Skip to content
2000
image of PGx-Based in silico Analyses Identifies the Interactive Role of Genes, Glucose Metabolism and Dopaminergic Dysfunctional Pathways with Chronic Cocaine Use and Misuse

Abstract

Introduction

Our team conducted a pharmacogenomics (PGx) analysis to evaluate the interactions between cocaine, glucose metabolism, and functional connectivity using in-depth silico PGx methods.

Methods

Utilizing PharmGKB, we extracted PGx annotations related to cocaine, glucose, and dopamine (raw data). After filtering, we refined a list of 49 unrepeated, brain-expressed genes and examined their interactions in a protein-protein interaction (PPI) network through STRING-MODEL, identifying top candidate genes.

Results

Targeting key protein-coding genes with the highest connectivity, we identified , , and , along with their 17 connected genes. A deep dive into gene-miRNA interactions (GMIs) using NetworkAnalyst revealed that , and hsa-miR-16-5p have multiple interactions with and . Enrichment analysis Enrichr confirmed that this refined set of 17 impacts dopamine function and are interactive with dopaminergic pathways. Notably, Substance Use disorders (SUD) were the most significant manifestation predicted for the interplays among these genes.

Discussion

Reviewing all PGx annotations for the 17 genes, we found 4,665 PGx entries, among which 1,970 were significant, with a -value above 0.045. These were ultimately filtered down to 32 potential PGx annotations excluded in association with “Cocaine,” “Glucose or Diabetes,” and “Dopamine”. Accordingly, 12 Pharmacogenes represented 32 PGx-associated with Cocaine, Glucose, and Dopamine, including and

Conclusion

This PGx analysis demonstrates strong, validated connections based on prior published data and robust computational predictions. Among the findings, the gene was found to be the best-scoring gene here.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X390146250831143523
2025-09-23
2025-10-29
Loading full text...

Full text loading...

References

  1. Ali S.F. Hoglund J.R. Gibbs M.A. Littmann L. Unusual electrocardiographic manifestations of lethal cocaine toxicity. Clin. Toxicol. 2022 60 3 408 409 10.1080/15563650.2021.1955914 34278911
    [Google Scholar]
  2. Arenas D.J. Beltran S. Zhou S. Goldberg L.R. Cocaine, cardiomyopathy, and heart failure: A systematic review and meta-analysis. Sci. Rep. 2020 10 1 19795 10.1038/s41598‑020‑76273‑1 33188223
    [Google Scholar]
  3. Burns J. Roby A. Jaconelli T. Pneumomediastinum, subcutaneous emphysema and pneumorrhachis following cocaine insufflation. A c Case Report. Acute Med. 2020 19 3 154 158 10.52964/AMJA.0820 33020760
    [Google Scholar]
  4. Cisneros O. Garcia de de Jesus K. Then E.O. Rehmani R. Bilateral basal ganglia infarction after intranasal use of cocaine: A case report. Cureus 2019 11 4 e4405 10.7759/cureus.4405 31245195
    [Google Scholar]
  5. Cosenza M. Panza L. Califano A.P. Defendini C. D’Andria M. Romiti R. Vainieri A.F.M. Morelli S. Carotid thrombosis in a crack cocaine smoker woman. Case Rep. Vasc. Med. 2020 2020 1 1 3 10.1155/2020/4894825 33083091
    [Google Scholar]
  6. Deivasigamani S. Irrinki S. Shah J. Sakaray Y. Rare cause of acute abdomen–cocaine-induced small intestinal perforation with coexisting lower gastrointestinal bleed: An unusual presentation. BMJ Case Rep. 2021 14 2 e239981 10.1136/bcr‑2020‑239981 33568413
    [Google Scholar]
  7. Gill D. Sheikh N. Ruiz V.G. Liu K. Case report: Cocaine-induced takotsubo cardiomyopathy. Hellenic J. Cardiol. 2018 59 2 129 132 10.1016/j.hjc.2017.05.008 28600168
    [Google Scholar]
  8. Manninger M. Perl S. Brussee H.G. Toth G. Sniff of coke breaks the heart: Cocaine-induced coronary vasospasm aggravated by therapeutic hypothermia and vasopressors after aborted sudden cardiac death: A case report. Eur. Heart J. Case Rep. 2018 2 2 yty041 10.1093/ehjcr/yty041 31020121
