Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Language deficits, restricted and repetitive interests, and social difficulties are among the characteristics of autism spectrum disorder (ASD). Machine learning and neuroimaging have also been combined to examine ASD. Utilizing bibliometric analysis, this study examines the current state and hot topics in machine learning for ASD.

Objective

A research bibliometric analysis of the machine learning application in ASD trends, including research trends and the most popular topics, as well as proposed future directions for research.

Methods

From 1999 to 2023, the Web of Science Core Collection (WoSCC) was searched for publications relating to machine learning and ASD. Authors, articles, journals, institutions, and countries were characterized using Microsoft Excel 2021 and VOSviewer. Analysis of knowledge networks, collaborative maps, hotspots, and trends was conducted using VOSviewer and CiteSpace.

Results

A total of 1357 papers were identified between 1999 and 2023. There was a slow growth in publications until 2016; then, between 2017 and 2023, a sharp increase was recorded. Among the most important contributors to this field were the United States, China, India, and England. Among the top major research institutions with numerous publications were Stanford University, Harvard Medical School, the University of California, the University of Pennsylvania, and the Chinese Academy of Sciences. Wall, Dennis P. was the most productive and highest-cited author. Scientific Reports, Frontiers In Neuroscience Autism Research, and Frontiers In Psychiatry were the three productive journals. “autism spectrum disorder”, “machine learning”, “children”, “classification” and “deep learning” are the central topics in this period.

Conclusion

Cooperation and communication between countries/regions need to be enhanced in future research. A shift is taking place in the research hotspot from “Alzheimer's Disease”, “Mild Cognitive Impairment” and “cortex” to “artificial intelligence”, “deep learning”, “electroencephalography” and “pediatrics”. Crowdsourcing machine learning applications and electroencephalography for ASD diagnosis should be the future development direction. Future research about these hot topics would promote understanding in this field.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X332833241222191422
2025-03-25
2025-09-02
Loading full text...

Full text loading...

References

  1. FirstM.B. Diagnostic and statistical manual of mental disordersAmerican Psychiatric Association2013201727729
    [Google Scholar]
  2. KannerL. Autistic disturbances of affective contact.Acta Paedopsychiatr.1968354100136 4880460
    [Google Scholar]
  3. SharmaS.R. GondaX. TaraziF.I. Autism spectrum disorder: Classification, diagnosis and therapy.Pharmacol. Ther.20181909110410.1016/j.pharmthera.2018.05.007 29763648
    [Google Scholar]
  4. MaennerM.J. ShawK.A. BakianA.V. BilderD.A. DurkinM.S. EslerA. FurnierS.M. HallasL. Hall-LandeJ. HudsonA. HughesM.M. PatrickM. PierceK. PoynterJ.N. SalinasA. ShenoudaJ. VehornA. WarrenZ. ConstantinoJ.N. DiRienzoM. FitzgeraldR.T. GrzybowskiA. SpiveyM.H. PettygroveS. ZahorodnyW. AliA. AndrewsJ.G. BaroudT. GutierrezJ. HewittA. LeeL.C. LopezM. MancillaK.C. McArthurD. SchwenkY.D. WashingtonA. WilliamsS. CogswellM.E. Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 Sites, United States, 2018.MMWR Surveill. Summ.2021701111610.15585/mmwr.ss7011a1 34855725
