Skip to content
2000
image of Advancing Alzheimer's Diagnosis with AI-Enhanced MRI: A Review of Challenges and Implications

Abstract

Neurological disorders are marked by neurodegeneration, leading to impaired cognition, psychosis, and mood alterations. These symptoms are typically associated with functional changes in both emotional and cognitive processes, which are often correlated with anatomical variations in the brain. Hence, brain structural magnetic resonance imaging (MRI) data have become a critical focus in research, particularly for predictive modeling. The involvement of large MRI data consortia, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), has facilitated numerous MRI-based classification studies utilizing advanced artificial intelligence models. Among these, convolutional neural networks (CNNs) and non-convolutional artificial neural networks (NC-ANNs) have been prominently employed for brain image processing tasks. These deep learning models have shown significant promise in enhancing the predictive performance for the diagnosis of neurological disorders, with a particular emphasis on Alzheimer's disease (AD). This review aimed to provide a comprehensive summary of these deep learning studies, critically evaluating their methodologies and outcomes. By categorizing the studies into various sub-fields, we aimed to highlight the strengths and limitations of using MRI-based deep learning approaches for diagnosing brain disorders. Furthermore, we discussed the potential implications of these advancements in clinical practice, considering the challenges and future directions for improving diagnostic accuracy and patient outcomes. Through this detailed analysis, we seek to contribute to the ongoing efforts in harnessing AI for better understanding and management of AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X353595250303064846
2025-07-30
2025-08-19
Loading full text...

Full text loading...

References

  1. Gitler A.D. Dhillon P. Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech. 2017 10 5 499 502 10.1242/dmm.030205 28468935
    [Google Scholar]
  2. Fumia A. Nicola C. Marco G. Noemi N. Alessio A. Role of nutraceuticals on neurodegenerative diseases: Neuroprotective and immunomodulant activity. Nat. Prod. Res. 2021 5 2 10.1080/14786419.2021.2020265 34963389
    [Google Scholar]
  3. Sharma P. Srivastava P. Seth A. Tripathi P.N. Banerjee A.G. Shrivastava S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol. 2019 174 53 89 10.1016/j.pneurobio.2018.12.006 30599179
    [Google Scholar]
  4. Maia M.A. Sousa E. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s Disease. Pharmaceuticals (Basel) 2019 12 1 41 10.3390/ph12010041 30893882
    [Google Scholar]
  5. Patterson C. World Alzheimer report; Published by Alzheimer’s Disease International. London ADI 2018 1 42
    [Google Scholar]
  6. Prince M. Wimo A. Guerchet M. Ali G.C. Yu-Tzu W. 2019 https://www.alzint.org/u/World
  7. Heemels M.T. Neurodegenerative diseases. Nature 2016 539 7628 179 10.1038/539179a 27830810
    [Google Scholar]
  8. Taylor J.P. Brown R.H. Jr Cleveland D.W. Decoding ALS: From genes to mechanism. Nature 2016 539 7628 197 206 10.1038/nature20413 27830784
    [Google Scholar]
  9. Fujii T. Mashimo M. Moriwaki Y. Misawa H. Ono S. Horiguchi K. Kawashima K. Expression and function of the cholinergic system in immune cells. Front. Immunol. 2017 8 1085 10.3389/fimmu.2017.01085 28932225
    [Google Scholar]
  10. Zaccone D. Icardo J.M. Kuciel M. Alesci A. Pergolizzi S. Satora L. Lauriano E.R. Zaccone G. Polymorphous granular cells in the lung of the primitive fish, the bichir. Polypterus senegalus. Acta Zool. 2017 98 1 13 19 10.1111/azo.12145
    [Google Scholar]
  11. Jacobson A. Yang D. Vella M. Chiu I.M. The intestinal neuro-immune axis: Crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 2021 14 3 555 565 10.1038/s41385‑020‑00368‑1 33542493