    [Google Scholar]
  9. Mullaguri N. Battineni A. Narayan A. Guddeti R. Cocaine induced bilateral posterior inferior cerebellar artery and hippocampal infarction. Cureus 2018 10 5 e2576 10.7759/cureus.2576 29984118
    [Google Scholar]
  10. Ortiz-Seller A. Hernández-Pons A. Pascual E.V. Comín Pérez A. Dolz Gaitón R. Albert-Fort M. Severe cocaine-induced midline destructive lesions (CIMDL) leading to orbital apex syndrome and peripheral ulcerative keratitis. Ocul. Immunol. Inflamm. 2022 30 7-8 1956 1960 10.1080/09273948.2021.1906913 33872101
    [Google Scholar]
  11. Padilha W.S.C. Annes M. Massant C.G. Kaup A.O. Affonso B.B. Batista M.C. Cocaine-induced renal artery dissection as a cause of secondary hypertension: A rare presentation. Am. J. Case Rep. 2020 21 e921565 e1 10.12659/AJCR.921565 32094319
    [Google Scholar]
  12. Roy S. Konala V.M. Adapa S. Naramala S. Bose S. Cocaine and alcohol co-ingestion-induced severe rhabdomyolysis with acute kidney injury culminating in hemodialysis-dependent end-stage renal disease: A case report and literature review. Cureus 2020 12 6 e8595 10.7759/cureus.8595 32676236
    [Google Scholar]
  13. Sharma R. Kapoor N. Chaudhari K.S. Scofield R.H. Reversible fulminant hepatitis secondary to cocaine in the setting of β-blocker use. J. Investig. Med. High Impact Case Rep. 2020 8 2324709620924203 10.1177/2324709620924203 32434395
    [Google Scholar]
  14. Vermeulen L. Dirix M. Dendooven A. Cocaine consumption and antineutrophil cytoplasmic antibody-associated glomerulonephritis. Am. J. Forensic Med. Pathol. 2021 42 2 198 200 10.1097/PAF.0000000000000618 33186130
    [Google Scholar]
  15. Qureshi A.I. Akbar M.S. Czander E. Safdar K. Janssen R.S. Frankel M.R. Crack cocaine use and stroke in young patients. Neurology 1997 48 2 341 345 10.1212/WNL.48.2.341 9040718
    [Google Scholar]
  16. Petitti D.B. Sidney S. Quesenberry C. Bernstein A. Stroke and cocaine or amphetamine use. Epidemiology 1998 9 6 596 600 10.1097/00001648‑199811000‑00005 9799166
    [Google Scholar]
  17. Qureshi A.I. Mohammad Y. Suri M.F. Braimah J. Janardhan V. Guterman L.R. Hopkins L.N. Frankel M.R. Cocaine use and hypertension are major risk factors for intracerebral hemorrhage in young African Americans. Ethn. Dis. 2001 11 2 311 319 11456006
    [Google Scholar]
  18. Qureshi A.I. Suri M.F.K. Guterman L.R. Hopkins L.N. Cocaine use and the likelihood of nonfatal myocardial infarction and stroke: Data from the third national health and nutrition examination survey. Circulation 2001 103 4 502 506 10.1161/01.CIR.103.4.502 11157713
    [Google Scholar]
  19. Broderick J.P. Viscoli C.M. Brott T. Kernan W.N. Brass L.M. Feldmann E. Morgenstern L.B. Wilterdink J.L. Horwitz R.I. Major risk factors for aneurysmal subarachnoid hemorrhage in the young are modifiable. Stroke 2003 34 6 1375 1381 10.1161/01.STR.0000074572.91827.F4 12764233
    [Google Scholar]
  20. Cheng Y.C. Ryan K.A. Qadwai S.A. Shah J. Sparks M.J. Wozniak M.A. Stern B.J. Phipps M.S. Cronin C.A. Magder L.S. Cole J.W. Kittner S.J. Cocaine use and risk of ischemic stroke in young adults. Stroke 2016 47 4 918 922 10.1161/STROKEAHA.115.011417 26965853
    [Google Scholar]
  21. Chaudhary S.C. Sawlani K.K. Malhotra H.S. Apurva; Nanda, S.; Rao, P.K. Cocaine abuse: An unusual association. J. Assoc. Physicians India 2016 64 11 77 79 27805341
    [Google Scholar]
  22. Rowbotham M.C. Neurologic aspects of cocaine abuse. West. J. Med. 1988 149 4 442 448 3067448
    [Google Scholar]
  23. Klein B.J. Cuoco J.A. Rogers C.M. Entwistle J.J. Marvin E.A. Patel B.M. Delayed cerebral ischemia causing cortical blindness due to repeat cocaine use weeks subsequent to aneurysmal subarachnoid hemorrhage. Radiol. Case Rep. 2020 15 9 1455 1459 10.1016/j.radcr.2020.05.050 32642017
