Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Astrocytes have emerged as key players in the pathogenesis of depression and antidepressant treatment. However, comprehensive reviews in this field were absent. The bibliometric analysis can effectively illustrate research trends and hotspots of a specific domain through analysis of publications.

Objective

We conducted a bibliometric analysis to overview the current hotspots and research trends of astrocytes in depression and antidepressant treatment.

Methods

We collected publications’ data from the science citation index expanded (SCI-E) of the Web of Science (WOS) database, and bibliometric analysis was applied through CiteSpace and VOSviewer software. Results were mapped GraphPad Prism, Adobe Photoshop, and R software.

Results

After analysis of 2896 publications, we analyzed the content of publications, most influential publications, productive journals, most cited journals, core authors, productive countries/regions, and institutions in this field. The cooperation of main countries and organizations was mapped. Most importantly, after a thorough analysis of keywords, we found neuroinflammation was a hot topic in this research field.

Conclusion

The results of the bibliometric study prove neuroinflammation is a hot topic in this research field. Nowadays, many studies have investigated the role of astrocytes in depression and antidepressant treatment from the perspective of neuroinflammation. It is essential to pay more attention to elucidating the mechanisms of astrocyte-mediated neuroinflammation to identify potential targets for antidepressant development.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X353752250227113751
2025-03-18
2025-09-05
Loading full text...

Full text loading...

References

  1. MarwahaS. PalmerE. SuppesT. ConsE. YoungA.H. UpthegroveR. Novel and emerging treatments for major depression.Lancet20234011037114115310.1016/S0140‑6736(22)02080‑3 36535295
    [Google Scholar]
  2. Institute of Health Metrics and Evaluation. Global health data exchange (GHDx).2023Available from: https://vizhub.healthdata.org/gbd-results/ [Accessed on: 4 March 2023].
  3. WoodyC.A. FerrariA.J. SiskindD.J. WhitefordH.A. HarrisM.G. A systematic review and meta-regression of the prevalence and incidence of perinatal depression.J. Affect. Disord.2017219869210.1016/j.jad.2017.05.003 28531848
    [Google Scholar]
  4. FerrariF. VillaR.F. The neurobiology of depression: An integrated overview from biological theories to clinical evidence.Mol. Neurobiol.20175474847486510.1007/s12035‑016‑0032‑y 27510505
    [Google Scholar]
  5. PappM. CubałaW.J. SwiecickiL. TancrediN.A. WillnerP. Perspectives for therapy of treatment‐resistant depression.Br. J. Pharmacol.2022179174181420010.1111/bph.15596 34128229
    [Google Scholar]
  6. HeithoffB.P. GeorgeK.K. PharesA.N. ZuidhoekI.A. BallesterM.C. RobelS. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain.Glia202169243647210.1002/glia.23908 32955153
    [Google Scholar]
  7. PanS.M. PanY. TangY.L. ZuoN. ZhangY.X. JiaK.K. KongL.D. Thioredoxin interacting protein drives astrocytic glucose hypometabolism in corticosterone‐induced depressive state.J. Neurochem.202216118410010.1111/jnc.15489 34368959
    [Google Scholar]
  8. HaradaK. KamiyaT. TsuboiT. Gliotransmitter release from astrocytes: Functional, developmental, and pathological implications in the brain.Front. Neurosci.2016949910.3389/fnins.2015.00499 26793048
    [Google Scholar]
  9. BarlattaniT. GrandinettiP. CintioA.D. MontemagnoA. TestaR. D’AmelioC. OlivieriL. TomasettiC. RossiA. PacittiF. BerardisD.D. Glymphatic system and psychiatric disorders: A rapid comprehensive scoping review.Curr. Neuropharmacol.202422122016203310.2174/1570159X22666240130091235 39234773
