Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

(), a bacterial species within the human gut microbiome, has shown beneficial effects on host health. Emerging research suggests that also influences neurobehavioral domains through the microbiota-gut-brain axis. This meta-analysis evaluates ’s impact on depression, anxiety, and stress in mouse models.

Methods

We conducted a systematic search of PubMed, Science Direct, Embase, and Web of Science databases up to March 2024, identifying 15 eligible studies.

Results

Supplementation with , its outer membrane protein (Amuc_1100), and extracellular vesicles (EVs) alleviated anxiety, depressive-like behaviors, and enhanced memory in mice. Compared to controls, intervention groups exhibited reduced anxiety-like behaviors, including increased travel distance in the open-field test (OFT) and more time spent in the lightbox during the light-dark box (LDB) test and open arms in the elevated plus maze (EPM). Depression-like symptoms were reduced, with lower immobility time in the tail suspension and forced swim tests. Memory function also improved, and learning time was reduced in the Y-maze and Barnes circular maze tests. Serotonin levels increased significantly in the serum and hippocampus, while corticosterone levels decreased, though not significantly. The intervention reduced hippocampal and serum inflammatory markers (TNFα, IL1β, IL6) and altered gut microbiome composition, increasing , , , and .

Conclusion

This meta-analysis provides evidence supporting the health-promoting effects of , one of the next-generation probiotics, in alleviating neuropsychiatric disorders. Given the high prevalence and clinical significance of depression, anxiety, and stress, further investigation into the therapeutic utility of is warranted.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X360149250225041829
2025-03-18
2025-10-24
Loading full text...

Full text loading...

References

  1. LingZ. XiaoH. ChenW. Gut microbiome: The cornerstone of life and health.Adv Gut Microbiome Res.202220221310.1155/2022/9894812
    [Google Scholar]
  2. LeiW. ChengY. GaoJ. LiuX. ShaoL. KongQ. ZhengN. LingZ. HuW. Akkermansia muciniphila in neuropsychiatric disorders: Friend or foe?Front. Cell. Infect. Microbiol.202313122415510.3389/fcimb.2023.1224155 37492530
    [Google Scholar]
  3. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  4. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  5. DerrienM. VaughanE.E. PluggeC.M. de VosW.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium.Int. J. Syst. Evol. Microbiol.20045451469147610.1099/ijs.0.02873‑0 15388697
    [Google Scholar]
  6. DaoM.C. EverardA. Aron-WisnewskyJ. SokolovskaN. PriftiE. VergerE.O. KayserB.D. LevenezF. ChillouxJ. HoylesL. DumasM.E. RizkallaS.W. DoréJ. CaniP.D. ClémentK. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.Gut201665342643610.1136/gutjnl‑2014‑308778 26100928
    [Google Scholar]
  7. LiJ. ZhaoF. WangY. ChenJ. TaoJ. TianG. WuS. LiuW. CuiQ. GengB. ZhangW. WeldonR. AugusteK. YangL. LiuX. ChenL. YangX. ZhuB. CaiJ. Gut microbiota dysbiosis contributes to the development of hypertension.Microbiome2017511410.1186/s40168‑016‑0222‑x 28143587
    [Google Scholar]
  8. AbotA. BrochotA. PomiéN. AstreG. DruartC. de VosW.M. KnaufC. CaniP.D. Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release.Heliyon202397e1819610.1016/j.heliyon.2023.e18196 37501991
    [Google Scholar]