    [Google Scholar]
  5. LordC. ElsabbaghM. BairdG. Veenstra-VanderweeleJ. Autism spectrum disorder.Lancet20183921014650852010.1016/S0140‑6736(18)31129‑2 30078460
    [Google Scholar]
  6. BuescherA.V.S. CidavZ. KnappM. MandellD.S. Costs of autism spectrum disorders in the United Kingdom and the United States.JAMA Pediatr.2014168872172810.1001/jamapediatrics.2014.210 24911948
    [Google Scholar]
  7. HowardJ. Artificial intelligence: Implications for the future of work.Am. J. Ind. Med.2019621191792610.1002/ajim.23037 31436850
    [Google Scholar]
  8. ChoiR.Y. CoynerA.S. Kalpathy-CramerJ. ChiangM.F. CampbellJ.P. Introduction to machine learning, neural networks, and deep learning.Transl. Vis. Sci. Technol.20209214 32704420
    [Google Scholar]
  9. OrrùG. Pettersson-YeoW. MarquandA.F. SartoriG. MechelliA. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review.Neurosci. Biobehav. Rev.20123641140115210.1016/j.neubiorev.2012.01.004 22305994
    [Google Scholar]
  10. LiuM. LiB. HuD. Autism spectrum disorder studies using fMRI data and machine learning: A review.Front. Neurosci.20211569787010.3389/fnins.2021.697870 34602966
    [Google Scholar]
  11. HandelmanG.S. KokH.K. ChandraR.V. RazaviA.H. LeeM.J. AsadiH. ED octor: Machine learning and the future of medicine.J. Intern. Med.2018284660361910.1111/joim.12822 30102808
    [Google Scholar]
  12. ZavršnikJ. KokolP. ŽlahtičB. BlažunV.H. Artificial intelligence and pediatrics: Synthetic knowledge synthesis.Electronics (Basel)202413351210.3390/electronics13030512
    [Google Scholar]
  13. KokolP. Blažun VošnerH. ZavršnikJ. Application of bibliometrics in medicine: A historical bibliometrics analysis.Health Info. Libr. J.202138212513810.1111/hir.12295 31995273
    [Google Scholar]
  14. PanX. YanE. CuiM. HuaW. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools.J. Informetrics201812248149310.1016/j.joi.2018.03.005
    [Google Scholar]
  15. ZhangQ. LiJ. WengL. A bibliometric analysis of COVID-19 publications in neurology by using the visual mapping method.Front. Public Health20221093700810.3389/fpubh.2022.937008 35958855
    [Google Scholar]
  16. ZhangS. WangS. LiuR. DongH. ZhangX. TaiX. A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders.Front. Psychiatry20221396707410.3389/fpsyt.2022.967074 36104988
    [Google Scholar]
  17. MaY. UzziB. Scientific prize network predicts who pushes the boundaries of science.Proc. Natl. Acad. Sci. USA201811550126081261510.1073/pnas.1800485115 30530666
    [Google Scholar]
  18. YouY. LiW. LiuJ. LiX. FuY. MaX. Bibliometric review to explore emerging high-intensity interval training in health promotion: A new century picture.Front. Public Health2021969763310.3389/fpubh.2021.697633 34368063
    [Google Scholar]
  19. ChenC. Searching for intellectual turning points: progressive knowledge domain visualization.Proc. Natl. Acad. Sci. USA2004101Suppl. 15303531010.1073/pnas.0307513100
    [Google Scholar]
  20. HazlettH.C. GuH. MunsellB.C. KimS.H. StynerM. WolffJ.J. ElisonJ.T. SwansonM.R. ZhuH. BotteronK.N. CollinsD.L. ConstantinoJ.N. DagerS.R. EstesA.M. EvansA.C. FonovV.S. GerigG. KostopoulosP. McKinstryR.C. PandeyJ. PatersonS. PruettJ.R. SchultzR.T. ShawD.W. ZwaigenbaumL. PivenJ. Early brain development in infants at high risk for autism spectrum disorder.Nature2017542764134835110.1038/nature21369 28202961
