.1016/j.ejphar.2017.08.040 28865678
    [Google Scholar]
  36. HughesR.N. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory.Neurosci. Biobehav. Rev.200428549750510.1016/j.neubiorev.2004.06.006 15465137
    [Google Scholar]
  37. JeonS.J.K. The ameliorating effect of 1-palmitoyl-2-linoleoyl-3-acetylglycerol on scopolamine-induced memory impairment via acetylcholinesterase inhibition and LTP activation.Behav. Brain Res.201732415865
    [Google Scholar]
  38. BhuvanendranS. KumariY. OthmanI. ShaikhM.F. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model.Front. Pharmacol.2018966510.3389/fphar.2018.00665 29988493
    [Google Scholar]
  39. LuC. DongL. LvJ. WangY. FanB. WangF. LiuX. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice.Chem. Biol. Interact.2018279647210.1016/j.cbi.2017.11.008 29133030
    [Google Scholar]
  40. CholerisE. ThomasA.W. KavaliersM. PratoF.S. A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field.Neurosci. Biobehav. Rev.200125323526010.1016/S0149‑7634(01)00011‑2 11378179
    [Google Scholar]
  41. ShahidulI.M. Mohammed Al-MajidA. NagehS.E. YousufS. AyazM. NawazA. WadoodA. RehmanA.U. PrakashV.V. MotiurR.A.F.M. BarakatA. Synthesis of spiro‐oxindole analogs engrafted pyrazole scaffold as potential Alzheimer’s disease therapeutics: Anti‐oxidant, enzyme inhibitory and molecular docking approaches.ChemistrySelect2022736e20220304710.1002/slct.202203047
    [Google Scholar]
  42. AyazM. MosaO.F. NawazA. HamdoonA.A.E. ElkhalifaM.E.M. SadiqA. UllahF. AhmedA. KabraA. KhanH. MurthyH.C.A. Neuroprotective potentials of lead phytochemicals against Alzheimer’s disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives.Phytomedicine202412415527210.1016/j.phymed.2023.155272 38181530
    [Google Scholar]
  43. AlhasaniahA.H. AhmadZ. ZebA. MahnashiM.H. SadiqA. AyazM. Polarity directed solvent extracts from Bukiniczia Cabulica (Boiss.) Lincz. ameliorate scopolamine induced amnesia: HPLC-DAD polyphenolics analysis, cholinesterase, COX2, BACE1 inhibitory, anti-amyloid, antioxidant, molecular docking and behavioral correlates.J. Mol. Liq.2023123911
    [Google Scholar]
  44. AlamA. AliG. NawazA. AlOmarT.S. RaufA. AyazM. AhmadS. AlmasoudN. AlOmarA.S. KhalilA.A. WilairatanaP. Neuroprotective evaluation of diospyrin against drug-induced Alzheimer’s disease.Fitoterapia202317110570310.1016/j.fitote.2023.105703 37852388
    [Google Scholar]
  45. MahnashiM.H. AshrafM. AlhasaniahA.H. UllahH. ZebA. GhufranM. FahadS. AyazM. DagliaM. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer’s disease: In vitro, in vivo and in silico approaches.Biomed. Pharmacother.202316511514410.1016/j.biopha.2023.115144 37437376
    [Google Scholar]
  46. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  47. NazirN. KarimN. Abdel-HalimH. KhanI. WadoodS.F. NisarM. Phytochemical analysis, molecular docking and antiamnesic effects of methanolic extract of Silybum marianum (L.) Gaertn seeds in scopolamine induced memory impairment in mice.J. Ethnopharmacol.201821019820810.1016/j.jep.2017.08.026 28842342
    [Google Scholar]
  48. BloklandA. Acetylcholine: A neurotransmitter for learning and memory?Brain Res. Brain Res. Rev.199521328530010.1016/0165‑0173(95)00016‑X 8806017
    [Google Scholar]
  49. BudzynskaB. Boguszewska-CzubaraA. Kruk-SlomkaM. Skalicka-WozniakK. MichalakA. MusikI. BialaG. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice.Psychopharmacology2015232593194210.1007/s00213‑014‑3728‑6 25189792
    [Google Scholar]
  50. TaylorP. Anticholinesterase agents. Goodman & Gilman’s The Pharmacological Basis of Therapeutics.12th edNew YorkMacmillan2011239254
    [Google Scholar]
  51. Darreh-ShoriT. Hellström-LindahlE. Flores-FloresC. GuanZ.Z. SoreqH. NordbergA. Long‐lasting acetylcholinesterase splice variations in anticholinesterase‐treated Alzheimer’s disease patients.J. Neurochem.20048851102111310.1046/j.1471‑4159.2003.02230.x 15009666
    [Google Scholar]
  52. VoetD. VoetJ.G. Serine proteases.Biochemistry.2nd edUSAJohn Wiley and Sons1995390
