Skip to content
2000
image of Betaine: A Promising Natural Product for Neurological and Psychiatric Diseases

Abstract

Neurological and psychiatric diseases pose a considerable global burden. Exploring additional potential prevention strategies and therapies is ongoing. As a prevalent natural product and nutraceutical from food, betaine’s pharmaceutical applications suggest benefits for both health and disease in multiple organs. Recently, its efficacy on neurological and psychiatric health has been proposed and has drawn considerable attention. This review aims to provide an updated, critical, and comprehensive profile of the promising medicinal roles of betaine in these diseases. In addition to its well-known osmotic protection, due to methyl donation, it regulates metabolism, alleviates oxidative stress, and reduces inflammation. To manifest neurological and psychiatric health benefits, betaine acts by affecting gamma-aminobutyric acid associated with its transporters, related neurotransmitters, downstream and neurological pathways, and other specific mechanisms in the nervous system. Betaine demonstrates therapeutic potential against various neurological and psychiatric diseases, such as epilepsy, neurocognitive disorders (including Alzheimer's disease), Parkinson's disease, stroke, multiple sclerosis, traumatic brain injury, depression, anxiety, schizophrenia, autism spectrum disorder, sleep disorders, fetal alcohol syndrome, syringomyelia, neonatal brain injury, neuropathic pain, and motor dysfunction. Despite the promising role of betaine in the treatment, diagnosis, and prevention of neuropsychiatric disorders, much of the present evidence appears to be fragmentary. Further studies elucidating the underlying mechanisms and direct clinical applications are required to obtain a deeper understanding of betaine and its underutilized potential. Overall, this review highlights the potential of betaine as a promising agent with benefits for neurological and psychiatric diseases, aiming to offer clues to advance this field.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X375540250718094903
2025-08-08
2025-12-16
Loading full text...

Full text loading...

References

  1. Arumugam M.K. Paal M.C. Donohue T.M. Ganesan M. Osna N.A. Kharbanda K.K. Beneficial effects of betaine: A comprehensive review. Biology 2021 10 6 456 10.3390/biology10060456 34067313
    [Google Scholar]
  2. Liu L. Yu L. Wang Y. Zhou L. Liu Y. Pan X. Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol. Res. 2024 207 107305 10.1016/j.phrs.2024.107305 39002868
    [Google Scholar]
  3. Louck L.E. Cara K.C. Klatt K. Wallace T.C. Chung M. The relationship of circulating choline and choline-related metabolite levels with health outcomes: A scoping review of genome-wide association studies and mendelian randomization studies. Adv. Nutr. 2024 15 2 100164 10.1016/j.advnut.2023.100164 38128611
    [Google Scholar]
  4. 2012 Commission Regulation (EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Text with EEA relevance. http://data.europa.eu/eli/reg/2012/432/oj
  5. Bhatt M. Di Iacovo A. Romanazzi T. Roseti C. Bossi E. Betaine—The dark knight of the brain. Basic Clin. Pharmacol. Toxicol. 2023 133 5 485 495 10.1111/bcpt.13839 36735640
    [Google Scholar]
  6. Ross A.B. Shertukde S.P. Livingston Staffier K. Chung M. Jacques P.F. McKeown N.M. The relationship between whole-grain intake and measures of cognitive decline, mood, and anxiety—A systematic review. Adv. Nutr. 2023 14 4 652 670 10.1016/j.advnut.2023.04.003 37085091