    [Google Scholar]
  21. ArbabshiraniM.R. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.Nature2017542764134835110.1016/j.neuroimage.2016.02.079
    [Google Scholar]
  22. HeinsfeldA.S. FrancoA.R. CraddockR.C. BuchweitzA. MeneguzziF. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.Neuroimage Clin.201817162310.1016/j.nicl.2017.08.017 29034163
    [Google Scholar]
  23. KrishnanA. ZhangR. YaoV. TheesfeldC.L. WongA.K. TadychA. VolfovskyN. PackerA. LashA. TroyanskayaO.G. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder.Nat. Neurosci.201619111454146210.1038/nn.4353 27479844
    [Google Scholar]
  24. EmersonR.W. AdamsC. NishinoT. HazlettH.C. WolffJ.J. ZwaigenbaumL. ConstantinoJ.N. ShenM.D. SwansonM.R. ElisonJ.T. KandalaS. EstesA.M. BotteronK.N. CollinsL. DagerS.R. EvansA.C. GerigG. GuH. McKinstryR.C. PatersonS. SchultzR.T. StynerM. SchlaggarB.L. PruettJ.R.Jr PivenJ. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age.Sci. Transl. Med.20179393eaag288210.1126/scitranslmed.aag2882 28592562
    [Google Scholar]
  25. PlittM. BarnesK.A. MartinA. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards.Neuroimage Clin.2015735936610.1016/j.nicl.2014.12.013 25685703
    [Google Scholar]
  26. YahataN. MorimotoJ. HashimotoR. LisiG. ShibataK. KawakuboY. KuwabaraH. KurodaM. YamadaT. MegumiF. ImamizuH. NáñezJ.E.Sr TakahashiH. OkamotoY. KasaiK. KatoN. SasakiY. WatanabeT. KawatoM. A small number of abnormal brain connections predicts adult autism spectrum disorder.Nat. Commun.2016711125410.1038/ncomms11254 27075704
    [Google Scholar]
  27. JiaoY. ChenR. KeX. ChuK. LuZ. HerskovitsE.H. Predictive models of autism spectrum disorder based on brain regional cortical thickness.Neuroimage201050258959910.1016/j.neuroimage.2009.12.047 20026220
    [Google Scholar]
  28. DuY. FuZ. CalhounV.D. Classification and prediction of brain disorders using functional connectivity: Promising but challenging.Front. Neurosci.20181252510.3389/fnins.2018.00525 30127711
    [Google Scholar]
  29. EckerC. Rocha-RegoV. JohnstonP. Mourao-MirandaJ. MarquandA. DalyE.M. BrammerM.J. MurphyC. MurphyD.G. Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach.Neuroimage2010491445610.1016/j.neuroimage.2009.08.024 19683584
    [Google Scholar]
  30. AndersonJ.S. NielsenJ.A. FroehlichA.L. DuBrayM.B. DruzgalT.J. CarielloA.N. CooperriderJ.R. ZielinskiB.A. RavichandranC. FletcherP.T. AlexanderA.L. BiglerE.D. LangeN. LainhartJ.E. Functional connectivity magnetic resonance imaging classification of autism.Brain2011134123742375410.1093/brain/awr263 22006979
    [Google Scholar]
  31. NielsenJ.A. ZielinskiB.A. FletcherP.T. AlexanderA.L. LangeN. BiglerE.D. LainhartJ.E. AndersonJ.S. Multisite functional connectivity MRI classification of autism: ABIDE results.Front. Hum. Neurosci.2013759910.3389/fnhum.2013.00599 24093016
    [Google Scholar]
  32. Di MartinoA. YanC-G. LiQ. DenioE. CastellanosF.X. AlaertsK. AndersonJ.S. AssafM. BookheimerS.Y. DaprettoM. DeenB. DelmonteS. DinsteinI. Ertl-WagnerB. FairD.A. GallagherL. KennedyD.P. KeownC.L. KeysersC. LainhartJ.E. LordC. LunaB. MenonV. MinshewN.J. MonkC.S. MuellerS. MüllerR-A. NebelM.B. NiggJ.T. O’HearnK. PelphreyK.A. PeltierS.J. RudieJ.D. SunaertS. ThiouxM. TyszkaJ.M. UddinL.Q. VerhoevenJ.S. WenderothN. WigginsJ.L. MostofskyS.H. MilhamM.P. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism.Mol. Psychiatry201419665966710.1038/mp.2013.78 23774715