    [Google Scholar]
  10. ColomboE. FarinaC. Astrocytes: Key regulators of neuroinflammation.Trends Immunol.201637960862010.1016/j.it.2016.06.006 27443914
    [Google Scholar]
  11. HidalgoM.J.J. BaucomC. DilleyG. OverholserJ.C. MeltzerH.Y. StockmeierC.A. RajkowskaG. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder.Biol. Psychiatry200048886187310.1016/S0006‑3223(00)00999‑9 11063981
    [Google Scholar]
  12. SiX. HidalgoM.J.J. O’DwyerG. StockmeierC.A. RajkowskaG. Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression.Neuropsychopharmacol.200429112088209610.1038/sj.npp.1300525 15238995
    [Google Scholar]
  13. WebsterM.J. O’GradyJ. KleinmanJ.E. WeickertC.S. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia.Neuroscience2005133245346110.1016/j.neuroscience.2005.02.037 15885920
    [Google Scholar]
  14. PlatasT.S.G. NagyC. WakidM. TureckiG. MechawarN. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.Mol. Psychiatry201621450951510.1038/mp.2015.65 26033239
    [Google Scholar]
  15. BowleyM.P. DrevetsW.C. ÖngürD. PriceJ.L. Low glial numbers in the amygdala in major depressive disorder.Biol. Psychiatry200252540441210.1016/S0006‑3223(02)01404‑X 12242056
    [Google Scholar]
  16. RajkowskaG. StockmeierC. Astrocyte pathology in major depressive disorder: Insights from human postmortem brain tissue.Curr. Drug Targets201314111225123610.2174/13894501113149990156 23469922
    [Google Scholar]
  17. PlatasT.S.G. HercherC. DavoliM.A. MaussionG. LabontéB. TureckiG. MechawarN. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides.Neuropsychopharmacology201136132650265810.1038/npp.2011.154 21814185
    [Google Scholar]
  18. BanqueriM. MéndezM. LázaroG.E. AriasJ.L. Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats.Stress201922556357010.1080/10253890.2019.1604666 31007117
    [Google Scholar]
  19. PreezD.A. OnoratoD. EibenI. MusaelyanK. EgelandM. ZunszainP.A. FernandesC. ThuretS. ParianteC.M. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice.Brain Behav. Immun.202191244710.1016/j.bbi.2020.07.015 32755644
    [Google Scholar]
  20. BanasrM. DumanR.S. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors.Biol. Psychiatry2008641086387010.1016/j.biopsych.2008.06.008 18639237
    [Google Scholar]
  21. PengL. VerkhratskyA. GuL. LiB. Targeting astrocytes in major depression.Expert Rev. Neurother.201515111299130610.1586/14737175.2015.1095094 26471936
    [Google Scholar]
  22. ChenB. ZhangM. JiM. GongW. ChenB. ZorecR. StenovecM. VerkhratskyA. LiB. The association between antidepressant effect of SSRIs and astrocytes: Conceptual overview and meta-analysis of the literature.Neurochem. Res.202146102731274510.1007/s11064‑020‑03225‑6 33527219
    [Google Scholar]
  23. DonthuN. KumarS. MukherjeeD. PandeyN. LimW.M. How to conduct a bibliometric analysis: An overview and guidelines.J. Bus. Res.202113328529610.1016/j.jbusres.2021.04.070
    [Google Scholar]
  24. BaiL. XuD. ZhouY.M. ZhangY.B. ZhangH. ChenY.B. CuiY.L. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications.Antioxidants20221112249110.3390/antiox11122491 36552700
    [Google Scholar]
  25. ZhaoP.Y. YangX.P. FuZ. WangT.Z. LiS.Y. DuX.H. Global research trends and hotspots of autophagy in colorectal cancer: A 20-year bibliometric analysis based on web of science.Front. Biosci.202227927210.31083/j.fbl2709272 36224016
    [Google Scholar]
  26. ZhaoP. JiaoY. MaZ. YanY. LiY. HuS. LiS. DuX. Publication trends and hotspots of drug resistance in colorectal cancer during 2002-2021: A bibliometric and visualized analysis.Front. Oncol.20221294765810.3389/fonc.2022.947658 36110958
    [Google Scholar]
  27. CaoX. LiL.P. WangQ. WuQ. HuH.H. ZhangM. FangY.Y. ZhangJ. LiS.J. XiongW.C. YanH.C. GaoY.B. LiuJ.H. LiX.W. SunL.R. ZengY.N. ZhuX.H. GaoT.M. Astrocyte-derived ATP modulates depressive-like behaviors.Nat. Med.201319677377710.1038/nm.3162 23644515