  9. PlovierH. EverardA. DruartC. DepommierC. Van HulM. GeurtsL. ChillouxJ. OttmanN. DuparcT. LichtensteinL. MyridakisA. DelzenneN.M. KlievinkJ. BhattacharjeeA. van der ArkK.C.H. AalvinkS. MartinezL.O. DumasM.E. MaiterD. LoumayeA. HermansM.P. ThissenJ.P. BelzerC. de VosW.M. CaniP.D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice.Nat. Med.201723110711310.1038/nm.4236 27892954
    [Google Scholar]
  10. BianX. WuW. YangL. LvL. WangQ. LiY. YeJ. FangD. WuJ. JiangX. ShiD. LiL. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice.Front. Microbiol.201910225910.3389/fmicb.2019.02259 31632373
    [Google Scholar]
  11. DepommierC. EverardA. DruartC. PlovierH. Van HulM. Vieira-SilvaS. FalonyG. RaesJ. MaiterD. DelzenneN.M. de BarsyM. LoumayeA. HermansM.P. ThissenJ.P. de VosW.M. CaniP.D. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study.Nat. Med.20192571096110310.1038/s41591‑019‑0495‑2 31263284
    [Google Scholar]
  12. Grajeda-IglesiasC. DurandS. DaillèreR. IribarrenK. LemaitreF. DerosaL. AprahamianF. BossutN. NirmalathasanN. MadeoF. ZitvogelL. KroemerG. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites.Aging (Albany NY)20211356375640510.18632/aging.202739 33653967
    [Google Scholar]
  13. TagliamonteS. LaiolaM. FerracaneR. VitaleM. GalloM.A. MeslierV. PonsN. ErcoliniD. VitaglioneP. Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation.Eur. J. Nutr.20216073703371610.1007/s00394‑021‑02538‑8 33763720
    [Google Scholar]
  14. ZhaiQ. FengS. ArjanN. ChenW. A next generation probiotic, Akkermansia muciniphila.Crit. Rev. Food Sci. Nutr.201959193227323610.1080/10408398.2018.1517725 30373382
    [Google Scholar]
  15. KhaliliL. ParkG. NagpalR. SalazarG. The role of Akkermansia muciniphila on improving gut and metabolic health modulation: A meta-analysis of preclinical mouse model studies.Microorganisms2024128162710.3390/microorganisms12081627 39203469
    [Google Scholar]
  16. CollaboratorsG.M.D. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019.Lancet Psychiatry20229213715010.1016/S2215‑0366(21)00395‑3 35026139
    [Google Scholar]
  17. XiongR.G. LiJ. ChengJ. ZhouD.D. WuS.X. HuangS.Y. SaimaitiA. YangZ.J. GanR.Y. LiH.B. The role of gut microbiota in anxiety, depression, and other mental disorders as well as the protective effects of dietary components.Nutrients20231514325810.3390/nu15143258 37513676
    [Google Scholar]
  18. PanK.Y. KokA.A.L. EikelenboomM. HorsfallM. JörgF. LuteijnR.A. RhebergenD. OppenP. GiltayE.J. PenninxB.W.J.H. The mental health impact of the COVID-19 pandemic on people with and without depressive, anxiety, or obsessive-compulsive disorders: A longitudinal study of three Dutch case-control cohorts.Lancet Psychiatry20218212112910.1016/S2215‑0366(20)30491‑0 33306975
    [Google Scholar]
  19. GodosJ. CurrentiW. AngelinoD. MenaP. CastellanoS. CaraciF. GalvanoF. Del RioD. FerriR. GrossoG. Diet and mental health: Review of the recent updates on molecular mechanisms.Antioxidants20209434610.3390/antiox9040346 32340112
    [Google Scholar]
  20. KennedyP.J. MurphyA.B. CryanJ.F. RossP.R. DinanT.G. StantonC. Microbiome in brain function and mental health.Trends Food Sci. Technol.20165728930110.1016/j.tifs.2016.05.001
    [Google Scholar]
  21. BhatiaN.Y. JalgaonkarM.P. HargudeA.B. SherjeA.P. OzaM.J. DoshiG.M. Gut-brain axis and neurological disorders-how microbiomes affect our mental health.CNS Neurol. Disord. Drug Targets20232271008103010.2174/1871527321666220822172039
    [Google Scholar]
  22. HaoZ. MengC. LiL. FengS. ZhuY. YangJ. HanL. SunL. LvW. FigeysD. LiuH. Positive mood-related gut microbiota in a long-term closed environment: A multiomics study based on the “Lunar Palace 365” experiment.Microbiome20231118810.1186/s40168‑023‑01506‑0 37095530
