Skip to content
2000
image of Neutrophil Extracellular Traps in Central Nervous System Diseases

Abstract

Neutrophil Extracellular Traps (NETs) are complexes containing DNA fibrils and antimicrobial peptides that are released by neutrophils in response to pathogen stimulation. At the time of their discovery, the neutrophil extracellular trap contained active substances such as Neutrophil Elastase (NE) and myeloperoxidase (MPO). Although NETs were initially thought to be a means for the innate immune system to fight microbial invasion, now they have been observed to have a broader impact throughout the body. In recent studies, NETs have been linked to several neurological disorders and have been found to have varying roles in a number of diseases. In addition to their role in thrombosis, NETs have been identified in various autoimmune diseases. NETs play a significant role in the body when they are produced at the correct time and place; however, when the generation and removal of NETs are out of equilibrium, there can be important implications for human health. Here, the impact of NETs is reviewed in various neurological disorders and their potential clinical applications.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X357211250530095758
2025-10-22
2025-10-29
Loading full text...

Full text loading...

References

  1. Brinkmann V. Reichard U. Goosmann C. Fauler B. Uhlemann Y. Weiss D.S. Weinrauch Y. Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004 303 5663 1532 1535 10.1126/science.1092385 15001782
    [Google Scholar]
  2. Urban C.F. Ermert D. Schmid M. Abu-Abed U. Goosmann C. Nacken W. Brinkmann V. Jungblut P.R. Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009 5 10 e1000639 10.1371/journal.ppat.1000639 19876394
    [Google Scholar]
  3. Takei H. Araki A. Watanabe H. Ichinose A. Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J. Leukoc. Biol. 1996 59 2 229 240 10.1002/jlb.59.2.229 8603995
    [Google Scholar]
  4. Hakkim A. Fuchs T.A. Martinez N.E. Hess S. Prinz H. Zychlinsky A. Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 2011 7 2 75 77 10.1038/nchembio.496 21170021
    [Google Scholar]
  5. Papayannopoulos V. Metzler K.D. Hakkim A. Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010 191 3 677 691 10.1083/jcb.201006052 20974816
    [Google Scholar]
  6. Wang Y. Li M. Stadler S. Correll S. Li P. Wang D. Hayama R. Leonelli L. Han H. Grigoryev S.A. Allis C.D. Coonrod S.A. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 2009 184 2 205 213 10.1083/jcb.200806072 19153223
    [Google Scholar]
  7. Fuchs T.A. Abed U. Goosmann C. Hurwitz R. Schulze I. Wahn V. Weinrauch Y. Brinkmann V. Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007 176 2 231 241 10.1083/jcb.200606027 17210947
    [Google Scholar]
  8. Wigerblad G. Kaplan M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 2023 23 5 274 288 10.1038/s41577‑022‑00787‑0 36257987
    [Google Scholar]
  9. Pfeiler S. Stark K. Massberg S. Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica 2017 102 2 206 213 10.3324/haematol.2016.142471 27927771
    [Google Scholar]
  10. Döring Y. Soehnlein O. Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res. 2017 120 4 736 743 10.1161/CIRCRESAHA.116.309692 28209798
    [Google Scholar]
  11. Krishnamurthi R.V. Feigin V.L. Forouzanfar M.H. Mensah G.A. Connor M. Bennett D.A. Moran A.E. Sacco R.L. Anderson L.M. Truelsen T. O’Donnell M. Venketasubramanian N. Barker-Collo S. Lawes C.M.M. Wang W. Shinohara Y. Witt E. Ezzati M. Naghavi M. Murray C. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob. Health 2013 1 5 e259 e281 10.1016/S2214‑109X(13)70089‑5 25104492