    [Google Scholar]
  28. IllesP. RubiniP. YinH. TangY. Impaired ATP release from brain astrocytes may be a cause of major depression.Neurosci. Bull.202036111281128410.1007/s12264‑020‑00494‑7 32279193
    [Google Scholar]
  29. JunM. XiaolongQ. ChaojuanY. RuiyuanP. ShukunW. JunbingW. LiH. HongC. JinboC. RongW. YajinL. LanqunM. FengchaoW. ZhiyingW. JianxiongA. YunW. XiaZ. ChenZ. ZengqiangY. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors.Mol. Psychiatry201823488389110.1038/mp.2017.229 29180673
    [Google Scholar]
  30. KinoshitaM. HirayamaY. FujishitaK. ShibataK. ShinozakiY. ShigetomiE. TakedaA. LeH.P.N. HayashiH. HiasaM. MoriyamaY. IkenakaK. TanakaK.F. KoizumiS. Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes.EBioMedicine201832728310.1016/j.ebiom.2018.05.036 29887330
    [Google Scholar]
  31. CuiY. YangY. NiZ. DongY. CaiG. FoncelleA. MaS. SangK. TangS. LiY. ShenY. BerryH. WuS. HuH. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression.Nature2018554769232332710.1038/nature25752 29446379
    [Google Scholar]
  32. MénardC. HodesG.E. RussoS.J. Pathogenesis of depression: Insights from human and rodent studies.Neuroscience201632113816210.1016/j.neuroscience.2015.05.053 26037806
    [Google Scholar]
  33. BritesD. FernandesA. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation.Front. Cell. Neurosci.2015947610.3389/fncel.2015.00476 26733805
    [Google Scholar]
  34. WangQ. JieW. LiuJ.H. YangJ.M. GaoT.M. An astroglial basis of major depressive disorder? An overview.Glia20176581227125010.1002/glia.23143 28317185
    [Google Scholar]
  35. EnacheD. ParianteC.M. MondelliV. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue.Brain Behav. Immun.201981244010.1016/j.bbi.2019.06.015 31195092
    [Google Scholar]
  36. SkaperS.D. FacciL. ZussoM. GiustiP. An inflammation-centric view of neurological disease: Beyond the neuron.Front. Cell. Neurosci.2018127210.3389/fncel.2018.00072 29618972
    [Google Scholar]
  37. CzéhB. SimonM. SchmeltingB. HiemkeC. FuchsE. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment.Neuropsychopharmacology20063181616162610.1038/sj.npp.1300982 16395301
    [Google Scholar]
  38. CotterD.R. ParianteC.M. EverallI.P. Glial cell abnormalities in major psychiatric disorders: The evidence and implications.Brain Res. Bull.200155558559510.1016/S0361‑9230(01)00527‑5 11576755
    [Google Scholar]
  39. BernardR. KermanI.A. ThompsonR.C. JonesE.G. BunneyW.E. BarchasJ.D. SchatzbergA.F. MyersR.M. AkilH. WatsonS.J. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression.Mol. Psychiatry201116663464610.1038/mp.2010.44 20386568
    [Google Scholar]
  40. NagyC. SudermanM. YangJ. SzyfM. MechawarN. ErnstC. TureckiG. Astrocytic abnormalities and global DNA methylation patterns in depression and suicide.Mol. Psychiatry201520332032810.1038/mp.2014.21 24662927
    [Google Scholar]
  41. LengL. ZhuangK. LiuZ. HuangC. GaoY. ChenG. LinH. HuY. WuD. ShiM. XieW. SunH. ShaoZ. LiH. ZhangK. MoW. HuangT.Y. XueM. YuanZ. ZhangX. BuG. XuH. XuQ. ZhangJ. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation.Neuron20181003551563.e710.1016/j.neuron.2018.08.031 30220511
    [Google Scholar]
  42. LiH. AnH. WangY. HuangJ. GaoX. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network.Physica A201645065766910.1016/j.physa.2016.01.017
    [Google Scholar]
  43. DrevetsW.C. WittenbergG.M. BullmoreE.T. ManjiH.K. Immune targets for therapeutic development in depression: Towards precision medicine.Nat. Rev. Drug Discov.202221322424410.1038/s41573‑021‑00368‑1 35039676
    [Google Scholar]
  44. NgA. TamW.W. ZhangM.W. HoC.S. HusainS.F. McIntyreR.S. HoR.C. IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis.Sci. Rep.2018811205010.1038/s41598‑018‑30487‑6 30104698