    [Google Scholar]
  24. London E.D. Cascella N.G. Wong D.F. Phillips R.L. Dannals R.F. Links J.M. Herning R. Grayson R. Jaffe J.H. Wagner H.N. Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18]-fluorodeoxyglucose. Arch. Gen. Psychiatry 1990 47 6 567 574 10.1001/archpsyc.1990.01810180067010 2350209
    [Google Scholar]
  25. Potvin S. Stavro K. Rizkallah É. Pelletier J. Cocaine and cognition. J. Addict. Med. 2014 8 5 368 376 10.1097/ADM.0000000000000066 25187977
    [Google Scholar]
  26. Jovanovski D. Erb S. Zakzanis K.K. Neurocognitive deficits in cocaine users: a quantitative review of the evidence. J. Clin. Exp. Neuropsychol. 2005 27 2 189 204 10.1080/13803390490515694 15903150
    [Google Scholar]
  27. Goldstein R.Z. Leskovjan A.C. Hoff A.L. Hitzemann R. Bashan F. Khalsa S.S. Wang G.J. Fowler J.S. Volkow N.D. Severity of neuropsychological impairment in cocaine and alcohol addiction: Association with metabolism in the prefrontal cortex. Neuropsychologia 2004 42 11 1447 1458 10.1016/j.neuropsychologia.2004.04.002 15246283
    [Google Scholar]
  28. Schwartz E.K.C. Wolkowicz N.R. De Aquino J.P. MacLean R.R. Sofuoglu M. Cocaine use disorder (CUD): Current clinical perspectives. Subst. Abuse Rehabil. 2022 13 25 46 10.2147/SAR.S337338 36093428
    [Google Scholar]
  29. Porrino L.J. Hampson R.E. Opris I. Deadwyler S.A. Acute cocaine induced deficits in cognitive performance in rhesus macaque monkeys treated with baclofen. Psychopharmacology (Berl.) 2013 225 1 105 114 10.1007/s00213‑012‑2798‑6 22836369
    [Google Scholar]
  30. Goertz R.B. Wanat M.J. Gomez J.A. Brown Z.J. Phillips P.E.M. Paladini C.A. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling. Neuropsychopharmacology 2015 40 5 1151 1162 10.1038/npp.2014.296 25374094
    [Google Scholar]
  31. Venton B.J. Seipel A.T. Phillips P.E.M. Wetsel W.C. Gitler D. Greengard P. Augustine G.J. Wightman R.M. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J. Neurosci. 2006 26 12 3206 3209 10.1523/JNEUROSCI.4901‑04.2006 16554471
    [Google Scholar]
  32. Capuzzo G. Floresco S.B. Prelimbic and infralimbic prefrontal regulation of active and inhibitory avoidance and reward-seeking. J. Neurosci. 2020 40 24 4773 4787 10.1523/JNEUROSCI.0414‑20.2020 32393535
    [Google Scholar]
  33. Garcia A.F. Crummy E.A. Webb I.G. Nooney M.N. Ferguson S.M. Distinct populations of cortical pyramidal neurons mediate drug reward and aversion. Nat. Commun. 2021 12 1 182 10.1038/s41467‑020‑20526‑0 33420090
    [Google Scholar]
  34. Hearing M.C. Zink A.N. Wickman K. Cocaine-induced adaptations in metabotropic inhibitory signaling in the mesocorticolimbic system. Rev. Neurosci. 2012 23 4 325 351 10.1515/revneuro‑2012‑0045 22944653
    [Google Scholar]
  35. Arnavut E. Hamilton J. Yao R. Sajjad M. Hadjiargyrou M. Komatsu D. Thanos P.K. Abstinence following intermittent methylphenidate exposure dose‐dependently modifies brain glucose metabolism in the rat brain. Synapse 2022 76 9-10 e22243 10.1002/syn.22243 35730134
    [Google Scholar]
  36. Hanna C. Hamilton J. Arnavut E. Blum K. Thanos P.K. Brain mapping the effects of chronic aerobic exercise in the rat brain using FDG PET. J. Pers. Med. 2022 12 6 860 10.3390/jpm12060860 35743644
    [Google Scholar]
  37. Hanna C. Yao R. Sajjad M. Gold M. Blum K. Thanos P.K. Exercise modifies the brain metabolic response to chronic cocaine exposure inhibiting the stria terminalis. Brain Sci. 2023 13 12 1705 10.3390/brainsci13121705 38137153
    [Google Scholar]
  38. McGregor M. Richer K. Ananth M. Thanos P.K. The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain Behav. 2020 10 8 e01646 10.1002/brb3.1646 32562468
    [Google Scholar]