    [Google Scholar]
  23. LiuL. WangH. ChenX. ZhangY. ZhangH. XieP. Gut microbiota and its metabolites in depression: From pathogenesis to treatment.EBioMedicine20239010452710.1016/j.ebiom.2023.104527 36963238
    [Google Scholar]
  24. AsherG.N. GerkinJ. GaynesB.N. Complementary therapies for mental health disorders.Med. Clin. North Am.2017101584786410.1016/j.mcna.2017.04.004 28802467
    [Google Scholar]
  25. LakhanS.E. VieiraK.F. Nutritional therapies for mental disorders.Nutr. J.200871210.1186/1475‑2891‑7‑2 18208598
    [Google Scholar]
  26. MeherA.K. AcharyaB. SahuP.K. Probiotics: Bridging the interplay of a healthy gut and psychoneurological well‐being.Food Bioeng.20243112614710.1002/fbe2.12081
    [Google Scholar]
  27. Pferschy-WenzigE.M. PausanM.R. Ardjomand-WoelkartK. RöckS. AmmarR.M. KelberO. Moissl-EichingerC. BauerR. Medicinal plants and their impact on the gut microbiome in mental health: A systematic review.Nutrients20221410211110.3390/nu14102111 35631252
    [Google Scholar]
  28. YılmazC. GökmenV. Neuroactive compounds in foods: Occurrence, mechanism and potential health effects.Food Res. Int.202012810874410.1016/j.foodres.2019.108744 31955786
    [Google Scholar]
  29. GuoD. ParkC. LiY. LiB. YangQ. DengY. GaoN.L. LiR. WangX. YiL. LiuZ. Akkermansia muciniphila ameliorates depressive disorders in a murine alcohol-LPS (mALPS) model.Food Funct.20221324127661277610.1039/D2FO01478E 36416490
    [Google Scholar]
  30. WuF. GuoX. ZhangM. OuZ. WuD. DengL. LuZ. ZhangJ. DengG. ChenS. LiS. YiJ. PengY. An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice.Anaerobe20206110213810.1016/j.anaerobe.2019.102138 31830598
    [Google Scholar]
  31. MeynierM. DaugeyV. MallaretG. GervasonS. MeleineM. BarbierJ. AissouniY. LolignierS. BonnetM. ArdidD. De VosW.M. Van HulM. SuenaertP. BrochotA. CaniP.D. CarvalhoF.A. Pasteurized Akkermansia muciniphila improves irritable bowel syndrome-like symptoms and related behavioral disorders in mice.Gut Microbes2024161229802610.1080/19490976.2023.2298026 38170633
    [Google Scholar]
  32. ChenT. WangR. DuanZ. YuanX. DingY. FengZ. BuF. LiuL. WangQ. ZhouJ. ZhuL. NiQ. ShiG. ChenY. Akkermansia muciniphila protects against psychological disorder-induced gut microbiota-mediated colonic mucosal barrier damage and aggravation of colitis.Front. Cell. Infect. Microbiol.20211172385610.3389/fcimb.2021.723856 34722332
    [Google Scholar]
  33. DingY. BuF. ChenT. ShiG. YuanX. FengZ. DuanZ. WangR. ZhangS. WangQ. ZhouJ. ChenY. A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress–induced depressive-like behavior in mice by regulating gut microbiota and metabolites.Appl. Microbiol. Biotechnol.202110521-228411842610.1007/s00253‑021‑11622‑2 34617139
    [Google Scholar]
  34. SunY. ZhuH. ChengR. TangZ. ZhangM. Outer membrane protein Amuc_1100 of Akkermansia muciniphila alleviates antibiotic-induced anxiety and depression-like behavior in mice.Physiol. Behav.202325811402310.1016/j.physbeh.2022.114023 36336146
    [Google Scholar]
  35. YaghoubfarR. BehrouziA. AshrafianF. ShahryariA. MoradiH.R. ChoopaniS. HadifarS. VaziriF. NojoumiS.A. FatehA. KhatamiS. SiadatS.D. Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice.Sci. Rep.20201012211910.1038/s41598‑020‑79171‑8 33335202
    [Google Scholar]
  36. ChengR. ZhuH. SunY. HangT. ZhangM. The modified outer membrane protein Amuc_1100 of Akkermansia muciniphila improves chronic stress-induced anxiety and depression-like behavior in mice.Food Funct.20221320107481075810.1039/D2FO01198K 36178497