    [Google Scholar]
  45. YeG. YinG.Z. TangZ. FuJ.L. ChenJ. ChenS.S. LiJ. FuT. YuX. XuD.W. YaoJ.K. HuiL. Association between increased serum interleukin-6 levels and sustained attention deficits in patients with major depressive disorder.Psychol. Med.201848152508251410.1017/S0033291718000090 29415791
    [Google Scholar]
  46. RaisonC.L. RutherfordR.E. WoolwineB.J. ShuoC. SchettlerP. DrakeD.F. HaroonE. MillerA.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers.JAMA Psychiatry2013701314110.1001/2013.jamapsychiatry.4 22945416
    [Google Scholar]
  47. PanY. ChenX.Y. ZhangQ.Y. KongL.D. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats.Brain Behav. Immun.2014419010010.1016/j.bbi.2014.04.007 24859041
    [Google Scholar]
  48. ChoiD.J. AnJ. JouI. ParkS.M. JoeE.H. A Parkinson’s disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D2 synthase expression.Neurobiol. Dis.201912748249110.1016/j.nbd.2019.04.003 30954702
    [Google Scholar]
  49. ReidJ.K. KuipersH.F. She doesn’t even go here: The role of inflammatory astrocytes in CNS disorders.Front. Cell. Neurosci.20211570488410.3389/fncel.2021.704884 34539348
    [Google Scholar]
  50. QiuD. LiX.N. Pioglitazone inhibits the secretion of proinflammatory cytokines and chemokines in astrocytes stimulated with lipopolysaccharide.Int. J. Clin. Pharmacol. Ther.201553974675210.5414/CP202339 26227097
    [Google Scholar]
  51. ZhangX. ZhuL.B. HeJ.H. ZhangH.Q. JiS.Y. ZhangC.N. HouN.N. HuangC.P. ZhuJ.H. Paroxetine suppresses reactive microglia-mediated but not lipopolysaccharide-induced inflammatory responses in primary astrocytes.J. Neuroinflammation20201715010.1186/s12974‑020‑1712‑0 32024542
    [Google Scholar]
  52. LiddelowS.A. GuttenplanK.A. ClarkeL.E. BennettF.C. BohlenC.J. SchirmerL. BennettM.L. MünchA.E. ChungW.S. PetersonT.C. WiltonD.K. FrouinA. NapierB.A. PanickerN. KumarM. BuckwalterM.S. RowitchD.H. DawsonV.L. DawsonT.M. StevensB. BarresB.A. Neurotoxic reactive astrocytes are induced by activated microglia.Nature2017541763848148710.1038/nature21029 28099414
    [Google Scholar]
  53. ThompsonW.L. EldikV.L.J. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkB and MAPK dependent pathways in rat astrocyte.Brain Res.20091287475710.1016/j.brainres.2009.06.08119577550
    [Google Scholar]
  54. NakajimaH. FujitaS. KakaeM. NagayasuK. hora, O.M.; Shirakawa, H.; Kaneko, S. Orai2 channel regulates prostaglandin E2 production in TNFα/IL1α ‐stimulated astrocytes.Glia20227091666168010.1002/glia.24188 35506586
    [Google Scholar]
  55. GottipatiM.K. D’AmatoA.R. ZiembaA.M. PopovichP.G. GilbertR.J. TGFβ3 is neuroprotective and alleviates the neurotoxic response induced by aligned poly-l-lactic acid fibers on naïve and activated primary astrocytes.Acta Biomater.202011727328210.1016/j.actbio.2020.09.057 33035696
    [Google Scholar]
  56. DivolisG. StavropoulosA. ManioudakiM. ApostolidouA. DoulouA. GavriilA. DafnisI. ChroniA. MummeryC. XilouriM. SiderasP. Activation of both transforming growth factor-β and bone morphogenetic protein signalling pathways upon traumatic brain injury restrains pro-inflammatory and boosts tissue reparatory responses of reactive astrocytes and microglia.Brain Commun.201911fcz02810.1093/braincomms/fcz028 32954268
    [Google Scholar]
  57. ZamanianJ.L. XuL. FooL.C. NouriN. ZhouL. GiffardR.G. BarresB.A. Genomic analysis of reactive astrogliosis.J. Neurosci.201232186391641010.1523/JNEUROSCI.6221‑11.2012 22553043
    [Google Scholar]
  58. GuoH. FanZ. WangS. MaL. WangJ. YuD. ZhangZ. WuL. PengZ. LiuW. HouW. CaiY. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke.J. Neuroinflammation202118123010.1186/s12974‑021‑02284‑y 34645472
    [Google Scholar]