    [Google Scholar]
  12. Reitz C. Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014 88 4 640 651 10.1016/j.bcp.2013.12.024 24398425
    [Google Scholar]
  13. Rehman M.U. Sehar N. Rasool I. Aldossari R.M. Wani A.B. Rashid S.M. Wali A.F. Ali A. Arafah A. Khan A. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases. Int. J. Geriatr. Psychiatry 2024 39 6 e6104 10.1002/gps.6104 38877354
    [Google Scholar]
  14. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  15. Dhapola R. Beura S.K. Sharma P. Singh S.K. Oxidative stress in Alzheimer’s disease: Current knowledge of signaling pathways and therapeutics. Mol. Biol. Rep. 2024 51 1 48 10.1007/s11033‑023‑09021‑z 38165499
    [Google Scholar]
  16. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  17. Firdous S.M. Khan S.A. Maity A. Oxidative stress–mediated neuroinflammation in Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 11 8189 8209 10.1007/s00210‑024‑03188‑3 38832985
    [Google Scholar]
  18. Bai R. Guo J. Ye X.Y. Xie Y. Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022 77 101619 10.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  19. Yoo S.M. Park J. Kim S.H. Jung Y.K. Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer’s disease. BMB Rep. 2020 53 1 35 46 10.5483/BMBRep.2020.53.1.274 31818363
    [Google Scholar]
  20. Yen C. Lin C.L. Chiang M.C. Exploring the frontiers of neuroimaging: A review of recent advances in understanding brain functioning and disorders. Life (Basel) 2023 13 7 1472 10.3390/life13071472 37511847
    [Google Scholar]
  21. Kaskikallio A. Karrasch M. Koikkalainen J. Lötjönen J. Rinne J.O. Tuokkola T. Parkkola R. Grönholm-Nyman P. White matter hyperintensities and cognitive impairment in healthy and pathological aging: A quantified brain MRI study. Dement. Geriatr. Cogn. Disord. 2019 48 5-6 297 307 10.1159/000506124 32209796
    [Google Scholar]
  22. Banerjee G. Jang H. Kim H.J. Kim S.T. Kim J.S. Lee J.H. Im, K.; Kwon, H.; Lee, J.M.; Na, D.L.; Seo, S.W.; Werring, D.J. Total MRI small vessel disease burden correlates with cognitive performance, cortical atrophy, and network measures in a memory clinic population. J. Alzheimers Dis. 2018 63 4 1485 1497 10.3233/JAD‑170943 29843234
    [Google Scholar]
  23. Grajauskas L.A. Guo H. D’Arcy R.C.N. Song X. Toward MRI ‐based whole‐brain health assessment: The brain atrophy and lesion index (BALI). Aging Med. (Milton) 2018 1 1 55 63 10.1002/agm2.12014 31942481
    [Google Scholar]
  24. Rittman T. Neurological update: Neuroimaging in dementia. J. Neurol. 2020 267 11 3429 3435 10.1007/s00415‑020‑10040‑0 32638104
    [Google Scholar]
  25. Dallas P.V. Michael W. Weiner L.A. Charles D.C. Robert C. Using the Alzheimer’s Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer’s disease. Alzheimers Dement. 2022 18 4 824 857 10.1002/alz.12422 34581485
    [Google Scholar]
  26. Weiner M.W. Veitch D.P. Aisen P.S. Beckett L.A. Cairns N.J. Green R.C. Harvey D. Jack C.R. Jr Jagust W. Morris J.C. Petersen R.C. Salazar J. Saykin A.J. Shaw L.M. Toga A.W. Trojanowski J.Q. The Alzheimer’s disease neuroimaging initiative 3: Continued innovation for clinical trial improvement. Alzheimers Dement. 2017 13 5 561 571 10.1016/j.jalz.2016.10.006 27931796
    [Google Scholar]
  27. Bacon E.J. He D. Achi N.A.D. Wang L. Li H. Yao-Digba P.D.Z. Monkam P. Qi S. Neuroimage analysis using artificial intelligence approaches: A systematic review. Med. Biol. Eng. Comput. 2024 62 9 2599 2627 10.1007/s11517‑024‑03097‑w 38664348
    [Google Scholar]
  28. Surianarayanan C. Lawrence J.J. Chelliah P.R. Prakash E. Hewage C. Convergence of artifcial intelligence and neuroscience towards the diagnosis of neurological disorders—a scoping review. Sensors (Basel) 2023 23 6 3062 10.3390/s23063062 36991773
    [Google Scholar]
  29. Elliott M.L. MRI-based biomarkers of accelerated aging and dementia risk in midlife: How close are we? Ageing Res. Rev. 2020 61 101075 10.1016/j.arr.2020.101075 32325150