    [Google Scholar]
  37. ChengR. XuW. WangJ. TangZ. ZhangM. The outer membrane protein Amuc_1100 of Akkermansia muciniphila alleviates the depression-like behavior of depressed mice induced by chronic stress.Biochem. Biophys. Res. Commun.202156617017610.1016/j.bbrc.2021.06.018 34129964
    [Google Scholar]
  38. YangY. ZhongZ. WangB. XiaX. YaoW. HuangL. WangY. DingW. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila.Neuropsychopharmacology201944122054206410.1038/s41386‑019‑0437‑1 31207607
    [Google Scholar]
  39. ChenY. ChenJ. WeiH. GongK. MengJ. LongT. GuoJ. HongJ. YangL. QiuJ. XiongK. WangZ. XuQ. Akkermansia muciniphila-Nlrp3 is involved in the neuroprotection of phosphoglycerate mutase 5 deficiency in traumatic brain injury mice.Front. Immunol.202314117271010.3389/fimmu.2023.1172710 37287985
    [Google Scholar]
  40. LiN. TanS. WangY. DengJ. WangN. ZhuS. TianW. XuJ. WangQ. Akkermansia muciniphila supplementation prevents cognitive impairment in sleep-deprived mice by modulating microglial engulfment of synapses.Gut Microbes2023152225276410.1080/19490976.2023.2252764 37671803
    [Google Scholar]
  41. OuZ. DengL. LuZ. WuF. LiuW. HuangD. PengY. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease.Nutr. Diabetes20201011210.1038/s41387‑020‑0115‑8 32321934
    [Google Scholar]
  42. WangJ. XuW. WangR. ChengR. TangZ. ZhangM. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling.Food Funct.20211283597361010.1039/D1FO00115A 33900345
    [Google Scholar]
  43. GuoH. LiuX. ChenT. WangX. ZhangX. Akkermansia muciniphila improves depressive-like symptoms by modulating the level of 5-HT neurotransmitters in the gut and brain of mice.Mol. Neurobiol.202461282183410.1007/s12035‑023‑03602‑6 37668965
    [Google Scholar]
  44. LiberatiA. AltmanD.G. TetzlaffJ. MulrowC. GøtzscheP.C. IoannidisJ.P. ClarkeM. DevereauxP.J. KleijnenJ. MoherD. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.Ann. Intern. Med.20091514W10.7326/0003‑4819‑151‑4‑200908180‑00136 19622512
    [Google Scholar]
  45. HardyR.J. ThompsonS.G. A likelihood approach to meta-analysis with random effects.Stat. Med.199615661962910.1002/(SICI)1097‑0258(19960330)15:6<619::AID‑SIM188>3.0.CO;2‑A 8731004
    [Google Scholar]
  46. HigginsJ.P.T. ThompsonS.G. Quantifying heterogeneity in a meta‐analysis.Stat. Med.200221111539155810.1002/sim.1186 12111919
    [Google Scholar]
  47. DuvalS. TweedieR. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.Biometrics200056245546310.1111/j.0006‑341X.2000.00455.x 10877304
    [Google Scholar]
  48. WhiteI.R. Multivariate random-effects meta-analysis.Stata J.200991405610.1177/1536867X0900900103
    [Google Scholar]
  49. BamalanO.A. MooreM.J. Al KhaliliY. Physiology, serotonin.StatPearls.Treasure Island, FLStatPearls Publishing2019
    [Google Scholar]
  50. CaraccioloL. MarosiM. MazzitelliJ. LatifiS. SanoY. GalvanL. KawaguchiR. HolleyS. LevineM.S. CoppolaG. Portera-CailliauC. SilvaA.J. CarmichaelS.T. CREB controls cortical circuit plasticity and functional recovery after stroke.Nat. Commun.201891225010.1038/s41467‑018‑04445‑9 29884780
    [Google Scholar]
  51. DeltheilT. GuiardB.P. GuillouxJ.P. NicolasL. DeloménieC. RepérantC. MaitreE.L. Leroux-NicolletI. BenmansourS. CoudoréF. DavidD.J. GardierA.M. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: Studies in adult mice hippocampus.Pharmacol. Biochem. Behav.200890217418310.1016/j.pbb.2007.09.018 17980409
    [Google Scholar]