  59. FangY. DingX. ZhangY. CaiL. GeY. MaK. XuR. LiS. SongM. ZhuH. LiuJ. DingJ. LuM. HuG. Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT2BR/β-arrestin2 pathway.J. Neuroinflammation20221912310.1186/s12974‑022‑02389‑y 35093099
    [Google Scholar]
  60. YinX. LiuB. DingY. LiX. ShengJ. GuoY. ChenZ. WenJ. Total flavones of Rhododendron induce the transformation of A1/A2 astrocytes via promoting the release of CBS-produced H2S.Phytomedicine202311115466610.1016/j.phymed.2023.154666 36701996
    [Google Scholar]
  61. FanY.Y. HuoJ. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils?Neurochem. Int.202114810508010.1016/j.neuint.2021.105080 34048845
    [Google Scholar]
  62. ZouL.H. ShiY.J. HeH. JiangS.M. HuoF.F. WangX.M. WuF. MaL. Effects of FGF2/FGFR1 pathway on expression of A1 Astrocytes after infrasound exposure.Front. Neurosci.20191342910.3389/fnins.2019.00429 31130839
    [Google Scholar]
  63. ClarkeL.E. LiddelowS.A. ChakrabortyC. MünchA.E. HeimanM. BarresB.A. Normal aging induces A1-like astrocyte reactivity.Proc. Natl. Acad. Sci.20181158E1896E190510.1073/pnas.1800165115 29437957
    [Google Scholar]
  64. NealM. LuoJ. HarischandraD.S. GordonR. SarkarS. JinH. AnantharamV. DésaubryL. KanthasamyA. KanthasamyA. Prokineticin‐2 promotes chemotaxis and alternative A2 reactivity of astrocytes.Glia201866102137215710.1002/glia.23467 30277602
    [Google Scholar]
  65. LiddelowS.A. BarresB.A. Reactive astrocytes: Production, function, and therapeutic potential.Immunity201746695796710.1016/j.immuni.2017.06.006 28636962
    [Google Scholar]
  66. ShiY.J. ShiM. XiaoL.J. LiL. ZouL.H. LiC.Y. ZhangQ.J. ZhouL.F. JiX.C. HuangH. XiY. LiuL. ZhangH.Y. ZhaoG. MaL. Inhibitive effects of FGF2/FGFR1 pathway on astrocyte-mediated inflammation in vivo and in vitro after infrasound exposure.Front. Neurosci.20181258210.3389/fnins.2018.00582 30210273
    [Google Scholar]
  67. ZhaoQ. RenY. ZhuY. HuangR. ZhuR. ChengL. XieN. The origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after spinal cord injury.Front. Cell. Neurosci.202317127650610.3389/fncel.2023.1276506 38188669
    [Google Scholar]
  68. ChoiS.S. LeeH.J. LimI. SatohJ. KimS.U. Human astrocytes: Secretome profiles of cytokines and chemokines.PLoS One201494e9232510.1371/journal.pone.0092325 24691121
    [Google Scholar]
  69. LinnerbauerM. WheelerM.A. QuintanaF.J. Astrocyte crosstalk in CNS inflammation.Neuron2020108460862210.1016/j.neuron.2020.08.012 32898475
    [Google Scholar]
  70. HouB. ZhangY. LiangP. HeY. PengB. LiuW. HanS. YinJ. HeX. Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype.Cell Death Dis.202011537710.1038/s41419‑020‑2565‑2 32415059
    [Google Scholar]
  71. CaiD. FraunfelderM. FujiseK. ChenS.Y. ADAR1 exacerbates ischemic brain injury via astrocyte-mediated neuron apoptosis.Redox Biol.20236710290310.1016/j.redox.2023.102903 37801857
    [Google Scholar]
  72. ChangJ. QianZ. WangB. CaoJ. ZhangS. JiangF. KongR. YuX. CaoX. YangL. ChenH. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury.Cell Commun. Signal.20232113710.1186/s12964‑022‑01036‑6 36797790
    [Google Scholar]
  73. ChenL. LvF. MinS. YangY. LiuD. Roles of prokineticin 2 in electroconvulsive shock-induced memory impairment via regulation of phenotype polarization in astrocytes.Behav. Brain Res.202344611435010.1016/j.bbr.2023.114350 36804440
    [Google Scholar]
  74. MayoL. TraugerS.A. BlainM. NadeauM. PatelB. AlvarezJ.I. MascanfroniI.D. YesteA. KivisäkkP. KallasK. EllezamB. BakshiR. PratA. AntelJ.P. WeinerH.L. QuintanaF.J. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation.Nat. Med.201420101147115610.1038/nm.3681 25216636
    [Google Scholar]