    [Google Scholar]
  7. Knight L.S. Piibe Q. Lambie I. Perkins C. Yancey P.H. Betaine in the brain: Characterization of betaine uptake, its influence on other osmolytes and its potential role in neuroprotection from osmotic stress. Neurochem. Res. 2017 42 12 3490 3503 10.1007/s11064‑017‑2397‑3 28918494
    [Google Scholar]
  8. Santoro A. Buonocore M. D’Ursi A.M. Effect of osmolytes on the conformational stability of Aβ(25-35): A circular dichroism analysis. Biochim. Biophys. Acta Biomembr. 2025 1867 4 184420 10.1016/j.bbamem.2025.184420 40187472
    [Google Scholar]
  9. Kushwah N. Jain V. Yadav D. Osmolytes: A possible therapeutic molecule for ameliorating the neurodegeneration caused by protein misfolding and aggregation. Biomolecules 2020 10 1 132 10.3390/biom10010132 31941036
    [Google Scholar]
  10. Zhong X. Chen L. Wang Y. Liang Y. Huang Y. Chen Z. Cao W. Liu J. Zu X. METTL14/YTHDC1-mediated m6A modification in hippocampus improves pentylenetetrazol-induced acute seizures. Mol. Neurobiol. 2024 61 12 10979 10991 10.1007/s12035‑024‑04252‑y 38814536
    [Google Scholar]
  11. Sternbach S. West N. Singhal N.K. Clements R. Basu S. Tripathi A. Dutta R. Freeman E.J. McDonough J. The BHMT-betaine methylation pathway epigenetically modulates oligodendrocyte maturation. PLoS One 2021 16 5 0250486 10.1371/journal.pone.0250486 33975330
    [Google Scholar]
  12. Clarke R. Lewington S. Landray M. Homocysteine, renal function, and risk of cardiovascular disease. Kidney Int. 2003 63 84 S131 S133 10.1046/j.1523‑1755.63.s84.7.x 12694328
    [Google Scholar]
  13. Cavallaro R.A. Fuso A. Nicolia V. Scarpa S. S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet. J. Alzheimers Dis. 2010 20 4 997 1002 10.3233/JAD‑2010‑091666 20413874
    [Google Scholar]
  14. Zhao G. He F. Wu C. Li P. Li N. Deng J. Zhu G. Ren W. Peng Y. Betaine in inflammation: Mechanistic aspects and applications. Front. Immunol. 2018 9 1070 10.3389/fimmu.2018.01070 29881379
    [Google Scholar]
  15. Cholewa J.M. Guimarães-Ferreira L. Zanchi N.E. Effects of betaine on performance and body composition: A review of recent findings and potential mechanisms. Amino Acids 2014 46 8 1785 1793 10.1007/s00726‑014‑1748‑5 24760587
    [Google Scholar]
  16. Zhang M. Zhang H. Li H. Lai F. Li X. Tang Y. Min T. Wu H. Antioxidant mechanism of betaine without free radical scavenging ability. J. Agric. Food Chem. 2016 64 42 7921 7930 10.1021/acs.jafc.6b03592 27677203
    [Google Scholar]
  17. Lee E.K. Jang E.J. Jung K.J. Kim D.H. Yu B.P. Chung H.Y. Betaine attenuates lysophosphatidylcholine-mediated adhesion molecules in aged rat aorta: Modulation of the nuclear factor-κB pathway. Exp. Gerontol. 2013 48 5 517 524 10.1016/j.exger.2013.02.024 23466300
    [Google Scholar]
  18. Pourmehdi A. Sakhaei Z. Alirezaei M. Dezfoulian O. Betaine effects against asthma-induced oxidative stress in the liver and kidney of mice. Mol. Biol. Rep. 2020 47 8 5729 5735 10.1007/s11033‑020‑05620‑2 32833184
    [Google Scholar]
  19. Bhatt M. Gauthier-Manuel L. Lazzarin E. Zerlotti R. Ziegler C. Bazzone A. Stockner T. Bossi E. A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front. Physiol. 2023 14 1145973 10.3389/fphys.2023.1145973 37123280
    [Google Scholar]
  20. Kickinger S. Hellsberg E. Frølund B. Schousboe A. Ecker G.F. Wellendorph P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019 161 107644 10.1016/j.neuropharm.2019.05.021 31108110
    [Google Scholar]