  52. RothW. ZadehK. VekariyaR. GeY. MohamadzadehM. Tryptophan metabolism and gut-brain homeostasis.Int. J. Mol. Sci.2021226297310.3390/ijms22062973 33804088
    [Google Scholar]
  53. MushtaqR. TarfaroshS.F.A. DarM.M. HussainA. ShoibS. ShahT. ShahS. ManzoorM. Is there a link between depressive disorders and tryptophan hydroxylase 1 (TPH1) gene polymorphism?-study from a distressed area, Kashmir (India).Cureus201687e67310.7759/cureus.673 27672527
    [Google Scholar]
  54. BanskotaS. GhiaJ.E. KhanW.I. Serotonin in the gut: Blessing or a curse.Biochimie2019161566410.1016/j.biochi.2018.06.008 29909048
    [Google Scholar]
  55. TynanR.J. NaickerS. HinwoodM. NalivaikoE. BullerK.M. PowD.V. DayT.A. WalkerF.R. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions.Brain Behav. Immun.20102471058106810.1016/j.bbi.2010.02.001 20153418
    [Google Scholar]
  56. YuH. ChenZ. The role of BDNF in depression on the basis of its location in the neural circuitry.Acta Pharmacol. Sin.201132131110.1038/aps.2010.184 21131999
    [Google Scholar]
  57. YohnC.N. GerguesM.M. SamuelsB.A. The role of 5-HT receptors in depression.Mol. Brain20171012810.1186/s13041‑017‑0306‑y 28646910
    [Google Scholar]
  58. BöerU. AlejelT. BeimescheS. CiernyI. KrauseD. KnepelW. FlüggeG. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: Reversal by antidepressant treatment.PLoS One200725e43110.1371/journal.pone.0000431 17487276
    [Google Scholar]
  59. OhsawaK. ImaiY. SasakiY. KohsakaS. Microglia/] macrophage‐specific protein Iba1 binds to fimbrin and enhances its actin‐bundling activity.J. Neurochem.200488484485610.1046/j.1471‑4159.2003.02213.x 14756805
    [Google Scholar]
  60. DiasB. BanerjeeS.B. DumanR.S. VaidyaV.A. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain.Neuropharmacology200345455356310.1016/S0028‑3908(03)00198‑9 12907316
    [Google Scholar]
  61. GassP. RivaM.A. CREB, neurogenesis and depression.BioEssays2007291095796110.1002/bies.20658 17876779
    [Google Scholar]
  62. YaoH. ZhangD. YuH. YuanH. ShenH. LanX. LiuH. ChenX. MengF. WuX. ZhangG. WangX. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation.Mol. Psychiatry202328291993010.1038/s41380‑022‑01841‑y 36280756
    [Google Scholar]
  63. ZhangJ. XueB. JingB. TianH. ZhangN. LiM. LuL. ChenL. DiaoH. ChenY. WangM. LiX. LPS activates neuroinflammatory pathways to induce depression in Parkinson’s disease-like condition.Front. Pharmacol.20221396181710.3389/fphar.2022.961817 36278237
    [Google Scholar]
  64. WonE. NaK.S. KimY.K. Associations between melatonin, neuroinflammation, and brain alterations in depression.Int. J. Mol. Sci.202123130510.3390/ijms23010305 35008730
    [Google Scholar]
  65. HaapakoskiR. MathieuJ. EbmeierK.P. AleniusH. KivimäkiM. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder.Brain Behav. Immun.20154920621510.1016/j.bbi.2015.06.001 26065825
    [Google Scholar]
  66. SuK.P. LaiH.C. PengC.Y. SuW.P. ChangJ.P.C. ParianteC.M. Interferon-alpha-induced depression: Comparisons between early- and late-onset subgroups and with patients with major depressive disorder.Brain Behav. Immun.20198051251810.1016/j.bbi.2019.04.032 31059806
    [Google Scholar]
  67. StankiewiczA.M. GoscikJ. MajewskaA. SwiergielA.H. JuszczakG.R. The effect of acute and chronic social stress on the hippocampal transcriptome in mice.PLoS One20151011e014219510.1371/journal.pone.0142195 26556046
    [Google Scholar]
  68. ZhuX. ShenJ. FengS. HuangC. WangH. HuoF. LiuH. Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6.Microbiome202311112010.1186/s40168‑023‑01567‑1 37254162