  75. WheelerM.A. JaronenM. CovacuR. ZandeeS.E.J. ScalisiG. RothhammerV. TjonE.C. ChaoC.C. KenisonJ.E. BlainM. RaoV.T.S. HewsonP. BarrosoA. VázquezG.C. PratA. AntelJ.P. HauserR. QuintanaF.J. Environmental control of astrocyte pathogenic activities in CNS inflammation.Cell20191763581596.e1810.1016/j.cell.2018.12.012 30661753
    [Google Scholar]
  76. NordenD.M. FennA.M. DuganA. GodboutJ.P. TGFβ produced by IL‐10 redirected astrocytes attenuates microglial activation.Glia201462688189510.1002/glia.22647 24616125
    [Google Scholar]
  77. KimS. SteelmanA.J. KoitoH. LiJ. Astrocytes promote TNF-mediated toxicity to oligodendrocyte precursors.J. Neurochem.20111161536610.1111/j.1471‑4159.2010.07084.x 21044081
    [Google Scholar]
  78. MiyamotoN. MagamiS. InabaT. UenoY. HiraK. KijimaC. NakajimaS. YamashiroK. UrabeT. HattoriN. The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion.Glia20206891910192410.1002/glia.23814 32108971
    [Google Scholar]
  79. HerreraL.C. DávilaM.I.A. RojasS.L.O. MartinezF.Y.M. ParrillaF.M.A. DavilaA.J. ChavezL.B.A. RodriguezS.G. AlvarezB.V.M. SalasL.F.E. CastilloG.M.E. GarciaG.B. ViverosP.A. BañuelosC. CoronaR.D. AlvarezE.A.J. RamírezG.L. AlegriaH.O. lópez, C.F.; Fong, M.D. Intranigral administration of beta-sitosterol-beta-D-glucoside elicits neurotoxic A1 astrocyte reactivity and chronic neuroinflammation in the rat substantia nigra.J. Immunol. Res.2020202011910.1155/2020/5907591 33282962
    [Google Scholar]
  80. ZongX. LiY. LiuC. QiW. HanD. TuckerL. DongY. HuS. YanX. ZhangQ. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization.Theranostics20201026120901211010.7150/thno.51573 33204331
    [Google Scholar]
  81. GrandeR.B. VargheseL. HolgadoM.F. RajkovicO. GarlandaC. DenesA. PinteauxE. Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia.J. Neuroinflammation20151211510.1186/s12974‑014‑0227‑y 25616391
    [Google Scholar]
  82. XieX. LaiW. XuS. FortiD.M. ZhangJ. ChenM. YaoL. WangP. HaoK. RongH. Hyper-inflammation of astrocytes in patients of major depressive disorder: Evidence from serum astrocyte-derived extracellular vesicles.Brain Behav. Immun.2023109516210.1016/j.bbi.2022.12.014 36587855
    [Google Scholar]
  83. ShahapalA. ChoE.B. YongH.J. JeongI. KwakH. LeeJ.K. KimW. KimB. ParkH.C. LeeW.S. KimH. HwangJ.I. SeongJ.Y. FAM19A5 expression during embryogenesis and in the adult traumatic brain of FAM19A5-LacZ knock-in mice.Front. Neurosci.20191391710.3389/fnins.2019.00917 31543758
    [Google Scholar]
  84. HanK.M. TaeW.S. KimA. KangY. KangW. KangJ. KimY.K. KimB. SeongJ.Y. HamB.J. Serum FAM19A5 levels: A novel biomarker for neuroinflammation and neurodegeneration in major depressive disorder.Brain Behav. Immun.20208785285910.1016/j.bbi.2020.03.021 32217080
    [Google Scholar]
  85. DuR.H. WuF.F. LuM. ShuX. DingJ.H. WuG. HuG. Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression.Redox Biol.2016917818710.1016/j.redox.2016.08.006 27566281
    [Google Scholar]
  86. ZhuangX. ZhanB. JiaY. LiC. WuN. ZhaoM. ChenN. GuoY. DuY. ZhangY. CaoB. LiY. ZhuF. GuoC. WangQ. LiY. ZhangL. IL-33 in the basolateral amygdala integrates neuroinflammation into anxiogenic circuits via modulating BDNF expression.Brain Behav. Immun.20221029810910.1016/j.bbi.2022.02.019 35181439
    [Google Scholar]
  87. GuoL. GaoT. GaoC. JiaX. NiJ. HanC. WangY. Stimulation of astrocytic sigma-1 receptor is sufficient to ameliorate inflammation- induced depression.Behav. Brain Res.202141011334410.1016/j.bbr.2021.113344 33961912
    [Google Scholar]
  88. SongZ. ShenF. ZhangZ. WuS. ZhuG. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus.Neuropharmacology202017410817510.1016/j.neuropharm.2020.108175 32492450
    [Google Scholar]
  89. HeJ.H. LiuR.P. PengY.M. GuoQ. ZhuL.B. LianY.Z. HuB.L. FanH.H. ZhangX. ZhuJ.H. Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation.J. Neuroinflammation20211814710.1186/s12974‑021‑02097‑z 33602262