    [Google Scholar]
  12. Warnatsch A. Ioannou M. Wang Q. Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015 349 6245 316 320 10.1126/science.aaa8064 26185250
    [Google Scholar]
  13. Essig F. Kollikowski A.M. Pham M. Solymosi L. Stoll G. Haeusler K.G. Kraft P. Schuhmann M.K. Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke. Int. J. Mol. Sci. 2020 21 19 7387 10.3390/ijms21197387 33036337
    [Google Scholar]
  14. Genchi A. Semerano A. Gullotta G.S. Strambo D. Schwarz G. Bergamaschi A. Panni P. Simionato F. Scomazzoni F. Michelozzi C. Pozzato M. Maugeri N. Comi G. Falini A. Roveri L. Filippi M. Martino G. Bacigaluppi M. Cerebral thrombi of cardioembolic etiology have an increased content of neutrophil extracellular traps. J. Neurol. Sci. 2021 423 117355 10.1016/j.jns.2021.117355 33647733
    [Google Scholar]
  15. Cha M.J. Ha J. Lee H. Kwon I. Kim S. Kim Y.D. Nam H.S. Lee H.S. Song T.J. Choi H.J. Heo J.H. Neutrophil recruitment in arterial thrombus and characteristics of stroke patients with neutrophil-rich thrombus. Yonsei Med. J. 2022 63 11 1016 1026 10.3349/ymj.2022.0328 36303310
    [Google Scholar]
  16. de Vries J.J. Autar A.S.A. van Dam-Nolen D.H.K. Donkel S.J. Kassem M. van der Kolk A.G. van Velzen T.J. Kooi M.E. Hendrikse J. Nederkoorn P.J. Bos D. van der Lugt A. de Maat M.P.M. van Beusekom H.M.M. Association between plaque vulnerability and neutrophil extracellular traps (NETs) levels: The Plaque At RISK study. PLoS One 2022 17 6 e0269805 10.1371/journal.pone.0269805 35679310
    [Google Scholar]
  17. Staessens S. François O. Desender L. Vanacker P. Dewaele T. Sciot R. Vanhoorelbeke K. Andersson T. De Meyer S.F. Detailed histological analysis of a thrombectomy-resistant ischemic stroke thrombus: A case report. Thromb. J. 2021 19 1 11 10.1186/s12959‑021‑00262‑1 33618719
    [Google Scholar]
  18. Zhang S. Guo M. Liu Q. Liu J. Cui Y. Neutrophil extracellular traps induce thrombogenicity in severe carotid stenosis. Immun. Inflamm. Dis. 2021 9 3 1025 1036 10.1002/iid3.466 34102007
    [Google Scholar]
  19. da Silva R. Baptista D. Roth A. Miteva K. Burger F. Vuilleumier N. Carbone F. Montecucco F. Mach F. Brandt K.J. Anti-apolipoprotein A-1 IgG influences neutrophil extracellular trap content at distinct regions of human carotid plaques. Int. J. Mol. Sci. 2020 21 20 7721 10.3390/ijms21207721 33086507
    [Google Scholar]
  20. Shimonaga K. Matsushige T. Takahashi H. Hashimoto Y. Yoshiyama M. Ono C. Sakamoto S. Peptidylarginine deiminase 4 as a possible biomarker of plaque instability in carotid artery stenosis. J. Stroke Cerebrovasc. Dis. 2021 30 7 105816 10.1016/j.jstrokecerebrovasdis.2021.105816 33906071
    [Google Scholar]
  21. Shimonaga K. Matsushige T. Takahashi H. Hashimoto Y. Yoshiyama M. Kaneko M. Sakamoto S. Association of neutrophil extracellular traps with plaque instability in patient with carotid artery stenosis. Ann. Vasc. Surg. 2022 85 284 291 10.1016/j.avsg.2022.02.023 35276352
    [Google Scholar]
  22. Bentzon J.F. Otsuka F. Virmani R. Falk E. Mechanisms of plaque formation and rupture. Circ. Res. 2014 114 12 1852 1866 10.1161/CIRCRESAHA.114.302721 24902970
    [Google Scholar]
  23. Camaré C. Pucelle M. Nègre-Salvayre A. Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017 12 18 34 10.1016/j.redox.2017.01.007 28212521
