Skip to content
2000
image of Synthetic Derivates of Progesterone Ameliorate Scopolamine-Induced Cognitive Deficits in Animal Models: Antioxidant, Enzyme Inhibitory, 
Molecular Docking and Behavioral Correlates

Abstract

Background

Alzheimer's disease (AD) is a neurological disorder characterized by cognitive decline and behavioral distrubance which are expected to significantly affect the patient's quality of life. Previous studies revealed the neuroprotective effects of progesterone. Furthermore, the aim of this study was to assess the neuroprotective potentials of new derivatives of progesterone (AN-1 to AN-5).

Methods

Following compound synthesis and structure elucidation, antioxidant (DPPH), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, as well as molecular docking studies, were performed, according to the standard procedures and the most potent compound was then subjected to more detailed behavioral studies, including the Y-Maze, Elevated Plus Maze (EPM), and open field tests in scopolamine-induced amnesic animals.

Results

In the DPPH assay, the AN-1 compound at 1000 µg/ml concentration exhibited 83.37 ± 2.03% inhibition of DPPH free radicals with an IC value of 57.21 µM. Likewise, the compound AN-1 demonstrated 88.94 ± 1.20% inhibition against AChE and 86.78 ± 1.24% inhibition against BChE enzymes at 1000 µg/ml with IC values of 56.52 and 43.33 µM, correspondingly. In behavioral studies, compound AN-1 demonstrated a significant decline in cognitive impairments and improved working memory as well as locomotor activities of the amnesic animals. Molecular docking studies also demonstrated that the compound AN-1 has promising inhibitory potentials against AChE and BChE enzymes by binding to their active site amino acid residues. The binding energies of AN-1 with both enzymes were -7.6 Kcal/mol for AChE and -8.1 Kcal/mol for BChE.

Conclusion

Based on our findings, it is concluded that the derivatives of progesterone exhibit neuroprotective potential, and further research is needed to extend their neuroprotective role in the treatment of AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X357722250212094900
2025-03-27
2025-09-18
Loading full text...

Full text loading...