    [Google Scholar]
  90. DanieleS. ZappelliE. MartiniC. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes.J. Neuroinflammation201512122510.1186/s12974‑015‑0446‑x 26627476
    [Google Scholar]
  91. LuL. YangL. YueJ. WangX. QiJ. YangF. FengB. LiuS. Scutellarin alleviates depression-like behaviors induced by LPS in mice partially through inhibition of astrocyte-mediated neuroinflammation.Neurosci. Lett.202176513628410.1016/j.neulet.2021.136284 34624394
    [Google Scholar]
  92. YangL. AoY. LiY. DaiB. LiJ. DuanW. GaoW. ZhaoZ. HanZ. GuoR. Morinda officinalis oligosaccharides mitigate depression-like behaviors in hypertension rats by regulating Mfn2-mediated mitophagy.J. Neuroinflammation20232013110.1186/s12974‑023‑02715‑y 36765376
    [Google Scholar]
  93. KimJ.H. JuI.G. KimN. HuhE. SonS.R. HongJ.P. ChoiY. JangD.S. OhM.S. Yomogin, isolated from Artemisia iwayomogi, inhibits neuroinflammation stimulated by lipopolysaccharide via regulating MAPK pathway.Antioxidants202212110610.3390/antiox12010106 36670968
    [Google Scholar]
  94. ZhangJ. NingL. WangJ. Dietary quercetin attenuates depressive-like behaviors by inhibiting astrocyte reactivation in response to stress.Biochem. Biophys. Res. Commun.202053341338134610.1016/j.bbrc.2020.10.016 33059918
    [Google Scholar]
  95. RahmanS.U. AliT. HaoQ. HeK. LiW. UllahN. ZhangZ. JiangY. LiS. Xanthohumol attenuates lipopolysaccharide-induced depressive like behavior in mice: Involvement of NF-kappaB/Nrf2 signaling pathways.Neurochem. Res.202146123135314810.1007/s11064‑021‑03396‑w 34398408
    [Google Scholar]
  96. ZhaoT. WuD. DuJ. LiuG. JiG. WangZ. PengF. ManL. ZhouW. HaoA. Folic acid attenuates glial activation in neonatal mice and improves adult mood disorders through epigenetic regulation.Front. Pharmacol.20221381842310.3389/fphar.2022.818423 35197855
    [Google Scholar]
  97. MartinonF. MayorA. TschoppJ. The inflammasomes: Guardians of the body.Annu. Rev. Immunol.200927122926510.1146/annurev.immunol.021908.132715 19302040
    [Google Scholar]
  98. KaltschmidtB. WideraD. KaltschmidtC. Signaling via NF-κB in the nervous system.Biochim. Biophys. Acta Mol. Cell Res.20051745328729910.1016/j.bbamcr.2005.05.009 15993497
    [Google Scholar]
  99. ChenL.F. GreeneW.C. Shaping the nuclear action of NF-κB.Nat. Rev. Mol. Cell Biol.20045539240110.1038/nrm1368 15122352
    [Google Scholar]
  100. KarinM. GretenF.R. NF-κB: Linking inflammation and immunity to cancer development and progression.Nat. Rev. Immunol.200551074975910.1038/nri1703 16175180
    [Google Scholar]
  101. IsraëlA. The IKK complex, a central regulator of NF-kappaB activation.Cold Spring Harb. Perspect. Biol.201023a00015810.1101/cshperspect.a000158 20300203
    [Google Scholar]
  102. ZhangT. MaC. ZhangZ. ZhangH. HuH. NF-kappaB signaling in inflammation and cancer.MedComm.202020212(4), 618-653.10.1002/mco2.104 34977871
    [Google Scholar]
  103. PeipertB.J. GoswamiS. YountS.E. SturgeonC. Health-related quality of life in MEN1 patients compared with other chronic conditions and the United States general population.Surgery2018163120521110.1016/j.surg.2017.04.030 29128174
    [Google Scholar]
  104. ZhangQ. SunY. HeZ. XuY. LiX. DingJ. LuM. HuG. Kynurenine regulates NLRP2 inflammasome in astrocytes and its implications in depression.Brain Behav. Immun.20208847148110.1016/j.bbi.2020.04.016 32283293
    [Google Scholar]
  105. CongT. SunY. ZhouY. WuH. LiL. ChuZ. ChenX. LiJ. ZhaoD. WangY. LiuY. YinS. XiaoZ. Blocking two-pore domain potassium channel TREK-1 inhibits the activation of A1-like reactive astrocyte through the NF-kappaB signaling pathway in a rat model of major depressive disorder.Neurochem. Res.20234861737175410.1007/s11064‑023‑03857‑4 36670238
    [Google Scholar]