    [Google Scholar]
  33. UddinL.Q. SupekarK. LynchC.J. KhouzamA. PhillipsJ. FeinsteinC. RyaliS. MenonV. Salience network-based classification and prediction of symptom severity in children with autism.JAMA Psychiatry201370886987910.1001/jamapsychiatry.2013.104 23803651
    [Google Scholar]
  34. DeshpandeG. LiberoL.E. SreenivasanK.R. DeshpandeH.D. KanaR.K. Identification of neural connectivity signatures of autism using machine learning.Front. Hum. Neurosci.2013767010.3389/fnhum.2013.00670 24151458
    [Google Scholar]
  35. IidakaT. Resting state functional magnetic resonance imaging and neural network classified autism and control.Cortex201563556710.1016/j.cortex.2014.08.011 25243989
    [Google Scholar]
  36. KosmickiJ.A. SochatV. DudaM. WallD.P. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning.Transl. Psychiatry201552e51410.1038/tp.2015.7 25710120
    [Google Scholar]
  37. WallD.P. KosmickiJ. DeLucaT.F. HarstadE. FusaroV.A. Use of machine learning to shorten observation-based screening and diagnosis of autism.Transl. Psychiatry201224e10010.1038/tp.2012.10 22832900
    [Google Scholar]
  38. ChenC.P. KeownC.L. JahediA. NairA. PfliegerM.E. BaileyB.A. MüllerR.A. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism.Neuroimage Clin.2015823824510.1016/j.nicl.2015.04.002 26106547
    [Google Scholar]
  39. KlikauerT. Reflections on phishing for phools - the economics of manipulation and deception. tripleC: communication, capitalism & critique.Open Access Journal for a Global Sustainable Information Society201614260264
    [Google Scholar]
  40. LiberoL.E. DeRamusT.P. LahtiA.C. DeshpandeG. KanaR.K. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates.Cortex201566465910.1016/j.cortex.2015.02.008 25797658
    [Google Scholar]
  41. BoneD. BishopS.L. BlackM.P. GoodwinM.S. LordC. NarayananS.S. Use of machine learning to improve autism screening and diagnostic instruments: Effectiveness, efficiency, and multi‐instrument fusion.J. Child Psychol. Psychiatry201657892793710.1111/jcpp.12559 27090613
    [Google Scholar]
  42. DudaM. MaR. HaberN. WallD.P. Use of machine learning for behavioral distinction of autism and ADHD.Transl. Psychiatry201662e73210.1038/tp.2015.221 26859815
    [Google Scholar]
  43. GhiassianS. GreinerR. JinP. BrownM.R.G. using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism.PLoS One20161112e016693410.1371/journal.pone.0166934 28030565
    [Google Scholar]
  44. ChristensenD.L. BraunK.V.N. BaioJ. BilderD. CharlesJ. ConstantinoJ.N. DanielsJ. DurkinM.S. FitzgeraldR.T. Kurzius-SpencerM. LeeL.C. PettygroveS. RobinsonC. SchulzE. WellsC. WingateM.S. ZahorodnyW. Yeargin-AllsoppM. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2012.MMWR Surveill. Summ.2018651312310.15585/mmwr.ss6513a1 30439868
    [Google Scholar]
  45. LevyS. DudaM. HaberN. WallD.P. Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism.Mol. Autism2017816510.1186/s13229‑017‑0180‑6 29270283
    [Google Scholar]
  46. KhoslaM. 3D convolutional neural networks for classification of functional connectomes.Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.ChamSpringer International Publishing201810.1007/978‑3‑030‑00889‑5_16
    [Google Scholar]
  47. KhodatarsM. ShoeibiA. SadeghiD. GhaasemiN. JafariM. MoridianP. KhademA. AlizadehsaniR. ZareA. KongY. KhosraviA. NahavandiS. HussainS. AcharyaU.R. BerkM. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review.Comput. Biol. Med.202113910494910.1016/j.compbiomed.2021.104949 34737139