    [Google Scholar]
  24. Kim S.W. Lee H. Lee H.K. Kim I.D. Lee J.K. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun. 2019 7 1 94 10.1186/s40478‑019‑0747‑x 31177989
    [Google Scholar]
  25. Rosell A. Cuadrado E. Ortega-Aznar A. Hernández-Guillamon M. Lo E.H. Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 2008 39 4 1121 1126 10.1161/STROKEAHA.107.500868 18323498
    [Google Scholar]
  26. Calabrese V. Mancuso C. Calvani M. Rizzarelli E. Butterfield D.A. Giuffrida Stella A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007 8 10 766 775 10.1038/nrn2214 17882254
    [Google Scholar]
  27. Kim S.W. Davaanyam D. Seol S.I. Lee H.K. Lee H. Lee J.K. Adenosine triphosphate accumulated following cerebral ischemia induces neutrophil extracellular trap formation. Int. J. Mol. Sci. 2020 21 20 7668 10.3390/ijms21207668 33081303
    [Google Scholar]
  28. Deng J. Zhao F. Zhang Y. Zhou Y. Xu X. Zhang X. Zhao Y. Neutrophil extracellular traps increased by hyperglycemia exacerbate ischemic brain damage. Neurosci. Lett. 2020 738 135383 10.1016/j.neulet.2020.135383 32937190
    [Google Scholar]
  29. Kang L. Yu H. Yang X. Zhu Y. Bai X. Wang R. Cao Y. Xu H. Luo H. Lu L. Shi M.J. Tian Y. Fan W. Zhao B.Q. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 2020 11 1 2488 10.1038/s41467‑020‑16191‑y 32427863
    [Google Scholar]
  30. Calabrese V. Cornelius C. Dinkova-Kostova A.T. Calabrese E.J. Mattson M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 2010 13 11 1763 1811 10.1089/ars.2009.3074 20446769
    [Google Scholar]
  31. Shih A.Y. Li P. Murphy T.H. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci. 2005 25 44 10321 10335 10.1523/JNEUROSCI.4014‑05.2005 16267240
    [Google Scholar]
  32. Ducroux C. Di Meglio L. Loyau S. Delbosc S. Boisseau W. Deschildre C. Ben Maacha M. Blanc R. Redjem H. Ciccio G. Smajda S. Fahed R. Michel J.B. Piotin M. Salomon L. Mazighi M. Ho-Tin-Noe B. Desilles J.P. Thrombus neutrophil extracellular traps content impair TPA-induced thrombolysis in acute ischemic stroke. Stroke 2018 49 3 754 757 10.1161/STROKEAHA.117.019896 29438080
    [Google Scholar]
  33. Peña-Martínez C. Durán-Laforet V. García-Culebras A. Cuartero M.I. Moro M.Á. Lizasoain I. Neutrophil extracellular trap targeting protects against ischemic damage after fibrin-rich thrombotic stroke despite non-reperfusion. Front. Immunol. 2022 13 790002 10.3389/fimmu.2022.790002 35250974
    [Google Scholar]
  34. Cai W. Liu S. Hu M. Huang F. Zhu Q. Qiu W. Hu X. Colello J. Zheng S.G. Lu Z. Functional dynamics of neutrophils after ischemic stroke. Transl. Stroke Res. 2020 11 1 108 121 10.1007/s12975‑019‑00694‑y 30847778
    [Google Scholar]
  35. Huang Y. Zhang X. Zhang C. Xu W. Li W. Feng Z. Zhang X. Zhao K. Edaravone dexborneol downregulates neutrophil extracellular trap expression and ameliorates blood-brain barrier permeability in acute ischemic stroke. Mediators Inflamm. 2022 2022 1 11 10.1155/2022/3855698 36032782
    [Google Scholar]
  36. Denorme F. Portier I. Rustad J.L. Cody M.J. de Araujo C.V. Hoki C. Alexander M.D. Grandhi R. Dyer M.R. Neal M.D. Majersik J.J. Yost C.C. Campbell R.A. Neutrophil extracellular traps regulate ischemic stroke brain injury. J. Clin. Invest. 2022 132 10 e154225 10.1172/JCI154225 35358095
    [Google Scholar]
  37. Di Rosa G. Brunetti G. Scuto M. Trovato Salinaro A. Calabrese E.J. Crea R. Schmitz-Linneweber C. Calabrese V. Saul N. Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. Int. J. Mol. Sci. 2020 21 11 3893 10.3390/ijms21113893 32486023