    [Google Scholar]
  30. Jo T. Nho K. Saykin A.J. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 2019 11 220 220 10.3389/fnagi.2019.00220 31481890
    [Google Scholar]
  31. Dona O. Thompson J. Druchok C. Comprehensive review on magnetic resonance imaging in Alzheimer’s disease. Crit. Rev. Biomed. Eng. 2016 44 3 213 225 10.1615/CritRevBiomedEng.2016019544 28605353
    [Google Scholar]
  32. Mateos-Pérez J.M. Dadar M. Lacalle-Aurioles M. Iturria-Medina Y. Zeighami Y. Evans A.C. Structural neuroimaging as clinical predictor: A review of machine learning applications. Neuroimage Clin. 2018 20 506 522 10.1016/j.nicl.2018.08.019 30167371
    [Google Scholar]
  33. Jiang J. Liu T. Zhu W. Koncz R. Liu H. Lee T. Sachdev P.S. Wen W. UBO Detector – A cluster-based, fully automated pipeline for extracting white matter hyperintensities. Neuroimage 2018 174 539 549 10.1016/j.neuroimage.2018.03.050 29578029
    [Google Scholar]
  34. Pini L. Pievani M. Bocchetta M. Altomare D. Bosco P. Cavedo E. Galluzzi S. Marizzoni M. Frisoni G.B. Brain atrophy in Alzheimer’s Disease and aging. Ageing Res. Rev. 2016 30 25 48 10.1016/j.arr.2016.01.002 26827786
    [Google Scholar]
  35. Khalifa M. Albadawy M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Comput. Methods Programs Biomed. Update 2024 5 100146 10.1016/j.cmpbup.2024.100146
    [Google Scholar]
  36. Jiao Z. Lai Y. Kang J. Gong W. Ma L. Jia T. Xie C. Xiang S. Cheng W. Heinz A. Desrivières S. Schumann G. A model-based approach to assess reproducibility for large-scale high-throughput MRI-based studies. Neuroimage 2022 255 119166 10.1016/j.neuroimage.2022.119166 35398282
    [Google Scholar]
  37. Despotović I. Goossens B. Philips W. MRI segmentation of the human brain: Challenges, methods, and applications. Comput. Math. Methods Med. 2015 2015 1 23 10.1155/2015/450341 25945121
    [Google Scholar]
  38. Kale M. Wankhede N. Pawar R. Ballal S. Kumawat R. Goswami M. Khalid M. Taksande B. Upaganlawar A. Umekar M. Kopalli S.R. Koppula S. AI-driven innovations in Alzheimer’s disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res. Rev. 2024 101 102497 10.1016/j.arr.2024.102497 39293530
    [Google Scholar]
  39. Hassija V. Chamola V. Mahapatra A. Singal A. Goel D. Huang K. Scardapane S. Spinelli I. Mahmud M. Hussain A. Interpreting black-box models: A review on explainable artificial intelligence. Cognit. Comput. 2024 16 1 45 74 10.1007/s12559‑023‑10179‑8
    [Google Scholar]
  40. AbdelAziz N.M. Said W. AbdelHafeez M.M. Ali A.H. Advanced interpretable diagnosis of Alzheimer’s disease using SECNN-RF framework with explainable AI. Front. Artif. Intell. 2024 7 1456069 10.3389/frai.2024.1456069 39286548
    [Google Scholar]
  41. Ersavas T. Smith M.A. Mattick J.S. Novel applications of convolutional neural networks in the age of transformers. Sci. Rep. 2024 14 1 10000 10.1038/s41598‑024‑60709‑z 38693215
    [Google Scholar]
  42. Garg N. Choudhry M.S. Bodade R.M. 2023
  43. El-Assy A.M. Amer H.M. Ibrahim H.M. Mohamed M.A. A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data. Sci. Rep. 2024 14 1 3463 10.1038/s41598‑024‑53733‑6 38342924
    [Google Scholar]
  44. Ghafoorian M. Karssemeijer N. Heskes T. Bergkamp M. Wissink J. Obels J. Keizer K. Leeuw F-E. Ginneken B. Marchiori E. Platel B. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neuroimage Clin. 2017 14 391 399 10.1016/j.nicl.2017.01.033 28271039
    [Google Scholar]
  45. Puente-Castro A. Fernandez-Blanco E. Pazos A. Munteanu C.R. Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Comput. Biol. Med. 2020 120 103764 10.1016/j.compbiomed.2020.103764 32421658
    [Google Scholar]
  46. Kruthika K.R. Rajeswari M.H.D. Maheshappa H.D. CBIR system using Capsule Networks and 3D CNN for Alzheimer’s disease diagnosis. Inform. Med. Unlocked 2019 14 59 68 10.1016/j.imu.2018.12.001