    [Google Scholar]
  48. NogayH.S. AdeliH. Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging.Rev. Neurosci.202031882584110.1515/revneuro‑2020‑0043 32866134
    [Google Scholar]
  49. BayginM. DoganS. TuncerT. BaruaP.D. FaustO. ArunkumarN. AbdulhayE.W. PalmerE.E. AcharyaU.R. Automated ASD detection using hybrid deep lightweight features extracted from EEG signals.Comput. Biol. Med.202113410454810.1016/j.compbiomed.2021.104548 34119923
    [Google Scholar]
  50. ZhangQ. LiS. LiuJ. ChenJ. Global trends in nursing-related research on COVID-19: A bibliometric analysis.Front. Public Health20221093355510.3389/fpubh.2022.933555 35923953
    [Google Scholar]
  51. WallD.P. DallyR. LuysterR. JungJ.Y. DeLucaT.F. Use of artificial intelligence to shorten the behavioral diagnosis of autism.PLoS One201278e4385510.1371/journal.pone.0043855 22952789
    [Google Scholar]
  52. TariqQ. DanielsJ. SchwartzJ.N. WashingtonP. KalantarianH. WallD.P. Mobile detection of autism through machine learning on home video: A development and prospective validation study.PLoS Med.20181511e100270510.1371/journal.pmed.1002705 30481180
    [Google Scholar]
  53. MegerianJ.T. DeyS. MelmedR.D. CouryD.L. LernerM. NichollsC.J. SohlK. RouhbakhshR. NarasimhanA. RomainJ. GollaS. ShareefS. OstrovskyA. ShannonJ. KraftC. Liu-MayoS. AbbasH. Gal-SzaboD.E. WallD.P. TaramanS. Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder.NPJ Digit. Med.2022515710.1038/s41746‑022‑00598‑6 35513550
    [Google Scholar]
  54. WashingtonP. TariqQ. LeblancE. ChrismanB. DunlapK. KlineA. KalantarianH. PenevY. PaskovK. VossC. StockhamN. VarmaM. HusicA. KentJ. HaberN. WinogradT. WallD.P. Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection.Sci. Rep.2021111762010.1038/s41598‑021‑87059‑4 33828118
    [Google Scholar]
  55. WashingtonP. KalantarianH. TariqQ. SchwartzJ. DunlapK. ChrismanB. VarmaM. NingM. KlineA. StockhamN. PaskovK. VossC. HaberN. WallD.P. Validity of online screening for autism: Crowdsourcing study comparing paid and unpaid diagnostic tasks.J. Med. Internet Res.2019215e1366810.2196/13668 31124463
    [Google Scholar]
  56. WashingtonP. LeblancE. DunlapK. PenevY. KlineA. PaskovK. SunM.W. ChrismanB. StockhamN. VarmaM. VossC. HaberN. WallD.P. Precision telemedicine through crowdsourced machine learning: Testing variability of crowd workers for video-based autism feature recognition.J. Pers. Med.20201038610.3390/jpm10030086 32823538
    [Google Scholar]
  57. WashingtonP. LeblancE. DunlapK. PenevY. VarmaM. JungJ.Y. ChrismanB. SunM.W. StockhamN. PaskovK.M. KalantarianH. VossC. HaberN. WallD.P. Selection of trustworthy crowd workers for telemedical diagnosis of pediatric autism spectrum disorder.Pac. Symp. Biocomput.2021261425 33691000
    [Google Scholar]
  58. LidstoneD.E. RochowiakR. PachecoC. TunçgençB. VidalR. MostofskyS.H. Automated and scalable Computerized Assessment of Motor Imitation (CAMI) in children with Autism Spectrum Disorder using a single 2D camera: A pilot study.Res. Autism Spectr. Disord.20218710184010.1016/j.rasd.2021.101840
    [Google Scholar]
  59. AlvariG. CovielloL. FurlanelloC. EYE-C: Eye-Contact robust detection and analysis during unconstrained child-therapist interactions in the clinical setting of autism spectrum disorders.Brain Sci.20211112155510.3390/brainsci11121555 34942856