    [Google Scholar]
  38. Gris T. Laplante P. Thebault P. Cayrol R. Najjar A. Joannette-Pilon B. Brillant-Marquis F. Magro E. English S.W. Lapointe R. Bojanowski M. Francoeur C.L. Cailhier J.F. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J. Neuroinflammation 2019 16 1 253 10.1186/s12974‑019‑1629‑7 31801576
    [Google Scholar]
  39. Voet S. Prinz M. van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol. Med. 2019 25 2 112 123 10.1016/j.molmed.2018.11.005 30578090
    [Google Scholar]
  40. Hanhai Z. Bin Q. Shengjun Z. Jingbo L. Yinghan G. Lingxin C. Shenglong C. Hang Z. Huaijun C. Jianfeng Z. Yucong P. Xiongjie F. Xiaobo Y. Xiaoxiao T. Jianru L. Chi G. Feng Y. Gao C. Neutrophil extracellular traps, released from neutrophil, promote microglia inflammation and contribute to poor outcome in subarachnoid hemorrhage. Aging 2021 13 9 13108 13123 10.18632/aging.202993 33971624
    [Google Scholar]
  41. Ueyama-Mutoh T. Taki Y. Mutoh T. Ishikawa T. Kazumata K. Transpulmonary thermodilution-based management of neurogenic pulmonary edema after subarachnoid hemorrhage. Am. J. Med. Sci. 2015 350 5 415 419 10.1097/MAJ.0000000000000561 26517502
    [Google Scholar]
  42. Suzuki H. Sozen T. Hasegawa Y. Chen W. Zhang J.H. Caspase-1 inhibitor prevents neurogenic pulmonary edema after subarachnoid hemorrhage in mice. Stroke 2009 40 12 3872 3875 10.1161/STROKEAHA.109.566109 19875734
    [Google Scholar]
  43. Zeng H. Fu X. Cai J. Sun C. Yu M. Peng Y. Zhuang J. Chen J. Chen H. Yu Q. Xu C. Zhou H. Cao Y. Hu L. Li J. Cao S. Gu C. Yan F. Chen G. Neutrophil extracellular traps may be a potential target for treating early brain injury in subarachnoid hemorrhage. Transl. Stroke Res. 2022 13 1 112 131 10.1007/s12975‑021‑00909‑1 33852132
    [Google Scholar]
  44. Witsch J. Spalart V. Martinod K. Schneider H. Oertel J. Geisel J. Hendrix P. Hemmer S. Neutrophil extracellular traps and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Crit. Care Explor. 2022 4 5 e0692 10.1097/CCE.0000000000000692 35620772
    [Google Scholar]
  45. Hertwig L. Pache F. Romero-Suarez S. Stürner K.H. Borisow N. Behrens J. Bellmann-Strobl J. Seeger B. Asselborn N. Ruprecht K. Millward J.M. Infante-Duarte C. Paul F. Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Mult. Scler. 2016 22 2 160 173 10.1177/1352458515586084 26540731
    [Google Scholar]
  46. Naegele M. Tillack K. Reinhardt S. Schippling S. Martin R. Sospedra M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J. Neuroimmunol. 2012 242 1-2 60 71 10.1016/j.jneuroim.2011.11.009 22169406
    [Google Scholar]
  47. Paryzhak S. Dumych T. Mahorivska I. Boichuk M. Bila G. Peshkova S. Nehrych T. Bilyy R. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity 2018 51 6 297 303 10.1080/08916934.2018.1514390 30369266
    [Google Scholar]
  48. Koch-Henriksen N. Sørensen P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010 9 5 520 532 10.1016/S1474‑4422(10)70064‑8 20398859
    [Google Scholar]
  49. Tillack K. Naegele M. Haueis C. Schippling S. Wandinger K.P. Martin R. Sospedra M. Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. J. Neuroimmunol. 2013 261 1-2 108 119 10.1016/j.jneuroim.2013.05.004 23735283
    [Google Scholar]
  50. Irizar H. Muñoz-Culla M. Sepúlveda L. Sáenz-Cuesta M. Prada Á. Castillo-Triviño T. Zamora-López G. de Munain A.L. Olascoaga J. Otaegui D. Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression. PLoS One 2014 9 2 e90482 10.1371/journal.pone.0090482 24587374