References

  1. Ayaz M. Junaid M. Ullah F. Subhan F. Sadiq A. Ali G. Ovais M. Shahid M. Ahmad A. Wadood A. El-Shazly M. Ahmad N. Ahmad S. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol. 2017 8 697 10.3389/fphar.2017.00697 29056913
    [Google Scholar]
  2. Dubois B. Feldman H.H. Jacova C. Cummings J.L. DeKosky S.T. Barberger-Gateau P. Delacourte A. Frisoni G. Fox N.C. Galasko D. Gauthier S. Hampel H. Jicha G.A. Meguro K. O’Brien J. Pasquier F. Robert P. Rossor M. Salloway S. Sarazin M. de Souza L.C. Stern Y. Visser P.J. Scheltens P. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010 9 11 1118 1127 10.1016/S1474‑4422(10)70223‑4 20934914
    [Google Scholar]
  3. Wimo A. Guerchet M. Ali G.C. Wu Y.T. Prina A.M. Winblad B. Jönsson L. Liu Z. Prince M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement. 2017 13 1 1 7 10.1016/j.jalz.2016.07.150 27583652
    [Google Scholar]
  4. Frisoni G.B. Boccardi M. Barkhof F. Blennow K. Cappa S. Chiotis K. Démonet J.F. Garibotto V. Giannakopoulos P. Gietl A. Hansson O. Herholz K. Jack C.R. Jr Nobili F. Nordberg A. Snyder H.M. Ten Kate M. Varrone A. Albanese E. Becker S. Bossuyt P. Carrillo M.C. Cerami C. Dubois B. Gallo V. Giacobini E. Gold G. Hurst S. Lönneborg A. Lovblad K.O. Mattsson N. Molinuevo J.L. Monsch A.U. Mosimann U. Padovani A. Picco A. Porteri C. Ratib O. Saint-Aubert L. Scerri C. Scheltens P. Schott J.M. Sonni I. Teipel S. Vineis P. Visser P.J. Yasui Y. Winblad B. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017 16 8 661 676 10.1016/S1474‑4422(17)30159‑X 28721928
    [Google Scholar]
  5. Mushtaq A. Anwar R. Ahmad M. Lavandula stoechas L alleviates dementia by preventing oxidative damage of cholinergic neurons in mice brain. Trop. J. Pharm. Res. 2018 17 8 1539 1547 10.4314/tjpr.v17i8.11
    [Google Scholar]
  6. Rossor M.N. Fox N.C. Freeborough P.A. Harvey R.J. Clinical features of sporadic and familial Alzheimer’s disease. Neurodegeneration 1996 5 4 393 397 10.1006/neur.1996.0052 9117552
    [Google Scholar]
  7. Selkoe D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001 81 2 741 766 10.1152/physrev.2001.81.2.741 11274343
    [Google Scholar]
  8. Reisberg B. Doody R. Stöffler A. Schmitt F. Ferris S. Möbius H.J. Memantine Study Group Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 2003 348 14 1333 1341 10.1056/NEJMoa013128 12672860
    [Google Scholar]
  9. Minati L. Edginton T. Grazia Bruzzone M. Giaccone G. Current concepts in Alzheimer’s disease: A multidisciplinary review. Am. J. Alzheimers Dis. Other Demen. 2009 24 2 95 121 10.1177/1533317508328602 19116299
    [Google Scholar]
  10. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  11. De Ferrari G.V. Canales M.A. Shin I. Weiner L.M. Silman I. Inestrosa N.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 2001 40 35 10447 10457 10.1021/bi0101392 11523986
    [Google Scholar]
  12. Yan M.H. Wang X. Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 2013 62 90 101 10.1016/j.freeradbiomed.2012.11.014 23200807
    [Google Scholar]
  13. Behl C. Moosmann B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach2 2This article is part of a series of reviews on “Causes and Consequences of Oxidative Stress in Alzheimer’s Disease.” The full list of papers may be found on the homepage of the journal. Free Radic. Biol. Med. 2002 33 2 182 191 10.1016/S0891‑5849(02)00883‑3 12106814
    [Google Scholar]
  14. Birks JS Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst. Rev. 2006 2006 1 CD005593 10.1002/14651858.CD005593
    [Google Scholar]
  15. Anand P. Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013 36 4 375 399 10.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  16. Bond M. Rogers G. Peters J. Anderson R. Hoyle M. Miners A. Moxham T. Davis S. Thokala P. Wailoo A. Jeffreys M. Hyde C. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model. Health Technol. Assess. 2012 16 21 1 470 10.3310/hta16210 22541366
    [Google Scholar]
  17. Huang Y. Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012 148 6 1204 1222 10.1016/j.cell.2012.02.040 22424230
    [Google Scholar]