    [Google Scholar]
  60. SadekE.T. SeadaN.A. GhoniemyS. Computer vision-based approach for detecting arm-flapping as autism suspect behaviour.Int. J. Med. Eng. Inform.202315216617610.1504/IJMEI.2023.129350
    [Google Scholar]
  61. VarmaM. WashingtonP. ChrismanB. KlineA. LeblancE. PaskovK. StockhamN. JungJ.Y. SunM.W. WallD.P. Identification of social engagement indicators associated with autism spectrum disorder using a game-based mobile app: Comparative study of gaze fixation and visual scanning methods.J. Med. Internet Res.2022242e3183010.2196/31830 35166683
    [Google Scholar]
  62. ZhaoJ. LuY. WuX. ZhouF. FeiF. WuX. DingX. WangM. Bibliometric analysis of research themes and trends in childhood autism spectrum disorders from 2012 to 2021.Front. Public Health20221092547510.3389/fpubh.2022.925475 36117596
    [Google Scholar]
  63. RongP. FuQ. ZhangX. LiuH. ZhaoS. SongX. GaoP. MaR. A bibliometrics analysis and visualization of autism spectrum disorder.Front. Psychiatry20221388460010.3389/fpsyt.2022.884600 35923445
    [Google Scholar]
  64. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑3 20585380
    [Google Scholar]
  65. ChenC. SongM. Visualizing a field of research: A methodology of systematic scientometric reviews.PLoS One20191410e022399410.1371/journal.pone.0223994 31671124
    [Google Scholar]
  66. KimJ. LeeD. ParkE. Machine learning for mental health in social media: Bibliometric study.J. Med. Internet Res.2021233e2487010.2196/24870 33683209
    [Google Scholar]
  67. KimJ. KwonJ. KimM. DoJ. LeeD. HanH. Low-dielectric-constant polyimide aerogel composite films with low water uptake.Polym. J.201648782983410.1038/pj.2016.37
    [Google Scholar]
  68. SalehM.A. HanapiahF.A. HashimH. Robot applications for autism: A comprehensive review.Disabil. Rehabil. Assist. Technol.202116658060210.1080/17483107.2019.1685016 32706602
    [Google Scholar]
  69. JiaH.B. Resting-state EEG microstate features can quantitatively predict autistic traits in typically developing individuals.Brain Topogr.2023 37833486
    [Google Scholar]
  70. ZeidanJ. FombonneE. ScorahJ. IbrahimA. DurkinM.S. SaxenaS. YusufA. ShihA. ElsabbaghM. Global prevalence of autism: A systematic review update.Autism Res.202215577879010.1002/aur.2696 35238171
    [Google Scholar]
  71. LevyS.E. MandellD.S. SchultzR.T. Autism.Lancet200937497011627163810.1016/S0140‑6736(09)61376‑3 19819542
    [Google Scholar]
  72. DwyerD. KoutsoulerisN. Annual research review: Translational machine learning for child and adolescent psychiatry.J. Child Psychol. Psychiatry202263442144310.1111/jcpp.13545 35040130
    [Google Scholar]
  73. LiS. TangZ. JinN. YangQ. LiuG. LiuT. HuJ. LiuS. WangP. HaoJ. ZhangZ. ZhangX. LiJ. WangX. LiZ. WangY. YangB. MaL. Uncovering brain differences in preschoolers and young adolescents with autism spectrum disorder using deep learning.Int. J. Neural Syst.2022329225004410.1142/S0129065722500447 35946944
    [Google Scholar]
  74. SosnowskiD.W. StoughC.O. WeissM.J. CessnaT. CasaleA. ForanA. ErwinskiM. WilsonJ. FarberS.A. FarberM.A. Brief report: A novel digital therapeutic that combines applied behavior analysis with gaze-contingent eye tracking to improve emotion recognition in children with autism spectrum disorder.J. Autism Dev. Disord.20225252357236610.1007/s10803‑021‑05101‑w 34060003
    [Google Scholar]