  39. Michaelides M. Anderson S.A.R. Ananth M. Smirnov D. Thanos P.K. Neumaier J.F. Wang G.J. Volkow N.D. Hurd Y.L. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J. Clin. Invest. 2013 123 12 5342 5350 10.1172/JCI72117 24231358
    [Google Scholar]
  40. Michaelides M. Thanos P.K. Kim R. Cho J. Ananth M. Wang G.J. Volkow N.D. PET imaging predicts future body weight and cocaine preference. Neuroimage 2012 59 2 1508 1513 10.1016/j.neuroimage.2011.08.028 21889993
    [Google Scholar]
  41. Rapp C. Hamilton J. Richer K. Sajjad M. Yao R. Thanos P.K. Alcohol binge drinking decreases brain glucose metabolism and functional connectivity in adolescent rats. Metab. Brain Dis. 2022 37 6 1901 1908 10.1007/s11011‑022‑00977‑8 35567647
    [Google Scholar]
  42. Thanos P.K. Kim R. Delis F. Ananth M. Chachati G. Rocco M.J. Masad I. Muniz J.A. Grant S.C. Gold M.S. Cadet J.L. Volkow N.D. Chronic methamphetamine effects on brain structure and function in rats. PLoS One 2016 11 6 e0155457 10.1371/journal.pone.0155457 27275601
    [Google Scholar]
  43. Thanos P.K. Michaelides M. Benveniste H. Wang G.J. Volkow N.D. The effects of cocaine on regional brain glucose metabolism is attenuated in dopamine transporter knockout mice. Synapse 2008 62 5 319 324 10.1002/syn.20503 18286542
    [Google Scholar]
  44. Haney M. Self‐administration of cocaine, cannabis and heroin in the human laboratory: Benefits and pitfalls. Addict. Biol. 2009 14 1 9 21 10.1111/j.1369‑1600.2008.00121.x 18855806
    [Google Scholar]
  45. Moeller S.J. Stoops W.W. Cocaine choice procedures in animals, humans, and treatment-seekers: Can we bridge the divide? Pharmacol. Biochem. Behav. 2015 138 133 141 10.1016/j.pbb.2015.09.020 26432174
    [Google Scholar]
  46. Haney M. Spealman R. Controversies in translational research: Drug self-administration. Psychopharmacology 2008 199 3 403 419 10.1007/s00213‑008‑1079‑x 18283437
    [Google Scholar]
  47. Porrino L.J. Macey D.J. Rice W.N. Freedland C.S. Whitlow C.T. Patterns of functional activity associated with cocaine self-administration in the rat change over time. Psychopharmacology 2004 172 4 384 392 10.1007/s00213‑003‑1676‑7 14668974
    [Google Scholar]
  48. Beveridge T.J.R. Smith H.R. Daunais J.B. Nader M.A. Porrino L.J. Chronic cocaine self‐administration is associated with altered functional activity in the temporal lobes of non human primates. Eur. J. Neurosci. 2006 23 11 3109 3118 10.1111/j.1460‑9568.2006.04788.x 16820001
    [Google Scholar]
  49. Calipari E.S. Beveridge T.J.R. Jones S.R. Porrino L.J. Withdrawal from extended‐access cocaine self‐administration results in dysregulated functional activity and altered locomotor activity in rats. Eur. J. Neurosci. 2013 38 12 3749 3757 10.1111/ejn.12381 24118121
    [Google Scholar]
  50. Walker D.M. Cates H.M. Loh Y.H.E. Purushothaman I. Ramakrishnan A. Cahill K.M. Lardner C.K. Godino A. Kronman H.G. Rabkin J. Lorsch Z.S. Mews P. Doyle M.A. Feng J. Labonté B. Koo J.W. Bagot R.C. Logan R.W. Seney M.L. Calipari E.S. Shen L. Nestler E.J. Cocaine self-administration alters transcriptome-wide responses in the brain’s reward circuitry. Biol. Psychiatry 2018 84 12 867 880 10.1016/j.biopsych.2018.04.009 29861096
    [Google Scholar]
  51. Burton A.C. Bissonette G.B. Vazquez D. Blume E.M. Donnelly M. Heatley K.C. Hinduja A. Roesch M.R. Previous cocaine self-administration disrupts reward expectancy encoding in ventral striatum. Neuropsychopharmacology 2018 43 12 2350 2360 10.1038/s41386‑018‑0058‑0 29728645
    [Google Scholar]
  52. Siciliano C.A. Ferris M.J. Jones S.R. Cocaine self‐administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. Eur. J. Neurosci. 2015 42 4 2091 2096 10.1111/ejn.12970 26037018
    [Google Scholar]