  18. Melcangi R.C. Garcia-Segura L.M. Mensah-Nyagan A.G. Neuroactive steroids: State of the art and new perspectives. Cell. Mol. Life Sci. 2008 65 5 777 797 10.1007/s00018‑007‑7403‑5 18038216
    [Google Scholar]
  19. Borah P. Banik B.K. Diverse synthesis of medicinally active steroids. Green Approaches in Medicinal Chemistry for Sustainable Drug Design Elsevier 2020 449 490 10.1016/B978‑0‑12‑817592‑7.00012‑5
    [Google Scholar]
  20. Mayo W. Lemaire V. Malaterre J. Rodriguez J.J. Cayre M. Stewart M.G. Kharouby M. Rougon G. Le Moal M. Piazza P.V. Abrous D.N. Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus. Neurobiol. Aging 2005 26 1 103 114 10.1016/j.neurobiolaging.2004.03.013 15585350
    [Google Scholar]
  21. Singh M Sumien N Kyser C Simpkins JW Estrogens and progesterone as neuroprotectants: What animal models teach us. Front. Biosci. 2008 13 1083
    [Google Scholar]
  22. Herson P.S. Koerner I.P. Hurn P.D. Sex, sex steroids, and brain injury. Seminars in reproductive medicine Thieme Medical Publishers 2009 229 239 10.1055/s‑0029‑1216276
    [Google Scholar]
  23. He H. Kulanthaivel P. Baker B.J. Kalter K. Darges J. Cofield D. Wolff L. Adams L. New antiproliferative and antiinflammatory 9,11-secosterols from the gorgonian Pseudopterogorgia sp. Tetrahedron 1995 51 1 51 58 10.1016/0040‑4020(94)00962‑T
    [Google Scholar]
  24. Roglio I. Bianchi R. Gotti S. Scurati S. Giatti S. Pesaresi M. Caruso D. Panzica G.C. Melcangi R.C. Neuroprotective effects of dihydroprogesterone and progesterone in an experimental model of nerve crush injury. Neuroscience 2008 155 3 673 685 10.1016/j.neuroscience.2008.06.034 18625290
    [Google Scholar]
  25. Leonelli E. Bianchi R. Cavaletti G. Caruso D. Crippa D. Garcia-Segura L.M. Lauria G. Magnaghi V. Roglio I. Melcangi R.C. Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: A multimodal analysis. Neuroscience 2007 144 4 1293 1304 10.1016/j.neuroscience.2006.11.014 17187935
    [Google Scholar]
  26. Perry E.K. The cholinergic hypothesis--ten years on. Br. Med. Bull. 1986 42 1 63 69 10.1093/oxfordjournals.bmb.a072100 3513895
    [Google Scholar]
  27. Schwarz M. Glick D. Loewenstein Y. Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol. Ther. 1995 67 2 283 322 10.1016/0163‑7258(95)00019‑D 7494866
    [Google Scholar]
  28. Amin M.J. Miana G.A. Rashid U. Rahman K.M. Khan H. Sadiq A. SAR based in-vitro anticholinesterase and molecular docking studies of nitrogenous progesterone derivatives. Steroids 2020 158 108599 10.1016/j.steroids.2020.108599 32126219
    [Google Scholar]
  29. Jabeen M. Choudhry M.I. Miana G.A. Rahman K.M. Rashid U. Khan H. Arshia Sadiq A. Synthesis, pharmacological evaluation and docking studies of progesterone and testosterone derivatives as anticancer agents. Steroids 2018 136 22 31 10.1016/j.steroids.2018.05.008 29772243
    [Google Scholar]
  30. Trevisan M.T.S. Macedo FbVV, Meent Mvd, Rhee IK, Verpoorte R: Screening for acetylcholinesterase inhibitors from plants to treat Alzheimer’s disease. QuÃmica Nova 2003 26 3 301 304 10.1590/S0100‑40422003000300002
    [Google Scholar]
  31. Ellman G.L. Courtney K.D. Andres V. Jr Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  32. Kamal Z. Ullah F. Ayaz M. Sadiq A. Ahmad S. Zeb A. Hussain A. Imran M. Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer’s and other neurological disorders. Biol. Res. 2015 48 1 21 10.1186/s40659‑015‑0011‑1 25654588
    [Google Scholar]
  33. Nicklas W. Baneux P. Boot R. Decelle T. Deeny A.A. Fumanelli M. Illgen-Wilcke B. FELASA (Federation of European Laboratory Animal Science Associations Working Group on Health Monitoring of Rodent and Rabbit Colonies) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab. Anim. 2002 36 1 20 42 10.1258/0023677021911740 11831737
    [Google Scholar]
  34. Kilkenny C. Browne W. Cuthill I.C. Emerson M. Altman D.G. NC3Rs Reporting Guidelines Working Group Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010 160 7 1577 1579 10.1111/j.1476‑5381.2010.00872.x 20649561
    [Google Scholar]