    [Google Scholar]
  51. Lane C.A. Hardy J. Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018 25 1 59 70 10.1111/ene.13439 28872215
    [Google Scholar]
  52. Kloske C.M. Wilcock D.M. The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s Disease. Front. Immunol. 2020 11 754 10.3389/fimmu.2020.00754 32425941
    [Google Scholar]
  53. Zenaro E. Pietronigro E. Bianca V.D. Piacentino G. Marongiu L. Budui S. Turano E. Rossi B. Angiari S. Dusi S. Montresor A. Carlucci T. Nanì S. Tosadori G. Calciano L. Catalucci D. Berton G. Bonetti B. Constantin G. Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 2015 21 8 880 886 10.1038/nm.3913 26214837
    [Google Scholar]
  54. Baik S.H. Cha M.Y. Hyun Y.M. Cho H. Hamza B. Kim D.K. Han S.H. Choi H. Kim K.H. Moon M. Lee J. Kim M. Irimia D. Mook-Jung I. Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model. Neurobiol. Aging 2014 35 6 1286 1292 10.1016/j.neurobiolaging.2014.01.003 24485508
    [Google Scholar]
  55. Kretzschmar G.C. Bumiller-Bini V. Gasparetto Filho M.A. Zonta Y.R. Yu K.S.T. de Souza R.L.R. Dias-Melicio L.A. Boldt A.B.W. Neutrophil extracellular traps: A perspective of neuroinflammation and complement activation in Alzheimer’s disease. Front. Mol. Biosci. 2021 8 630869 10.3389/fmolb.2021.630869 33898514
    [Google Scholar]
  56. Smyth L.C.D. Murray H.C. Hill M. van Leeuwen E. Highet B. Magon N.J. Osanlouy M. Mathiesen S.N. Mockett B. Singh-Bains M.K. Morris V.K. Clarkson A.N. Curtis M.A. Abraham W.C. Hughes S.M. Faull R.L.M. Kettle A.J. Dragunow M. Hampton M.B. Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer’s disease. Acta Neuropathol. Commun. 2022 10 1 38 10.1186/s40478‑022‑01347‑2 35331340
    [Google Scholar]
  57. Itoh Y. Nagase H. Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J. Biol. Chem. 1995 270 28 16518 16521 10.1074/jbc.270.28.16518 7622455
    [Google Scholar]
  58. Peppin G.J. Weiss S.J. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc. Natl. Acad. Sci. USA 1986 83 12 4322 4326 10.1073/pnas.83.12.4322 3012563
    [Google Scholar]
  59. Wang Y. Du C. Zhang Y. Zhu L. Composition and function of neutrophil extracellular traps. Biomolecules 2024 14 4 416 10.3390/biom14040416 38672433
    [Google Scholar]
  60. Wang Y. Rosen H. Madtes D.K. Shao B. Martin T.R. Heinecke J.W. Fu X. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: An oxidative mechanism for regulating proteolysis during inflammation. J. Biol. Chem. 2007 282 44 31826 31834 10.1074/jbc.M704894200 17726014
    [Google Scholar]
  61. Hanly J.G. Kozora E. Beyea S.D. Birnbaum J. Nervous system disease in systemic lupus erythematosus: Current status and future directions. Arthritis Rheumatol. 2019 71 1 33 42 10.1002/art.40591 29927108
    [Google Scholar]
  62. Ota Y. Capizzano A.A. Moritani T. Naganawa S. Kurokawa R. Srinivasan A. Comprehensive review of Wernicke encephalopathy: Pathophysiology, clinical symptoms and imaging findings. Jpn. J. Radiol. 2020 38 9 809 820 10.1007/s11604‑020‑00989‑3 32390125
    [Google Scholar]
  63. Diamond B. Volpe B.T. A model for lupus brain disease. Immunol. Rev. 2012 248 1 56 67 10.1111/j.1600‑065X.2012.01137.x 22725954
    [Google Scholar]
  64. Winfield J.B. Shaw M. Silverman L.M. Eisenberg R.A. Wilson H.A. Koffler D. Intrathecal IgG synthesis and blood-brain barrier impairment in patients with systemic lupus erythematosus and central nervous system dysfunction. Am. J. Med. 1983 74 5 837 844 10.1016/0002‑9343(83)91075‑6 6837607