  106. CaoH. LiB. MuM. LiS. ChenH. TaoH. WangW. ZouY. ZhaoY. LiuY. TaoX. Nicotine suppresses crystalline silica‐induced astrocyte activation and neuronal death by inhibiting NF‐κB in the mouse hippocampus.CNS Neurosci. Ther.2024304e1450810.1111/cns.14508 37864452
    [Google Scholar]
  107. LiY. LiJ. YangL. RenF. DongK. ZhaoZ. DuanW. WeiW. GuoR. Ginsenoside Rb1 protects hippocampal neurons in depressed rats based on mitophagy-regulated astrocytic pyroptosis.Phytomedicine202312115508310.1016/j.phymed.2023.155083 37722244
    [Google Scholar]
  108. JiangY. ChengX. ZhaoM. ZhaoT. ZhangM. ShiZ. YueX. GengY. GaoJ. WangC. YangJ. ZhuL. Gypenoside-14 reduces depression via downregulation of the nuclear factor Kappa B (NF-κB) signaling pathway on the lipopolysaccharide (LPS)-induced depression model.Pharmaceuticals2023168115210.3390/ph16081152 37631068
    [Google Scholar]
  109. AgeevaT. RizvanovA. MukhamedshinaY. NF-kappaB and JAK/STAT signaling pathways as crucial regulators of neuroinflammation and astrocyte modulation in spinal cord injury.Cells202413758110.3390/cells13070581 38607020
    [Google Scholar]
  110. YeJ. ZhongS. DengY. YaoX. LiuQ. WangJ.Z. XiaoS. HDAC7 activates IKK/NF-kappaB signaling to regulate astrocyte-mediated inflammation.Mol. Neurobiol.202259106141615710.1007/s12035‑022‑02965‑6 35871708
    [Google Scholar]
  111. RothhammerV. MascanfroniI.D. BunseL. TakenakaM.C. KenisonJ.E. MayoL. ChaoC.C. PatelB. YanR. BlainM. AlvarezJ.I. KébirH. AnandasabapathyN. IzquierdoG. JungS. ObholzerN. PochetN. ClishC.B. PrinzM. PratA. AntelJ. QuintanaF.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor.Nat. Med.201622658659710.1038/nm.4106 27158906
    [Google Scholar]
  112. YesteA. TakenakaM.C. MascanfroniI.D. NadeauM. KenisonJ.E. PatelB. TukpahA.M. BabonJ.A.B. DeNicolaM. KentS.C. PozoD. QuintanaF.J. Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2.Sci. Signal.20169433ra6110.1126/scisignal.aad0612 27330188
    [Google Scholar]
  113. SalisburyR.L. SulenticC.E.W. The AhR and NF-kappaB/Rel proteins mediate the inhibitory effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3′ immunoglobulin heavy chain regulatory region.Toxicol. Sci.2015148244345910.1093/toxsci/kfv193 26377645
    [Google Scholar]
  114. LiuY. SongN. YaoH. JiangS. WangY. ZhengY. ZhouY. DingJ. HuG. LuM. β-Arrestin2-biased Drd2 agonist UNC9995 alleviates astrocyte inflammatory injury via interaction between β-arrestin2 and STAT3 in mouse model of depression.J. Neuroinflammation202219124010.1186/s12974‑022‑02597‑6 36183107
    [Google Scholar]
  115. WangY.M. XiaC.Y. JiaH.M. HeJ. LianW.W. YanY. WangW.P. ZhangW.K. XuJ.K. Sigma-1 receptor: A potential target for the development of antidepressants.Neurochem. Int.202215910539010.1016/j.neuint.2022.105390 35810915
    [Google Scholar]
  116. ZhaoY. YanH. LiangX. ZhangZ. WangX. ShiN. BianW. DiQ. HuangH. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation via the P-glycoprotein and NF-kappaB pathway in astrocytes.Neurochem. Res.20234851424143710.1007/s11064‑022‑03840‑5 36482035
    [Google Scholar]
  117. QianD. LiL. RongY. LiuW. WangQ. ZhouZ. GuC. HuangY. ZhaoX. ChenJ. FanJ. YinG. Blocking Notch signal pathway suppresses the activation of neurotoxic A1 astrocytes after spinal cord injury.Cell Cycle201918213010302910.1080/15384101.2019.1667189 31530090
    [Google Scholar]
  118. WangJ. ChengC. LiuZ. LinY. YangL. ZhangZ. SunX. ZhouM. JingP. ZhongZ. Inhibition of A1 astrocytes and activation of A2 astrocytes for the treatment of spinal cord injury.Neurochem. Res.202348376778010.1007/s11064‑022‑03820‑9 36418652
    [Google Scholar]
/content/journals/cn/10.2174/011570159X353752250227113751
Loading
/content/journals/cn/10.2174/011570159X353752250227113751
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test