  35. Ahmad N. Subhan F. Islam N.U. Shahid M. Rahman F.U. Sewell R.D.E. Gabapentin and its salicylaldehyde derivative alleviate allodynia and hypoalgesia in a cisplatin-induced neuropathic pain model. Eur. J. Pharmacol. 2017 814 302 312 10.1016/j.ejphar.2017.08.040 28865678
    [Google Scholar]
  36. Hughes R.N. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci. Biobehav. Rev. 2004 28 5 497 505 10.1016/j.neubiorev.2004.06.006 15465137
    [Google Scholar]
  37. Jeon SJK The ameliorating effect of 1-palmitoyl-2-linoleoyl-3-acetylglycerol on scopolamine-induced memory impairment via acetylcholinesterase inhibition and LTP activation. Behav. Brain Res. 2017 324 1 58 65
    [Google Scholar]
  38. Bhuvanendran S. Kumari Y. Othman I. Shaikh M.F. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model. Front. Pharmacol. 2018 9 665 10.3389/fphar.2018.00665 29988493
    [Google Scholar]
  39. Lu C. Dong L. Lv J. Wang Y. Fan B. Wang F. Liu X. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice. Chem. Biol. Interact. 2018 279 64 72 10.1016/j.cbi.2017.11.008 29133030
    [Google Scholar]
  40. Choleris E. Thomas A.W. Kavaliers M. Prato F.S. A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 2001 25 3 235 260 10.1016/S0149‑7634(01)00011‑2 11378179
    [Google Scholar]
  41. Shahidul Islam M. Mohammed Al-Majid A. Nageh Sholkamy E. Yousuf S. Ayaz M. Nawaz A. Wadood A. Rehman A.U. Prakash Verma V. Motiur Rahman A.F.M. Barakat A. Synthesis of spiro‐oxindole analogs engrafted pyrazole scaffold as potential Alzheimer’s disease therapeutics: Anti‐oxidant, enzyme inhibitory and molecular docking approaches. ChemistrySelect 2022 7 36 e202203047 10.1002/slct.202203047
    [Google Scholar]
  42. Ayaz M. Mosa O.F. Nawaz A. Hamdoon A.A.E. Elkhalifa M.E.M. Sadiq A. Ullah F. Ahmed A. Kabra A. Khan H. Murthy H.C.A. Neuroprotective potentials of Lead phytochemicals against Alzheimer’s disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. Phytomedicine 2024 124 155272 10.1016/j.phymed.2023.155272 38181530
    [Google Scholar]
  43. Alhasaniah A.H. Ahmad Z. Zeb A. Mahnashi M.H. Sadiq A. Ayaz M. Polarity directed solvent extracts from Bukiniczia Cabulica (Boiss.) Lincz. ameliorate scopolamine induced amnesia: HPLC-DAD polyphenolics analysis, cholinesterase, COX2, BACE1 inhibitory, anti-amyloid, antioxidant, molecular docking and behavioral correlates. J. Mol. Liq. 2023 123911
    [Google Scholar]
  44. Alam A. Ali G. Nawaz A. AlOmar T.S. Rauf A. Ayaz M. Ahmad S. Almasoud N. AlOmar A.S. Khalil A.A. Wilairatana P. Neuroprotective evaluation of diospyrin against drug-induced Alzheimer’s disease. Fitoterapia 2023 171 105703 10.1016/j.fitote.2023.105703 37852388
    [Google Scholar]
  45. Mahnashi M.H. Ashraf M. Alhasaniah A.H. Ullah H. Zeb A. Ghufran M. Fahad S. Ayaz M. Daglia M. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer’s disease: In Vitro, In Vivo and In Silico approaches. Biomed. Pharmacother. 2023 165 115144 10.1016/j.biopha.2023.115144 37437376
    [Google Scholar]
  46. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  47. Nazir N. Karim N. Abdel-Halim H. Khan I. Wadood S.F. Nisar M. Phytochemical analysis, molecular docking and antiamnesic effects of methanolic extract of Silybum marianum (L.) Gaertn seeds in scopolamine induced memory impairment in mice. J. Ethnopharmacol. 2018 210 198 208 10.1016/j.jep.2017.08.026 28842342
    [Google Scholar]
  48. Blokland A. Acetylcholine: A neurotransmitter for learning and memory? Brain Res. Brain Res. Rev. 1995 21 3 285 300 10.1016/0165‑0173(95)00016‑X 8806017
    [Google Scholar]
  49. Budzynska B. Boguszewska-Czubara A. Kruk-Slomka M. Skalicka-Wozniak K. Michalak A. Musik I. Biala G. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 2015 232 5 931 942 10.1007/s00213‑014‑3728‑6 25189792
    [Google Scholar]
  50. Taylor P. Anticholinesterase agents. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 12th ed New York Macmillan 2011 239 254
    [Google Scholar]
  51. Darreh-Shori T. Hellström-Lindahl E. Flores-Flores C. Guan Z.Z. Soreq H. Nordberg A. Long‐lasting acetylcholinesterase splice variations in anticholinesterase‐treated Alzheimer’s disease patients. J. Neurochem. 2004 88 5 1102 1113 10.1046/j.1471‑4159.2003.02230.x 15009666