    [Google Scholar]
  65. Stielke S. Keilhoff G. Kirches E. Mertens P.R. Neumann K.H. Tsokos G.C. Mawrin C. Adhesion molecule expression precedes brain damages of lupus-prone mice and correlates with kidney pathology. J. Neuroimmunol. 2012 252 1-2 24 32 10.1016/j.jneuroim.2012.07.011 22917522
    [Google Scholar]
  66. Luo H. Guo H. Zhou Y. Fang R. Zhang W. Mei Z. Neutrophil extracellular traps in cerebral ischemia/reperfusion injury: Friend and foe. Curr. Neuropharmacol. 2023 21 10 2079 2096 10.2174/1570159X21666230308090351 36892020
    [Google Scholar]
  67. Pieterse E. Rother N. Garsen M. Hofstra J.M. Satchell S.C. Hoffmann M. Loeven M.A. Knaapen H.K. van der Heijden O.W.H. Berden J.H.M. Hilbrands L.B. van der Vlag J. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 2017 37 7 1371 1379 10.1161/ATVBAHA.117.309002 28495931
    [Google Scholar]
  68. Feng Z. Min L. Liang L. Chen B. Chen H. Zhou Y. Deng W. Liu H. Hou J. Neutrophil extracellular traps exacerbate secondary injury via promoting neuroinflammation and blood–spinal cord barrier disruption in spinal cord injury. Front. Immunol. 2021 12 698249 10.3389/fimmu.2021.698249 34456910
    [Google Scholar]
  69. Mohanty T. Fisher J. Bakochi A. Neumann A. Cardoso J.F.P. Karlsson C.A.Q. Pavan C. Lundgaard I. Nilson B. Reinstrup P. Bonnevier J. Cederberg D. Malmström J. Bentzer P. Linder A. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat. Commun. 2019 10 1 1667 10.1038/s41467‑019‑09040‑0 30971685
    [Google Scholar]
  70. Shimada K. Yamaguchi I. Ishihara M. Miyamoto T. Sogabe S. Miyake K. Tada Y. Kitazato K.T. Kanematsu Y. Takagi Y. Involvement of neutrophil extracellular traps in cerebral arteriovenous malformations. World Neurosurg. 2021 155 e630 e636 10.1016/j.wneu.2021.08.118 34478890
    [Google Scholar]
  71. Tsai Y.F. Yang S.C. Hsu Y.H. Chen C.Y. Chen P.J. Syu Y.T. Lin C.H. Hwang T.L. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci. 2023 321 121334 10.1016/j.lfs.2022.121334 36587789
    [Google Scholar]
  72. Yang S.C. Chen P.J. Chang S.H. Weng Y.T. Chang F.R. Chang K.Y. Chen C.Y. Kao T.I. Hwang T.L. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity. Biochem. Pharmacol. 2018 154 384 396 10.1016/j.bcp.2018.06.003 29883707
    [Google Scholar]
  73. Tao L. Xu M. Dai X. Ni T. Li D. Jin F. Wang H. Tao L. Pan B. Woodgett J.R. Qian Y. Liu Y. Madamanchi N. Polypharmacological profiles underlying the antitumor property of Salvia miltiorrhiza root (danshen) interfering with nox-dependent neutrophil extracellular traps. Oxid. Med. Cell. Longev. 2018 2018 1 4908328 10.1155/2018/4908328 30210653
    [Google Scholar]
  74. Shang T. Zhang Z.S. Wang X.T. Chang J. Zhou M.E. Lyu M. He S. Yang J. Chang Y.X. Wang Y. Li M.C. Gao X. Zhu Y. Feng Y. Xuebijing injection inhibited neutrophil extracellular traps to reverse lung injury in sepsis mice via reducing Gasdermin D. Front. Pharmacol. 2022 13 1054176 10.3389/fphar.2022.1054176 36467039
    [Google Scholar]
  75. Manda-Handzlik A. Demkow U. The brain entangled: The contribution of neutrophil extracellular traps to the diseases of the central nervous system. Cells 2019 8 12 1477 10.3390/cells8121477 31766346
    [Google Scholar]
/content/journals/cn/10.2174/011570159X357211250530095758
Loading
/content/journals/cn/10.2174/011570159X357211250530095758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test