  75. KhalajiE. Effects of data preprocessing on detecting autism in adults using web-based eye-tracking data.Behav. Inform Technol.202242142476248410.1080/0144929X.2022.2127376
    [Google Scholar]
  76. YanevaV. HaL.A. EraslanS. YesiladaY. MitkovR. Detecting high-functioning autism in adults using eye tracking and machine learning.IEEE Trans. Neural Syst. Rehabil. Eng.20202861254126110.1109/TNSRE.2020.2991675 32356755
    [Google Scholar]
  77. LeoM. Computational analysis of deep visual data for quantifying facial expression production.Appl. Sci.2019921454210.3390/app9214542
    [Google Scholar]
  78. MartinezA. DuS. A model of the perception of facial expressions of emotion by humans: Research overview and perspectives.J. Mach. Learn. Res.20121315891608 23950695
    [Google Scholar]
  79. MertzL.A.I. virtual reality, and robots advancing autism diagnosis and therapy.IEEE Pulse202112561010.1109/MPULS.2021.3113092 34714733
    [Google Scholar]
  80. RascheN. QianC. Work in progress: Application design on touch screen mobile computers (TSMC) to improve autism instruction.2012 Frontiers in Education Conference ProceedingsSeattle, WA, USA, 03-06 October2012450451https://ieeexplore.ieee.org/document/6462516
    [Google Scholar]
  81. VossC. WashingtonP. HaberN. KlineA. DanielsJ. FazelA. DeT. McCarthyB. FeinsteinC. WinogradT. WallD. Superpower glass: delivering unobtrusive real-time social cues in wearable systems.Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct20161218122610.1145/2968219.2968310
    [Google Scholar]
  82. WashingtonP. VossC. KlineA. HaberN. DanielsJ. FazelA. DeT. FeinsteinC. WinogradT. WallD. SuperpowerGlass: a wearable aid for the at-home therapy of children with autism.Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies20171312210.1145/3130977
    [Google Scholar]
  83. DanielsJ. SchwartzJ.N. VossC. HaberN. FazelA. KlineA. WashingtonP. FeinsteinC. WinogradT. WallD.P. Exploratory study examining the at-home feasibility of a wearable tool for social-affective learning in children with autism.NPJ Digit. Med.2018113210.1038/s41746‑018‑0035‑3 31304314
    [Google Scholar]
  84. VossC. SchwartzJ. DanielsJ. KlineA. HaberN. WashingtonP. TariqQ. RobinsonT.N. DesaiM. PhillipsJ.M. FeinsteinC. WinogradT. WallD.P. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder.JAMA Pediatr.2019173544645410.1001/jamapediatrics.2019.0285 30907929
    [Google Scholar]
  85. WashingtonP. VossC. HaberN. TanakaS. DanielsJ. FeinsteinC. WinogradT. WallD. A wearable social interaction aid for children with autism.In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems20162348235410.1145/2851581.2892282
    [Google Scholar]
  86. ShahamiriS.R. ThabtahF. AutismA.I. A new autism screening system based on artificial intelligence.Cognit. Comput.202012476677710.1007/s12559‑020‑09743‑3
    [Google Scholar]
  87. PopescuA.L. PopescuN. DobreC. ApostolE.S. PopescuD. IoT and AI-based application for automatic interpretation of the affective state of children diagnosed with autism.Sensors (Basel)2022227252810.3390/s22072528 35408139
    [Google Scholar]
  88. MoridianP. GhassemiN. JafariM. Salloum-AsfarS. SadeghiD. KhodatarsM. ShoeibiA. KhosraviA. LingS.H. SubasiA. AlizadehsaniR. GorrizJ.M. AbdullaS.A. AcharyaU.R. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review.Front. Mol. Neurosci.20221599960510.3389/fnmol.2022.999605 36267703
    [Google Scholar]