    [Google Scholar]
  47. Huang Y. Xu J. Zhou Y. Tong T. Zhuang X. Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network. Front. Neurosci. 2019 13 509 10.3389/fnins.2019.00509 31213967
    [Google Scholar]
  48. Basheera S. Sai Ram M.S. Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimers Dement. (N. Y.) 2019 5 1 974 986 10.1016/j.trci.2019.10.001 31921971
    [Google Scholar]
  49. Jonsson B.A. Bjornsdottir G. Thorgeirsson T.E. Ellingsen L.M. Walters G.B. Gudbjartsson D.F. Stefansson H. Stefansson K. Ulfarsson M.O. Brain age prediction using deep learning uncovers associated sequence variants. Nat. Commun. 2019 10 1 5409 10.1038/s41467‑019‑13163‑9 31776335
    [Google Scholar]
  50. Bashyam V.M. Erus G. Doshi J. Habes M. Nasrallah I.M. Truelove-Hill M. Srinivasan D. Mamourian L. Pomponio R. Fan Y. Launer L.J. Masters C.L. Maruff P. Zhuo C. Völzke H. Johnson S.C. Fripp J. Koutsouleris N. Satterthwaite T.D. Wolf D. Gur R.E. Gur R.C. Morris J. Albert M.S. Grabe H.J. Resnick S. Bryan R.N. Wolk D.A. Shou H. Davatzikos C. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 2020 143 7 2312 2324 10.1093/brain/awaa160 32591831
    [Google Scholar]
  51. Bae J.B. Lee S. Jung W. Park S. Kim W. Oh H. Han J.W. Kim G.E. Kim J.S. Kim J.H. Kim K.W. Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci. Rep. 2020 10 1 22252 10.1038/s41598‑020‑79243‑9 33335244
    [Google Scholar]
  52. Odimayo S. Olisah C.C. Mohammed K. Structure focused neurodegeneration convolutional neural network for modelling and classification of Alzheimer’s disease. Sci. Rep. 2024 14 1 15270 10.1038/s41598‑024‑60611‑8 38961114
    [Google Scholar]
  53. Wang S.H. Phillips P. Sui Y. Liu B. Yang M. Cheng H. Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 2018 42 5 85 10.1007/s10916‑018‑0932‑7 29577169
    [Google Scholar]
  54. Pan D. Zeng A. Jia L. Huang Y. Frizzell T. Song X. Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Front. Neurosci. 2020 14 259 10.3389/fnins.2020.00259 32477040
    [Google Scholar]
  55. Basaia S. Agosta F. Wagner L. Canu E. Magnani G. Santangelo R. Filippi M. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin. 2019 21 101645 10.1016/j.nicl.2018.101645 30584016
    [Google Scholar]
  56. Cohen D.S. Carpenter K.A. Jarrell J.T. Huang X. Deep learning-based classification of multi-categorical Alzheimer’s disease data. Curr. Neurobiol. 2019 10 3 141 147 31798274
    [Google Scholar]
  57. Chen L. Qiao H. Zhu F. Alzheimer’s disease diagnosis with brain structural MRI using multiview-slice attention and 3D convolution neural network. Front. Aging Neurosci. 2022 14 871706 10.3389/fnagi.2022.871706 35557839
    [Google Scholar]
  58. Ebrahimi A. Luo S. Disease Neuroimaging Initiative, A. Convolutional neural networks for Alzheimer’s disease detection on MRI images. J. Med. Imaging (Bellingham) 2021 8 2 024503 10.1117/1.JMI.8.2.024503 33937437
    [Google Scholar]
  59. Qiao H. Chen L. Zhu F. 2021 10.1109/EMBC46164.2021.9629923
  60. Zhang J. Zheng B. Gao A. Feng X. Liang D. Long X. A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification. Magn. Reson. Imaging 2021 78 119 126 10.1016/j.mri.2021.02.001 33588019
    [Google Scholar]
  61. Liu S. Masurkar A.V. Rusinek H. Chen J. Zhang B. Zhu W. Fernandez-Granda C. Razavian N. Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs. Sci. Rep. 2022 12 1 17106 10.1038/s41598‑022‑20674‑x 36253382
    [Google Scholar]
  62. Venugopalan J. Tong L. Hassanzadeh H.R. Wang M.D. Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 2021 11 1 3254 10.1038/s41598‑020‑74399‑w 33547343
    [Google Scholar]
  63. Qasim Abbas S. Chi L. Chen Y-P.P. Transformed domain convolutional neural network for Alzheimer’s disease diagnosis using structural MRI. Pattern Recognit. 2023 133 109031 10.1016/j.patcog.2022.109031
    [Google Scholar]