  21. Kunisawa K. Kido K. Nakashima N. Matsukura T. Nabeshima T. Hiramatsu M. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus. Eur. J. Pharmacol. 2017 796 122 130 10.1016/j.ejphar.2016.12.007 27940054
    [Google Scholar]
  22. Bhatt M. Lazzarin E. Alberto-Silva A.S. Domingo G. Zerlotti R. Gradisch R. Bazzone A. Sitte H.H. Stockner T. Bossi E. Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1). Cell. Mol. Life Sci. 2024 81 1 269 10.1007/s00018‑024‑05309‑w 38884791
    [Google Scholar]
  23. Ibi D. Tsuchihashi A. Nomura T. Hiramatsu M. Involvement of GAT2/BGT-1 in the preventive effects of betaine on cognitive impairment and brain oxidative stress in amyloid β peptide-injected mice. Eur. J. Pharmacol. 2019 842 57 63 10.1016/j.ejphar.2018.10.037 30393201
    [Google Scholar]
  24. Lie M.E.K. Kickinger S. Skovgaard-Petersen J. Ecker G.F. Clausen R.P. Schousboe A. White H.S. Wellendorph P. Pharmacological characterization of a Betaine/GABA transporter 1 (BGT1) inhibitor displaying an unusual biphasic inhibition profile and anti-seizure effects. Neurochem. Res. 2020 45 7 1551 1565 10.1007/s11064‑020‑03017‑y 32248400
    [Google Scholar]
  25. Schousboe A. Wellendorph P. Frølund B. Clausen R.P. Krogsgaard-Larsen P. Astrocytic GABA transporters: Pharmacological properties and targets for antiepileptic drugs. Adv. Neurobiol. 2017 16 283 296 10.1007/978‑3‑319‑55769‑4_14 28828616
    [Google Scholar]
  26. Kanner A.M. Bicchi M.M. Antiseizure medications for adults with epilepsy. JAMA 2022 327 13 1269 1281 10.1001/jama.2022.3880 35380580
    [Google Scholar]
  27. Ghoz E.H. Freed W.J. Effects of betaine on seizures in the rat. Pharmacol. Biochem. Behav. 1985 22 4 635 640 10.1016/0091‑3057(85)90287‑4 3991772
    [Google Scholar]
  28. Sills G.J. Rogawski M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020 168 107966 10.1016/j.neuropharm.2020.107966 32120063
    [Google Scholar]
  29. Löscher W. Klein P. The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs 2021 35 9 935 963 10.1007/s40263‑021‑00827‑8 34145528
    [Google Scholar]
  30. Schousboe A. Larsson O.M. Sarup A. White H.S. Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur. J. Pharmacol. 2004 500 1-3 281 287 10.1016/j.ejphar.2004.07.032 15464040
    [Google Scholar]
  31. Smith M.D. Saunders G.W. Clausen R.P. Frǿlund B. Krogsgaard-Larsen P. Larsson O.M. Schousboe A. Wilcox K.S. White H.S. Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res. 2008 79 1 6 13 10.1016/j.eplepsyres.2007.12.009 18262393
    [Google Scholar]
  32. Lehre A.C. Rowley N.M. Zhou Y. Holmseth S. Guo C. Holen T. Hua R. Laake P. Olofsson A.M. Poblete-Naredo I. Rusakov D.A. Madsen K.K. Clausen R.P. Schousboe A. White H.S. Danbolt N.C. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res. 2011 95 1-2 70 81 10.1016/j.eplepsyres.2011.02.014 21459558
    [Google Scholar]
  33. Madsen K.K. White H.S. Schousboe A. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol. Ther. 2010 125 3 394 401 10.1016/j.pharmthera.2009.11.007 20026354
    [Google Scholar]
  34. White H.S. Watson W.P. Hansen S.L. Slough S. Perregaard J. Sarup A. Bolvig T. Petersen G. Larsson O.M. Clausen R.P. Frølund B. Falch E. Krogsgaard-Larsen P. Schousboe A. First demonstration of a functional role for central nervous system betaine/gamma-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J. Pharmacol. Exp. Ther. 2005 312 2 866 874 10.1124/jpet.104.068825 15550575
    [Google Scholar]
  35. Sarkisova K.Y. Fedosova E.A. Shatskova A.B. Narkevich V.B. Kudrin V.S. Maternal methyl-enriched diet increases dopaminergic tone of the mesolimbic brain system in adult offspring of WAG/Rij rats. Dokl. Biol. Sci. 2022 506 1 145 149 10.1134/S001249662205012X 36301422