    [Google Scholar]
  69. WangL. TangL. FengY. ZhaoS. HanM. ZhangC. YuanG. ZhuJ. CaoS. WuQ. LiL. ZhangZ. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8 + T cells in mice.Gut202069111988199710.1136/gutjnl‑2019‑320105 32169907
    [Google Scholar]
  70. LiuP.S. WangH. LiX. ChaoT. TeavT. ChristenS. Di ConzaG. ChengW.C. ChouC.H. VavakovaM. MuretC. DebackereK. MazzoneM. HuangH.D. FendtS.M. IvanisevicJ. HoP.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.Nat. Immunol.201718998599410.1038/ni.3796 28714978
    [Google Scholar]
  71. NaY.R. StakenborgM. SeokS.H. MatteoliG. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD.Nat. Rev. Gastroenterol. Hepatol.201916953154310.1038/s41575‑019‑0172‑4 31312042
    [Google Scholar]
  72. PapakostasG.I. CulpepperL. Understanding and managing cognition in the depressed patient.J. Clin. Psychiatry201576441842510.4088/JCP.13086ah1c 25919832
    [Google Scholar]
  73. NoworytaK. CieslikA. RygulaR. Neuromolecular underpinnings of negative cognitive bias in depression.Cells20211011315710.3390/cells10113157 34831380
    [Google Scholar]
  74. RingA. KimY.M. KahnM. Wnt/catenin signaling in adult stem cell physiology and disease.Stem Cell Rev.201410451252510.1007/s12015‑014‑9515‑2 24825509
    [Google Scholar]
  75. ChelakkotC. ChoiY. KimD-K. ParkH.T. GhimJ. KwonY. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions.Exp. Mol. Med.2018502e45010.1038/emm.2017.282
    [Google Scholar]
  76. KimS. ShinY.C. KimT.Y. KimY. LeeY.S. LeeS.H. KimM.N. EunjuO. KimK.S. KweonM.N. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development.Gut Microbes2021131189244110.1080/19490976.2021.1892441 33678130
    [Google Scholar]
  77. González-MoreloK.J. Vega-SagardíaM. GarridoD. Molecular insights into O-linked glycan utilization by gut microbes.Front. Microbiol.20201159156810.3389/fmicb.2020.591568 33224127
    [Google Scholar]
  78. LiuM.J. YangJ.Y. YanZ.H. HuS. LiJ.Q. XuZ.X. JianY.P. Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases.Clin. Nutr.202241102333234410.1016/j.clnu.2022.08.029 36113229
    [Google Scholar]
  79. HinoS. MizushimaT. KanekoK. KawaiE. KondoT. GendaT. YamadaT. HaseK. NishimuraN. MoritaT. Mucin-derived O-glycans act as endogenous fiber and sustain mucosal immune homeostasis via short-chain fatty acid production in rat cecum.J. Nutr.2020150102656266510.1093/jn/nxaa097 32286621
    [Google Scholar]
  80. De MaesschalckC. Van ImmerseelF. EeckhautV. De BaereS. CnockaertM. CroubelsS. Faecalicoccus acidiformans gen. nov., sp. nov., Isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. IntInt. J. Syst. Evol. Microbiol.201464Pt_1138773884
    [Google Scholar]
  81. ZhangH. LiuL. ChengS. JiaY. WenY. YangX. MengP. LiC. PanC. ChenY. ZhangZ. ZhangJ. ZhangF. Assessing the joint effects of brain aging and gut microbiota on the risks of psychiatric disorders.Brain Imaging Behav.20221641504151510.1007/s11682‑022‑00630‑z 35076893
    [Google Scholar]
  82. LiuW. LiuL. DengZ. LiuR. MaT. XinY. XieY. ZhouY. TangY. Associations between impulsivity and fecal microbiota in individuals abstaining from methamphetamine.CNS Neurosci. Ther.2024302e1458010.1111/cns.14580 38421126
    [Google Scholar]
  83. AlpinoG.C.Á. Pereira-SolG.A. DiasM.M. AguiarA.S. PeluzioM.C.G. Beneficial effects of butyrate on brain functions: A view of epigenetic.Crit. Rev. Food Sci. Nutr.202464123961397010.1080/10408398.2022.2137776 36287024
    [Google Scholar]
  84. AndersonG. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions.Melatonin Res.202471204610.32794/mr112500167