  53. Saddoris M.P. Wang X. Sugam J.A. Carelli R.M. Cocaine self-administration experience induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-abstinent rats. J. Neurosci. 2016 36 1 235 250 10.1523/JNEUROSCI.3468‑15.2016 26740664
    [Google Scholar]
  54. Zilverstand A. Huang A.S. Alia-Klein N. Goldstein R.Z. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron 2018 98 5 886 903 10.1016/j.neuron.2018.03.048 29879391
    [Google Scholar]
  55. Volkow N.D. Wang G.J. Tomasi D. Baler R.D. Unbalanced neuronal circuits in addiction. Curr. Opin. Neurobiol. 2013 23 4 639 648 10.1016/j.conb.2013.01.002 23434063
    [Google Scholar]
  56. Damez-Werno D.M. Sun H. Scobie K.N. Shao N. Rabkin J. Dias C. Calipari E.S. Maze I. Pena C.J. Walker D.M. Cahill M.E. Chandra R. Gancarz A. Mouzon E. Landry J.A. Cates H. Lobo M.K. Dietz D. Allis C.D. Guccione E. Turecki G. Defilippi P. Neve R.L. Hurd Y.L. Shen L. Nestler E.J. Histone arginine methylation in cocaine action in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 2016 113 34 9623 9628 10.1073/pnas.1605045113 27506785
    [Google Scholar]
  57. Blum K. Understanding the high mind: humans are still evolving genetically. Tne IIOAB 2010 1 1 14
    [Google Scholar]
  58. Blum K. Gold M.S. Cadet J.L. Baron D. Bowirrat A. Thanos P.K. Brewer R. Badgaiyan R.D. Gondré-Lewis M.C. Dopaminylation in psychostimulant use disorder protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. Curr. Psychopharmacol. 2022 11 1 11 17 10.2174/2211556009666210108112737 36046837
    [Google Scholar]
  59. Blum K. McLaughlin T. Gold M.S. Gondre-Lewis M.C. Thanos P.K. Elman I. Baron D. Bowirrat A. Barh D. Khalsa J. Hanna C. Jafari N. Zeine F. Braverman E.R. Dennen C. Makale M.T. Makale M. Sunder K. Murphy K.T. Badgaiyan R.D. Are we getting high cause the thrill is gone? J. Addict. Psychiatry 2023 7 1 5 516 38164471
    [Google Scholar]
  60. Lepack A.E. Werner C.T. Stewart A.F. Fulton S.L. Zhong P. Farrelly L.A. Smith A.C.W. Ramakrishnan A. Lyu Y. Bastle R.M. Martin J.A. Mitra S. O’Connor R.M. Wang Z.J. Molina H. Turecki G. Shen L. Yan Z. Calipari E.S. Dietz D.M. Kenny P.J. Maze I. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 2020 368 6487 197 201 10.1126/science.aaw8806 32273471
    [Google Scholar]
  61. Orsini C.A. Colon-Perez L.M. Heshmati S.C. Setlow B. Febo M. M. Functional connectivity of chronic cocaine use reveals progressive neuroadaptations in neocortical, striatal, and limbic networks eNeuro 2018 5 4 ENEURO.0081 18.2018 10.1523/ENEURO.0081‑18.2018 30073194 2018
    [Google Scholar]
  62. Fischer D.K. Rice R.C. Martinez Rivera A. Donohoe M. Rajadhyaksha A.M. Altered reward sensitivity in female offspring of cocaine-exposed fathers. Behav. Brain Res. 2017 332 23 31 10.1016/j.bbr.2017.05.054 28552600
    [Google Scholar]
  63. Blum K. Noble E.P. Sheridan P.J. Montgomery A. Ritchie T. Jagadeeswaran P. Nogami H. Briggs A.H. Cohn J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990 263 15 2055 2060 10.1001/jama.1990.03440150063027 1969501
    [Google Scholar]
  64. Kosten T.R. Rosen M.I. Schottenfeld R. Ziedonis D. Buprenorphine for cocaine and opiate dependence. Psychopharmacol. Bull. 1992 28 1 15 19 1609037
    [Google Scholar]
  65. Blum K. Thanos P.K. Badgaiyan R.D. Febo M. Oscar-Berman M. Fratantonio J. Demotrovics Z. Gold M.S. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin. Biol. Ther. 2015 15 7 973 985 10.1517/14712598.2015.1045871 25974314
    [Google Scholar]
  66. Lewandrowski K.U. Sharafshah A. Elfar J. Schmidt S.L. Blum K. Wetzel F.T. A Pharmacogenomics-based in silico investigation of opioid prescribing in post-operative spine pain management and personalized therapy. Cell. Mol. Neurobiol. 2024 44 1 47 10.1007/s10571‑024‑01466‑5 38801645
    [Google Scholar]