    [Google Scholar]
  52. Voet D. Voet J.G. Serine proteases. Biochemistry. 2nd ed USA John Wiley and Sons 1995 390
    [Google Scholar]
  53. Atta-Ur-Rahman Atia-Tul-Wahab Nawaz S.A. Choudhary M.I. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus. Chem. Pharm. Bull. 2004 52 7 802 806 10.1248/cpb.52.802 15256699
    [Google Scholar]
  54. Ahmad W. Ahmad B. Ahmad M. Iqbal Z. Nisar M. Ahmad M. In vitro inhibition of acetylcholinesterase, buty-rylcholinesterase and lipoxygenase by crude extract of Myricaria elegans Royle. J. Biol. Sci. 2003 a 11 1046 1049
    [Google Scholar]
  55. Coyle J. Kershaw P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: Effects on the course of Alzheimer’s disease. Biol. Psychiatry 2001 49 3 289 299 10.1016/S0006‑3223(00)01101‑X 11230880
    [Google Scholar]
  56. Zahoor M. Shafiq S. Ullah H. Sadiq A. Ullah F. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem. 2018 19 1 5 10.1186/s12858‑018‑0095‑7 29940844
    [Google Scholar]
  57. Tong X. Li X. Ayaz M. Ullah F. Sadiq A. Ovais M. Shahid M. Khayrullin M. Hazrat A. Neuroprotective studies on Polygonum hydropiper L. essential oils using transgenic animal models. Front. Pharmacol. 2021 11 580069 10.3389/fphar.2020.580069 33584260
    [Google Scholar]
  58. Zeb A. Hassan M. Ayaz M. Carotenoid and phenolic profiles and antioxidant and anticholinesterase activities of leaves and berries of Phytolacca acinosa. ACS Food Sci. Technol. 2024 4 1 282 289 10.1021/acsfoodscitech.3c00568
    [Google Scholar]
  59. Conrad C.D. Lupien S.J. Thanasoulis L.C. McEwen B.S. The effects of Type I and Type II corticosteroid receptor agonists on exploratory behavior and spatial memory in the Y-maze. Brain Res. 1997 759 1 76 83 10.1016/S0006‑8993(97)00236‑9 9219865
    [Google Scholar]
  60. Martin S. Jones M. Simpson E. van den Buuse M. Impaired spatial reference memory in aromatase-deficient (ArKO) mice. Neuroreport 2003 14 15 1979 1982 10.1097/00001756‑200310270‑00020 14561933
    [Google Scholar]
  61. Waseem W. Anwar F. Saleem U. Ahmad B. Zafar R. Anwar A. Saeed Jan M. Rashid U. Sadiq A. Ismail T. Prospective evaluation of an amide-based zinc scaffold as an anti-alzheimer agent: in vitro, in vivo, and computational studies. ACS Omega 2022 7 30 26723 26737 10.1021/acsomega.2c03058 35936440
    [Google Scholar]
  62. Ferretti L. McCurry S.M. Logsdon R. Gibbons L. Teri L. Anxiety and Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 2001 14 1 52 58 10.1177/089198870101400111 11281317
    [Google Scholar]
  63. Mahnashi M.H. Ayaz M. Ghufran M. Almazni I.A. Alqahtani O. Alyami B.A. Alqahtani Y.S. Khan H.A. Sadiq A. Waqas M. Phytochemicals-based β-amyloid cleaving enzyme-1 and MAO-B inhibitors for the treatment of Alzheimer’s disease: Molecular simulations-based predictions. J. Biomol. Struct. Dyn. 2023 1 13 37815007
    [Google Scholar]
  64. Inestrosa N.C. Alvarez A. Pérez C.A. Moreno R.D. Vicente M. Linker C. Casanueva O.I. Soto C. Garrido J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron 1996 16 4 881 891 10.1016/S0896‑6273(00)80108‑7 8608006
    [Google Scholar]
  65. Mahnashi M.H. Alshahrani M.A. Nahari M.H. Hassan S.S. Jan M.S. Ayaz M. Ullah F. Alshehri O.M. Alshehri M.A. Rashid U. Sadiq A. In-vitro, in-vivo, molecular docking and ADMET studies of 2-substituted 3, 7-dihydroxy-4H-chromen-4-one for oxidative stress, inflammation and Alzheimer’s disease. Metabolites 2022 12 11 1055 10.3390/metabo12111055 36355138
    [Google Scholar]
  66. Ayaz M. Wadood A. Sadiq A. Ullah F. Anichkina O. Ghufran M. In-silico evaluations of the isolated phytosterols from polygonum hydropiper L against BACE1 and MAO drug targets. J. Biomol. Struct. Dyn. 2022 40 20 10230 10238 10.1080/07391102.2021.1940286 34157942
    [Google Scholar]
/content/journals/cn/10.2174/011570159X357722250212094900
Loading
/content/journals/cn/10.2174/011570159X357722250212094900
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: Neuroprotection ; Alzheimer’s disease ; progesterone ; cholinesterase’s ; steroids ; antioxidants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test