    [Google Scholar]
  53. Atta-Ur-Rahman.; Atia-Tul-Wahab.; Nawaz, S.A.; Choudhary, M.I. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus.Chem. Pharm. Bull.200452780280610.1248/cpb.52.802 15256699
    [Google Scholar]
  54. AhmadW. AhmadB. AhmadM. IqbalZ. NisarM. AhmadM. In vitro inhibition of acetylcholinesterase, buty-rylcholinesterase and lipoxygenase by crude extract of Myricaria elegans Royle.J. Biol. Sci.20031110461049a
    [Google Scholar]
  55. CoyleJ. KershawP. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: Effects on the course of Alzheimer’s disease.Biol. Psychiatry200149328929910.1016/S0006‑3223(00)01101‑X 11230880
    [Google Scholar]
  56. ZahoorM. ShafiqS. UllahH. SadiqA. UllahF. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities.BMC Biochem.2018191510.1186/s12858‑018‑0095‑7 29940844
    [Google Scholar]
  57. TongX. LiX. AyazM. UllahF. SadiqA. OvaisM. ShahidM. KhayrullinM. HazratA. Neuroprotective studies on Polygonum hydropiper L. essential oils using transgenic animal models.Front. Pharmacol.20211158006910.3389/fphar.2020.580069 33584260
    [Google Scholar]
  58. ZebA. HassanM. AyazM. Carotenoid and phenolic profiles and antioxidant and anticholinesterase activities of leaves and berries of Phytolacca acinosa.ACS Food Sci. Technol.20244128228910.1021/acsfoodscitech.3c00568
    [Google Scholar]
  59. ConradC.D. LupienS.J. ThanasoulisL.C. McEwenB.S. The effects of Type I and Type II corticosteroid receptor agonists on exploratory behavior and spatial memory in the Y-maze.Brain Res.19977591768310.1016/S0006‑8993(97)00236‑9 9219865
    [Google Scholar]
  60. MartinS. JonesM. SimpsonE. van den BuuseM. Impaired spatial reference memory in aromatase-deficient (ArKO) mice.Neuroreport200314151979198210.1097/00001756‑200310270‑00020 14561933
    [Google Scholar]
  61. WaseemW. AnwarF. SaleemU. AhmadB. ZafarR. AnwarA. Saeed JanM. RashidU. SadiqA. IsmailT. Prospective evaluation of an amide-based zinc scaffold as an anti-alzheimer agent: in vitro, in vivo, and computational studies.ACS Omega2022730267232673710.1021/acsomega.2c03058 35936440
    [Google Scholar]
  62. FerrettiL. McCurryS.M. LogsdonR. GibbonsL. TeriL. Anxiety and Alzheimer’s disease.J. Geriatr. Psychiatry Neurol.2001141525810.1177/089198870101400111 11281317
    [Google Scholar]
  63. MahnashiM.H. AyazM. GhufranM. AlmazniI.A. AlqahtaniO. AlyamiB.A. AlqahtaniY.S. KhanH.A. SadiqA. WaqasM. Phytochemicals-based β-amyloid cleaving enzyme-1 and MAO-B inhibitors for the treatment of Alzheimer’s disease: Molecular simulations-based predictions.J. Biomol. Struct. Dyn.2023113 37815007
    [Google Scholar]
  64. InestrosaN.C. AlvarezA. PérezC.A. MorenoR.D. VicenteM. LinkerC. CasanuevaO.I. SotoC. GarridoJ. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme.Neuron199616488189110.1016/S0896‑6273(00)80108‑7 8608006
    [Google Scholar]
  65. MahnashiM.H. AlshahraniM.A. NahariM.H. HassanS.S. JanM.S. AyazM. UllahF. AlshehriO.M. AlshehriM.A. RashidU. SadiqA. In-vitro, in-vivo, molecular docking and ADMET studies of 2-substituted 3,7-dihydroxy-4H-chromen-4-one for oxidative stress, inflammation and Alzheimer’s disease.Metabolites20221211105510.3390/metabo12111055 36355138
    [Google Scholar]
  66. AyazM. WadoodA. SadiqA. UllahF. AnichkinaO. GhufranM. In-silico evaluations of the isolated phytosterols from polygonum hydropiper L against BACE1 and MAO drug targets.J. Biomol. Struct. Dyn.20224020102301023810.1080/07391102.2021.1940286 34157942
    [Google Scholar]
/content/journals/cn/10.2174/011570159X357722250212094900
Loading
/content/journals/cn/10.2174/011570159X357722250212094900
Loading

Data & Media loading...

Supplements

Supplementary material containing compounds scheme (Fig. ), 1H NMR spectrum of compound (Fig. ), 13C NMR spectrum of compound (Fig. ), 1H NMR spectrum of compound (Fig. ), 13C NMR spectrum of compound (Fig. ), 1H NMR spectrum of compound (Fig. ) and 13C NMR spectrum of compound (Fig. ) is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test