  67. Assefi M. Lewandrowski K.U. Lorio M. Fiorelli R.K.A. Landgraeber S. Sharafshah A. Network-based in silico analysis of new combinations of modern drug targets with methotrexate for response-Based treatment of Rheumatoid arthritis. J. Pers. Med. 2023 13 11 1550 10.3390/jpm13111550 38003865
    [Google Scholar]
  68. Raad M. López W.O.C. Sharafshah A. Assefi M. Lewandrowski K.U. Personalized medicine in cancer pain management. J. Pers. Med. 2023 13 8 1201 10.3390/jpm13081201 37623452
    [Google Scholar]
  69. Sabaie H. Khorami Rouz S. Kouchakali G. Heydarzadeh S. Asadi M.R. Sharifi-Bonab M. Hussen B.M. Taheri M. Ayatollahi S.A. Rezazadeh M. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis. Front. Genet. 2022 13 1011350 10.3389/fgene.2022.1011350 36324503
    [Google Scholar]
  70. Marballi K.K. Alganem K. Brunwasser S.J. Barkatullah A. Meyers K.T. Campbell J.M. Ozols A.B. Mccullumsmith R.E. Gallitano A.L. Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia. Transl. Psychiatry 2022 12 1 320 10.1038/s41398‑022‑02069‑8 35941129
    [Google Scholar]
  71. Fan X. Chen H. Jiang F. Xu C. Wang Y. Wang H. Li M. Wei W. Song J. Zhong D. Li G. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke. Front. Neurol. 2023 13 1077178 10.3389/fneur.2022.1077178 36818726
    [Google Scholar]
  72. Elasbali A.M. Al-Soud W.A. Mousa Elayyan A.E. Al-Oanzi Z.H. Alhassan H.H. Mohamed B.M. Alanazi H.H. Ashraf M.S. Moiz S. Patel M. Patel M. Adnan M. Integrating network pharmacology approaches for the investigation of multi-target pharmacological mechanism of 6-shogaol against cervical cancer. J. Biomol. Struct. Dyn. 2023 41 23 14135 14151 10.1080/07391102.2023.2191719 36943780
    [Google Scholar]
  73. Minnes S. Min M.O. Kim S.K. Balser S. Kim J.Y. Singer L.T. Cognitive and behavioral pathways from prenatal cocaine exposure to regular marijuana use during emerging adulthood. Drug Alcohol Depend. 2025 275 112796 10.1016/j.drugalcdep.2025.112796
    [Google Scholar]
  74. Blum K. Chen T.J.H. Downs B.W. Bowirrat A. Waite R.L. Braverman E.R. Madigan M. Oscar-Berman M. DiNubile N. Stice E. Giordano J. Morse S. Gold M. Neurogenetics of dopaminergic receptor supersensitivity in activation of brain reward circuitry and relapse: Proposing “deprivation-amplification relapse therapy” (DART). Postgrad. Med. 2009 121 6 176 196 10.3810/pgm.2009.11.2087 19940429
    [Google Scholar]
  75. Berridge K.C. Robinson T.E. Liking, wanting, and the incentive-sensitization theory of addiction. Am. Psychol. 2016 71 8 670 679 10.1037/amp0000059 27977239
    [Google Scholar]
  76. Blum K. Gardner E. Oscar-Berman M. Gold M. “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Curr. Pharm. Des. 2012 18 1 113 118 10.2174/138161212798919110 22236117
    [Google Scholar]
  77. File D. Bőthe B. File B. Demetrovics Z. The role of impulsivity and reward deficiency in “liking” and “wanting” of potentially problematic behaviors and substance uses. Front. Psychiatry 2022 13 820836 10.3389/fpsyt.2022.820836 35546934
    [Google Scholar]
  78. Chmielowiec K. Chmielowiec J. Masiak J. Strońska-Pluta A. Śmiarowska M. Boroń A. Grzywacz A. Associations between the COMT rs4680 gene polymorphism and personality dimensions and anxiety in patients with a diagnosis of other stimulants dependence. Genes (Basel) 2022 13 10 1768 10.3390/genes13101768 36292653
    [Google Scholar]
  79. Haile C.N. Kosten T.R. Kosten T.A. Pharmacogenetic treatments for drug addiction: cocaine, amphetamine and methamphetamine. Am. J. Drug Alcohol Abuse 2009 35 3 161 177 10.1080/00952990902825447 19462300
    [Google Scholar]
  80. Spronk D.B. Van der Schaaf M.E. Cools R. De Bruijn E.R.A. Franke B. van Wel J.H.P. Ramaekers J.G. Verkes R.J. Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype. Psychopharmacology (Berl.) 2016 233 2 199 211 10.1007/s00213‑015‑4141‑5 26572896