    [Google Scholar]
  36. Sarkisova K.Y. Fedosova E.A. Shatskova A.B. Rudenok M.M. Stanishevskaya V.A. Slominsky P.A. Maternal methyl-enriched diet increases DNMT1, HCN1, and TH gene expression and suppresses absence seizures and comorbid depression in offspring of WAG/Rij rats. Diagnostics 2023 13 3 398 10.3390/diagnostics13030398 36766503
    [Google Scholar]
  37. Prasad A.N. Rupar C.A. Prasad C. Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy. Brain Dev. 2011 33 9 758 769 10.1016/j.braindev.2011.05.014 21778025
    [Google Scholar]
  38. Gales A. Masingue M. Millecamps S. Giraudier S. Grosliere L. Adam C. Salim C. Navarro V. Nadjar Y. Adolescence/adult onset MTHFR deficiency may manifest as isolated and treatable distinct neuro-psychiatric syndromes. Orphanet J. Rare Dis. 2018 13 1 29 10.1186/s13023‑018‑0767‑9 29391032
    [Google Scholar]
  39. D’Aco K.E. Bearden D. Watkins D. Hyland K. Rosenblatt D.S. Ficicioglu C. Severe 5,10-methylenetetrahydrofolate reductase deficiency and two MTHFR variants in an adolescent with progressive myoclonic epilepsy. Pediatr. Neurol. 2014 51 2 266 270 10.1016/j.pediatrneurol.2014.04.005 25079578
    [Google Scholar]
  40. Huemer M. Mulder-Bleile R. Burda P. Froese D.S. Suormala T. Zeev B.B. Chinnery P.F. Dionisi-Vici C. Dobbelaere D. Gökcay G. Demirkol M. Häberle J. Lossos A. Mengel E. Morris A.A. Niezen-Koning K.E. Plecko B. Parini R. Rokicki D. Schiff M. Schimmel M. Sewell A.C. Sperl W. Spiekerkoetter U. Steinmann B. Taddeucci G. Trejo-Gabriel-Galán J.M. Trefz F. Tsuji M. Vilaseca M.A. von Kleist-Retzow J.C. Walker V. Zeman J. Baumgartner M.R. Fowler B. Clinical pattern, mutations and in vitro residual activity in 33 patients with severe 5, 10 methylenetetrahydrofolate reductase (MTHFR) deficiency. J. Inherit. Metab. Dis. 2016 39 1 115 124 10.1007/s10545‑015‑9860‑6 26025547
    [Google Scholar]
  41. Saastamoinen E. Rahikkala E. Helander H. Hinttala R. Risteli L. Rantala H. Uusimaa J. Komulainen-Ebrahim J. Intractable epilepsy due to MTR deficiency: Importance of homocysteine analysis. Neuropediatrics 2017 48 6 467 472 10.1055/s‑0037‑1603976 28666289
    [Google Scholar]
  42. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  43. Ozaki T. Yoshino Y. Tachibana A. Shimizu H. Mori T. Nakayama T. Mawatari K. Numata S. Iga J. Takahashi A. Ohmori T. Ueno S. Metabolomic alterations in the blood plasma of older adults with mild cognitive impairment and Alzheimer’s disease (from the Nakayama Study). Sci. Rep. 2022 12 1 15205 10.1038/s41598‑022‑19670‑y 36075959
    [Google Scholar]
  44. Mueed Z. Mehta D. Rai P.K. Kamal M.A. Poddar N.K. Cross-interplay between osmolytes and mTOR in Alzheimer’s disease pathogenesis. Curr. Pharm. Des. 2020 26 37 4699 4711 10.2174/1381612826666200518112355 32418522
    [Google Scholar]
  45. Arar S. Haque M.A. Bhatt N. Zhao Y. Kayed R. Effect of natural osmolytes on recombinant tau monomer: Propensity of oligomerization and aggregation. ACS Chem. Neurosci. 2024 15 7 1366 1377 10.1021/acschemneuro.3c00614 38503425
    [Google Scholar]
  46. Kocatürk R.R. Temizyürek A. Özcan Ö.Ö. Ergüzel T.T. Karahan M. Konuk M. Tarhan N. Effect of nutritional supports on malnutrition, cognition, function and biomarkers of Alzheimer’s disease: A systematic review. Int. J. Neurosci. 2023 133 12 1355 1373 10.1080/00207454.2022.2079506 35686376
    [Google Scholar]