  64. Xu X. Lin L. Sun S. Wu S. A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer’s disease using neuroimaging. Rev. Neurosci. 2023 34 6 649 670 10.1515/revneuro‑2022‑0122 36729918
    [Google Scholar]
  65. Montesinos López O.A. Montesinos López A. Crossa J. Fundamentals of artificial neural networks and deep learning. Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham Springer 2022 379 425 10.1007/978‑3‑030‑89010‑0_10
    [Google Scholar]
  66. Zhang F. Tian S. Chen S. Ma Y. Li X. Guo X. Voxel-based morphometry: Improving the diagnosis of Alzheimer’s disease based on an extreme learning machine method from the ADNI cohort. Neuroscience 2019 414 273 279 10.1016/j.neuroscience.2019.05.014 31102761
    [Google Scholar]
  67. Ning K. Chen B. Sun F. Hobel Z. Zhao L. Matloff W. Toga A.W. Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network framework. Neurobiol. Aging 2018 68 151 158 10.1016/j.neurobiolaging.2018.04.009 29784544
    [Google Scholar]
  68. Mendoza-Léon R. Puentes J. Uriza L.F. Hernández Hoyos M. Single-slice Alzheimer’s disease classification and disease regional analysis with Supervised Switching Autoencoders. Comput. Biol. Med. 2020 116 103527 10.1016/j.compbiomed.2019.103527 31765915
    [Google Scholar]
  69. Mehdipour Ghazi M. Nielsen M. Pai A. Cardoso M.J. Modat M. Ourselin S. Sørensen L. Training recurrent neural networks robust to incomplete data: Applications to Alzheimer’s disease progression modeling. Med. Image Anal. 2019 53 39 46 10.1016/j.media.2019.01.004 30682584
    [Google Scholar]
  70. Matlani P. BiLSTM-ANN: early diagnosis of Alzheimer’s disease using hybrid deep learning algorithms. Multimedia Tools Appl. 2024 83 21 60761 60788 10.1007/s11042‑023‑17867‑5
    [Google Scholar]
  71. Park H.J. Lee J.Y. Yang J.J. Kim H.J. Kim Y.S. Kim J.Y. Choi Y.Y. Prediction of amyloid β-positivity with both MRI parameters and cognitive function using machine learning. Daehan Yeongsang Uihakoeji 2023 84 3 638 652 10.3348/jksr.2022.0084 37325007
    [Google Scholar]
  72. Suk H.I. Lee S.W. Shen D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 2014 101 569 582 10.1016/j.neuroimage.2014.06.077 25042445
    [Google Scholar]
  73. Ju R. Hu C. Zhou P. Li Q. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2019 16 1 244 257 10.1109/TCBB.2017.2776910 29989989
    [Google Scholar]
  74. Nguyen D.T. Ryu S. Qureshi M.N.I. Choi M. Lee K.H. Lee B. Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer’s dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLoS One 2019 14 2 e0212582 10.1371/journal.pone.0212582 30794629
    [Google Scholar]
  75. Amoroso N. Diacono D. La Rocca M. Bellotti R. Tangaro S. Salient networks: A novel application to study Alzheimer disease. Biomed. Eng. Online 2018 17 Suppl. 1 162 10.1186/s12938‑018‑0566‑5 30458801
    [Google Scholar]
  76. Yang S.T. Lee J.D. Chang T.C. Huang C.H. Wang J.J. Hsu W.C. Chan H.L. Wai Y.Y. Li K.Y. Discrimination between Alzheimer’s disease and mild cognitive impairment using SOM and PSO-SVM. Comput. Math. Methods Med. 2013 2013 1 10 10.1155/2013/253670 23737859
    [Google Scholar]
  77. Mukhtar G. Farhan S. Convolutional neural network based prediction of conversion from mild cognitive impairment to Alzheimer’s disease: A technique using hippocampus extracted from MRI. Adv. Electr. Comput. Eng. 2020 20 2 113 122 10.4316/AECE.2020.02013
    [Google Scholar]
  78. Lian C. Liu M. Zhang J. Shen D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 2020 42 4 880 893 10.1109/TPAMI.2018.2889096 30582529
    [Google Scholar]
  79. Barbaroux H. Feng X. Yang J. Laine A.F. Angelini E.D. Encoding human cortex using spherical CNNs: A study on Alzheimer’s disease classification. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020 10.1109/ISBI45749.2020.9098353
/content/journals/cn/10.2174/011570159X353595250303064846
Loading
/content/journals/cn/10.2174/011570159X353595250303064846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test