    [Google Scholar]
  81. Steiger H. Thaler L. Gauvin L. Joober R. Labbe A. Israel M. Kucer A. Epistatic interactions involving DRD2, DRD4, and COMT polymorphisms and risk of substance abuse in women with binge-purge eating disturbances. J. Psychiatr. Res. 2016 77 8 14 10.1016/j.jpsychires.2016.02.011 26950642
    [Google Scholar]
  82. Lachman H.M. Does COMT val158met affect behavioral phenotypes: yes, no, maybe? Neuropsychopharmacology 2008 33 13 3027 3029 10.1038/npp.2008.189 18923401
    [Google Scholar]
  83. Lohoff F.W. Weller A.E. Bloch P.J. Nall A.H. Ferraro T.N. Kampman K.M. Pettinati H.M. Oslin D.W. Dackis C.A. O’Brien C.P. Berrettini W.H. Association between the catechol-O-methyltransferase Val158Met polymorphism and cocaine dependence. Neuropsychopharmacology 2008 33 13 3078 3084 10.1038/npp.2008.126 18704099
    [Google Scholar]
  84. Kalayasiri R. Gelernter J. Farrer L. Weiss R. Brady K. Gueorguieva R. Kranzler H.R. Malison R.T. Adolescent cannabis use increases risk for cocaine-induced paranoia. Drug Alcohol Depend. 2010 107 2-3 196 201 10.1016/j.drugalcdep.2009.10.006 19944543
    [Google Scholar]
  85. Carroll K.M. Herman A. DeVito E.E. Frankforter T.L. Potenza M.N. Sofuoglu M. Catehol‐o‐methyltransferase gene Val158met polymorphism as a potential predictor of response to computer‐assisted delivery of cognitive‐behavioral therapy among cocaine‐dependent individuals: Preliminary findings from a randomized controlled trial. Am. J. Addict. 2015 24 5 443 451 10.1111/ajad.12238 25930952
    [Google Scholar]
  86. Sullivan D. Pinsonneault J.K. Papp A.C. Zhu H. Lemeshow S. Mash D.C. Sadee W. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene–gene–environment interaction. Transl. Psychiatry 2013 3 1 e222 e222 10.1038/tp.2012.146 23340505
    [Google Scholar]
  87. Szabó D. Franke V. Bianco S. Batiuk M.Y. Paul E.J. Kukalev A. Pfisterer U.G. Irastorza-Azcarate I. Chiariello A.M. Demharter S. Zea-Redondo L. Lopez-Atalaya J.P. Nicodemi M. Akalin A. Khodosevich K. Ungless M.A. Winick-Ng W. Pombo A. A single dose of cocaine rewires the 3D genome structure of midbrain dopamine neurons. bioRxiv 2024 10.1101/2024.05.10.593308] 38766140
    [Google Scholar]
  88. Gao Z. Winhusen T.J. Gorenflo M. Ghitza U.E. Davis P.B. Kaelber D.C. Xu R. Repurposing ketamine to treat cocaine use disorder: Integration of artificial intelligence‐based prediction, expert evaluation, clinical corroboration and mechanism of action analyses. Addiction 2023 118 7 1307 1319 10.1111/add.16168 36792381
    [Google Scholar]
  89. Guerri L. Dobbs L.K. da Silva e Silva, D.A.; Meyers, A.; Ge, A.; Lecaj, L.; Djakuduel, C.; Islek, D.; Hipolito, D.; Martinez, A.B.; Shen, P.H.; Marietta, C.A.; Garamszegi, S.P.; Capobianco, E.; Jiang, Z.; Schwandt, M.; Mash, D.C.; Alvarez, V.A.; Goldman, D. Low dopamine D2 receptor expression drives gene networks related to GABA, cAMP, growth and neuroinflammation in striatal indirect pathway neurons. Biol. Psychiatry Glob. Open Sci. 2023 3 4 1104 1115 10.1016/j.bpsgos.2022.08.010 37881572
    [Google Scholar]
  90. Navandar M. Martín-García E. Maldonado R. Lutz B. Gerber S. Ruiz de Azua I. Transcriptional signatures in prefrontal cortex confer vulnerability versus resilience to food and cocaine addiction-like behavior. Sci. Rep. 2021 11 1 9076 10.1038/s41598‑021‑88363‑9 33907201
    [Google Scholar]
  91. Brami-Cherrier K. Lewis R.G. Cervantes M. Liu Y. Tognini P. Baldi P. Sassone-Corsi P. Borrelli E. Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation. Nat. Commun. 2020 11 1 4448 10.1038/s41467‑020‑18200‑6 32895370
    [Google Scholar]
  92. Bühler K.M. Giné E. Echeverry-Alzate V. Calleja-Conde J. de Fonseca F.R. López-Moreno J.A. Common single nucleotide variants underlying drug addiction: More than a decade of research. Addict. Biol. 2015 20 5 845 871 10.1111/adb.12204 25603899