  47. Liu X.P. Qian X. Xie Y. Qi Y. Peng M.F. Zhan B.C. Lou Z.Q. Betaine suppressed Aβ generation by altering amyloid precursor protein processing. Neurol. Sci. 2014 35 7 1009 1013 10.1007/s10072‑014‑1630‑y 24549986
    [Google Scholar]
  48. Eussen S.J.P.M. Ueland P.M. Clarke R. Blom H.J. Hoefnagels W.H.L. van Staveren W.A. de Groot L.C.P.G.M. The association of betaine, homocysteine and related metabolites with cognitive function in Dutch elderly people. Br. J. Nutr. 2007 98 5 960 968 10.1017/S0007114507750912 17537289
    [Google Scholar]
  49. Knopman D. Patterson M. An open-label, 24-week pilot study of the methyl donor betaine in Alzheimer disease patients. Alzheimer Dis. Assoc. Disord. 2001 15 3 162 165 10.1097/00002093‑200107000‑00008 11522934
    [Google Scholar]
  50. Hildre A.S. Solvang S.E.H. Aarsland D. Midtun Ø. McCann A. Ervik A.O. Nygård O. Ueland P.M. Nordrehaug J.E. Giil L.M. Components of the choline oxidation pathway modify the association between the apolipoprotein ε4 gene variant and cognitive decline in patients with dementia. Brain Res. 2020 1726 146519 10.1016/j.brainres.2019.146519 31654640
    [Google Scholar]
  51. Zhang A. Pan C. Wu M. Lin Y. Chen J. Zhong N. Zhang R. Pu L. Han L. Pan H. Causal association between plasma metabolites and neurodegenerative diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 134 111067 10.1016/j.pnpbp.2024.111067 38908505
    [Google Scholar]
  52. Yu Y. Deng J. Yang X. Wu J. Yu R. Guo C. Association of the lipidome with Alzheimer’s disease and the mediated effect of metabolites: A two‐step mendelian randomization study. Brain Behav. 2025 15 2 70352 10.1002/brb3.70352 39972983
    [Google Scholar]
  53. van Hummel A. Taleski G. Sontag J.M. Feiten A.F. Ke Y.D. Ittner L.M. Sontag E. Methyl donor supplementation reduces phospho‐Tau, Fyn and demethylated protein phosphatase 2A levels and mitigates learning and motor deficits in a mouse model of tauopathy. Neuropathol. Appl. Neurobiol. 2023 49 4 12931 10.1111/nan.12931 37565253
    [Google Scholar]
  54. Zhang Y. Jia J. Betaine mitigates amyloid-β-associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells. J. Alzheimers Dis. 2023 94 s1 S9 S19 10.3233/JAD‑230064 37334594
    [Google Scholar]
  55. Yang Z.J. Huang S.Y. Zhong K.Y. Huang W.G. Huang Z.H. He T.T. Yang M.T. Wusiman M. Zhou D.D. Chen S. Huang B.X. Luo X.L. Li H.B. Zhu H.L. Betaine alleviates cognitive impairment induced by homocysteine through attenuating NLRP3-mediated microglial pyroptosis in an m6A-YTHDF2-dependent manner. Redox Biol. 2024 69 103026 10.1016/j.redox.2024.103026 38184996
    [Google Scholar]
  56. Alipourfard F. Shajiee H. Nazari-Serenjeh F. Hojati V. Alirezaie M. Betaine attenuates oxidative stress and cognitive dysfunction in an amyloid β-induced rat model of Alzheimer’s disease. Res. Pharm. Sci. 2023 18 3 270 278 10.4103/1735‑5362.371583 37593165
    [Google Scholar]
  57. Ibi D. Hirashima K. Kojima Y. Sumiya K. Kondo S. Yamamoto M. Ando T. Hiramatsu M. Preventive effects of continuous betaine intake on cognitive impairment and aberrant gene expression in hippocampus of 3xTg mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2021 79 2 639 652 10.3233/JAD‑200972 33337369
    [Google Scholar]
  58. Chai G.S. Jiang X. Ni Z.F. Ma Z.W. Xie A.J. Cheng X.S. Wang Q. Wang J.Z. Liu G.P. Betaine attenuates Alzheimer‐like pathological changes and memory deficits induced by homocysteine. J. Neurochem. 2013 124 3 388 396 10.1111/jnc.12094 23157378
    [Google Scholar]