    [Google Scholar]
  85. MorrisG. AndersonG. MaesM. Hypothalamic-pituitary-adrenal hypofunction in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) as a consequence of activated immune-inflammatory and oxidative and nitrosative pathways.Mol. Neurobiol.20175496806681910.1007/s12035‑016‑0170‑2 27766535
    [Google Scholar]
  86. MarinovaZ. LengY. LeedsP. ChuangD.M. Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons.Neuropharmacology2011607-81109111510.1016/j.neuropharm.2010.09.022 20888352
    [Google Scholar]
  87. AlamM.A. DattaP.K. Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders.Front. Pharmacol.201910151010.3389/fphar.2019.01510 31920679
    [Google Scholar]
  88. MiyagishiH. TsujiM. SaitoA. MiyagawaK. TakedaH. Inhibitory effect of yokukansan on the decrease in the hippocampal excitatory amino acid transporter EAAT2 in stress-maladaptive mice.J. Tradit. Complement. Med.20177437137410.1016/j.jtcme.2016.12.005 29034181
    [Google Scholar]
  89. AndersonG. MaesM. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications.Curr. Top. Med. Chem.202020752453910.2174/1568026620666200131094445 32003689
    [Google Scholar]
  90. AmeenA.O. NielsenS.W. KjærM.W. AndersenJ.V. WestiE.W. FreudeK.K. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate.J. Cereb. Blood Flow Metab.2025453528541
    [Google Scholar]
  91. AndersonG. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub.Int. J. Mol. Sci.202224135010.3390/ijms24010350 36613794
    [Google Scholar]
  92. LuoS. ZhaoY. ZhuS. LiuL. ChengK. YeB. HanY. FanJ. XiaM. Flavonifractor plautii protects against elevated arterial stiffness.Circ. Res.2023132216718110.1161/CIRCRESAHA.122.321975 36575982
    [Google Scholar]
  93. OgitaT. YamamotoY. MikamiA. ShigemoriS. SatoT. ShimosatoT. Oral administration of Flavonifractor plautii strongly suppresses Th2 immune responses in mice.Front. Immunol.20201137910.3389/fimmu.2020.00379 32184789
    [Google Scholar]
  94. CoelloK. HansenT.H. SørensenN. OttesenN.M. MiskowiakK.W. PedersenO. KessingL.V. VinbergM. Affective disorders impact prevalence of Flavonifractor and abundance of Christensenellaceae in gut microbiota.Prog. Neuropsychopharmacol. Biol. Psychiatry202111011030010.1016/j.pnpbp.2021.110300 33713734
    [Google Scholar]
  95. Obi-AzuikeC. EbiaiR. GibsonT. HernandezA. KhanA. AnugwomG. UrhiA. PrasadS. SouabniS.A. OladunjoyeF. A systematic review on gut–brain axis aberrations in bipolar disorder and methods of balancing the gut microbiota.Brain Behav.2023136e303710.1002/brb3.3037 37127945
    [Google Scholar]
  96. ZhangQ. YunY. AnH. ZhaoW. MaT. WangZ. YangF. Gut microbiome and daytime function in Chinese patients with major depressive disorder.J. Psychosom. Res.202215711078710.1016/j.jpsychores.2022.110787 35344817
    [Google Scholar]
  97. BrauneA. BlautM. Bacterial species involved in the conversion of dietary flavonoids in the human gut.Gut Microbes20167321623410.1080/19490976.2016.1158395 26963713
    [Google Scholar]
  98. PanL. YeH. PiX. LiuW. WangZ. ZhangY. ZhengJ. Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation.Front. Microbiol.202314109272910.3389/fmicb.2023.1092729 36819019
    [Google Scholar]
/content/journals/cn/10.2174/011570159X360149250225041829
Loading
/content/journals/cn/10.2174/011570159X360149250225041829
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): Akkermansia muciniphila; anxiety; depression; mental health; meta-analysis; mouse; stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test