    [Google Scholar]
  93. Fernàndez-Castillo N. Ribasés M. Roncero C. Casas M. Gonzalvo B. Cormand B. Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample. Psychiatr. Genet. 2010 20 6 317 320 10.1097/YPG.0b013e32833b6320 20505554
    [Google Scholar]
  94. Comings D.E. Blum K. Reward deficiency syndrome: Genetic aspects of behavioral disorders Prog. Brain Res 2000 126 325 341 10.1016/S0079‑6123(00)26022‑6] 11105655
    [Google Scholar]
  95. Spellicy C.J. Kosten T.R. Hamon S.C. Harding M.J. Nielsen D.A. ANKK1 and DRD2 pharmacogenetics of disulfiram treatment for cocaine abuse. Pharmacogenet. Genomics 2013 23 7 333 340 10.1097/FPC.0b013e328361c39d 23635803
    [Google Scholar]
  96. Stolf A.R. Szobot C.M. Halpern R. Akutagava-Martins G.C. Müller D. Guimaraes L.S.P. Kessler F.H.P. Pechansky F. Roman T. Crack cocaine users show differences in genotype frequencies of the 3′ UTR variable number of tandem repeats of the dopamine transporter gene (DAT1/SLC6A3). Neuropsychobiology 2014 70 1 44 51 10.1159/000365992 25247548
    [Google Scholar]
  97. Kahlig K.M. Galli A. Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur. J. Pharmacol. 2003 479 1-3 153 158 10.1016/j.ejphar.2003.08.065 14612146
    [Google Scholar]
  98. Kampangkaew J.P. Spellicy C.J. Nielsen E.M. Harding M.J. Ye A. Hamon S.C. Kosten T.R. Nielsen D.A. Pharmacogenetic role of dopamine transporter (SLC6A3) variation on response to disulfiram treatment for cocaine addiction. Am. J. Addict. 2019 28 4 311 317 10.1111/ajad.12891 31087723
    [Google Scholar]
  99. Carboni E. Spielewoy C. Vacca C. Nosten-Bertrand M. Giros B. Di Chiara G. Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene J. Neurosci 2001 21 9 RC141-,1 4 10.1523/JNEUROSCI.21‑09‑j0001.2001 11312315
    [Google Scholar]
  100. Sora I. Hall F.S. Andrews A.M. Itokawa M. Li X.F. Wei H.B. Wichems C. Lesch K.P. Murphy D.L. Uhl G.R. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl. Acad. Sci. USA 2001 98 9 5300 5305 10.1073/pnas.091039298 11320258
    [Google Scholar]
  101. Guindalini C. Howard M. Haddley K. Laranjeira R. Collier D. Ammar N. Craig I. O’Gara C. Bubb V.J. Greenwood T. Kelsoe J. Asherson P. Murray R.M. Castelo A. Quinn J.P. Vallada H. Breen G. A dopamine transporter gene functional variant associated with cocaine abuse in a brazilian sample. Proc. Natl. Acad. Sci. USA 2006 103 12 4552 4557 10.1073/pnas.0504789103 16537431
    [Google Scholar]
  102. Isaza C. Henao J. Beltrán L. Porras-Hurtado L. Gonzalez M. Cruz R. Carracedo A. Genetic variants associated with addictive behavior in Colombian addicted and non-addicted to heroin or cocaine. Colomb. Med. 2013 44 1 19 25 10.25100/cm.v44i1.1039 24892317
    [Google Scholar]
  103. Gelernter J. Kranzler H.R. Satel S.L. Rao P.A. Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 1994 11 3 195 200 10.1038/sj.npp.1380106 7865100
    [Google Scholar]
  104. Drago J. Padungchaichot P. Accili D. Fuchs S. Dopamine receptors and dopamine transporter in brain function and addictive behaviors: Insights from targeted mouse mutants. Dev. Neurosci. 1998 20 2-3 188 203 10.1159/000017313 9691193
    [Google Scholar]
  105. Brewer A.J. Nielsen D.A. Spellicy C.J. Hamon S.C. Gingrich J. Thompson-Lake D.G.Y. Nielsen E.M. Mahoney J.J. Kosten T.R. Newton T.F. De La Garza R. Genetic variation of the dopamine transporter (DAT1) influences the acute subjective responses to cocaine in volunteers with cocaine use disorders. Pharmacogenet. Genomics 2015 25 6 296 304 10.1097/FPC.0000000000000137 25850966
    [Google Scholar]
/content/journals/cn/10.2174/011570159X390146250831143523
Loading
/content/journals/cn/10.2174/011570159X390146250831143523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test