  89. BahathiqR.A. BanjarH. BamagaA.K. JarrayaS.K. Machine learning for autism spectrum disorder diagnosis using structural magnetic resonance imaging: Promising but challenging.Front. Neuroinform.20221694992610.3389/fninf.2022.949926 36246393
    [Google Scholar]
  90. SenB. BorleN.C. GreinerR. BrownM.R.G. A general prediction model for the detection of ADHD and autism using structural and functional MRI.PLoS One2018134e019485610.1371/journal.pone.0194856 29664902
    [Google Scholar]
  91. GautamR. SharmaM. Prevalence and diagnosis of neurological disorders using different deep learning techniques: A meta-analysis.J. Med. Syst.20204424910.1007/s10916‑019‑1519‑7 31902041
    [Google Scholar]
  92. SongC. JiangZ.Q. HuL.F. LiW.H. LiuX.L. WangY.Y. JinW.Y. ZhuZ.W. A machine learning-based diagnostic model for children with autism spectrum disorders complicated with intellectual disability.Front. Psychiatry20221399307710.3389/fpsyt.2022.993077 36213933
    [Google Scholar]
  93. PangC. ZhangY. XueZ. BaoJ. Keong LiB. LiuY. LiuY. ShengM. PengB. DaiY. Improving model robustness via enhanced feature representation and sample distribution based on cascaded classifiers for computer-aided diagnosis of brain disease.Biomed. Signal Process. Control20237910404710.1016/j.bspc.2022.104047
    [Google Scholar]
  94. AliM.T. ElNakiebY. ElnakibA. ShalabyA. MahmoudA. GhazalM. YousafJ. Abu KhalifehH. CasanovaM. BarnesG. El-BazA. The role of structure MRI in diagnosing autism.Diagnostics (Basel)202212116510.3390/diagnostics12010165 35054330
    [Google Scholar]
  95. SquarcinaL. NosariG. MarinR. CastellaniU. BellaniM. BoniventoC. FabbroF. MolteniM. BrambillaP. Automatic classification of autism spectrum disorder in children using cortical thickness and support vector machine.Brain Behav.2021118e223810.1002/brb3.2238 34264004
    [Google Scholar]
  96. MoradiE. KhundrakpamB. LewisJ.D. EvansA.C. TohkaJ. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data.Neuroimage2017144Pt A12814110.1016/j.neuroimage.2016.09.049 27664827
    [Google Scholar]
  97. WeberC.F. LakeE.M.R. HaiderS.P. MozayanA. MukherjeeP. ScheinostD. BamfordN.S. MentL. ConstableT. PayabvashS. Age-dependent white matter microstructural disintegrity in autism spectrum disorder.Front. Neurosci.20221695701810.3389/fnins.2022.957018 36161157
    [Google Scholar]
  98. SharifH. KhanR.A. A novel machine learning based framework for detection of autism spectrum disorder (ASD).Appl. Artif. Intell.2022361200465510.1080/08839514.2021.2004655
    [Google Scholar]
  99. LiaoM.Y. DuanH.Y. WangG.S. Application of machine learning techniques to detect the children with autism spectrum disorder.J. Healthc. Eng.20222022934002710.1155/2022/9340027
    [Google Scholar]
  100. ArdakaniH.A. TaghizadehM. ShayeghF. Diagnosis of autism disorder based on deep network trained by augmented EEG signals.Int. J. Neural Syst.20223211225004610.1142/S0129065722500460 35997585
    [Google Scholar]
  101. DasS. ZomorrodiR. MirjaliliM. KirkovskiM. BlumbergerD.M. RajjiT.K. DesarkarP. Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: A systematic review.Prog. Neuropsychopharmacol. Biol. Psychiatry202312311070510.1016/j.pnpbp.2022.110705 36574922
    [Google Scholar]
/content/journals/cn/10.2174/011570159X332833241222191422
Loading
/content/journals/cn/10.2174/011570159X332833241222191422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test