  59. Ibi D. Kondo S. Ohmi A. Kojima Y. Nakasai G. Takaba R. Hiramatsu M. Preventive effect of betaine against cognitive impairments in amyloid β peptide-injected mice through Sirtuin1 in hippocampus. Neurochem. Res. 2022 47 8 2333 2344 10.1007/s11064‑022‑03622‑z 35597887
    [Google Scholar]
  60. Govindpani K. Turner C. Waldvogel H.J. Faull R.L.M. Kwakowsky A. Impaired expression of GABA signaling components in the Alzheimer’s Disease middle temporal gyrus. Int. J. Mol. Sci. 2020 21 22 8704 10.3390/ijms21228704 33218044
    [Google Scholar]
  61. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  62. Rehman S. Ali Ashfaq U. Sufyan M. Shahid I. Ijaz B. Hussain M. The insight of in silico and in vitro evaluation of Beta vulgaris phytochemicals against Alzheimer’s disease targeting acetylcholinesterase. PLoS One 2022 17 3 0264074 10.1371/journal.pone.0264074 35239683
    [Google Scholar]
  63. Nie C. Nie H. Zhao Y. Wu J. Zhang X. Betaine reverses the memory impairments in a chronic cerebral hypoperfusion rat model. Neurosci. Lett. 2016 615 9 14 10.1016/j.neulet.2015.11.019 26592482
    [Google Scholar]
  64. Zhong C. Lu Z. Che B. Qian S. Zheng X. Wang A. Bu X. Zhang J. Ju Z. Xu T. Zhang Y. Choline pathway nutrients and metabolites and cognitive impairment after acute ischemic stroke. Stroke 2021 52 3 887 895 10.1161/STROKEAHA.120.031903 33467878
    [Google Scholar]
  65. Kunisawa K. Nakashima N. Nagao M. Nomura T. Kinoshita S. Hiramatsu M. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex. Behav. Brain Res. 2015 292 36 43 10.1016/j.bbr.2015.06.004 26057356
    [Google Scholar]
  66. Shi M.M. Xu X.F. Sun Q.M. Luo M. Liu D.D. Guo D.M. Chen L. Zhong X.L. Xu Y. Cao W.Y. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother. Res. 2023 37 10 4755 4770 10.1002/ptr.7944 37846157
    [Google Scholar]
  67. Huang B. Hu X. Hu J. Chen Z. Zhao H. Betaine alleviates cognitive deficits in diabetic rats via PI3K/Akt signaling pathway regulation. Dement. Geriatr. Cogn. Disord. 2020 49 3 270 278 10.1159/000508624 32702702
    [Google Scholar]
  68. Zabrodina V.V. Shreder O.V. Shreder E.D. Durnev A.D. Effect of afobazole and betaine on cognitive disorders in the offspring of rats with streptozotocin-induced diabetes and their relationship with DNA damage. Bull. Exp. Biol. Med. 2016 161 3 359 366 10.1007/s10517‑016‑3414‑2 27502535
    [Google Scholar]
  69. Hashim A.R. Bashir D.W. Rashad E. Galal M.K. Rashad M.M. Khalil H.M.A. Deraz N.M. S M, E.G. Neuroprotective assessment of betaine against copper oxide nanoparticle-induced neurotoxicity in the brains of albino rats: A histopathological, neurochemical, and molecular investigation. ACS Chem. Neurosci. 2024 15 8 1684 1701 10.1021/acschemneuro.3c00810 38564598
    [Google Scholar]
  70. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  71. Im A.R. Kim Y.H. Uddin M.R. Chae S. Lee H.W. Kim Y.H. Kim Y.S. Lee M.Y. Betaine protects against rotenone-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol. 2013 33 5 625 635 10.1007/s10571‑013‑9921‑z 23605682
    [Google Scholar]
  72. Alirezaei M. Betaine protects cerebellum from oxidative stress following levodopa and benserazide administration in rats. Iran. J. Basic Med. Sci. 2015 18 10 950 957 [PMID: 26730328
    [Google Scholar]
  73. Alirezaei M. Khoshdel Z. Dezfoulian O. Rashidipour M. Taghadosi V. Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats. J. Physiol. Sci. 2015 65 3 243 252 10.1007/s12576‑015‑0360‑0 25665954
    [Google Scholar]
  74. Zhou H. Luo Y. Zhang W. Xie F. Deng C. Zheng W. Zhu S. Wang Q. Causal effect of gut‐microbiota‐derived metabolite trimethylamine N‐oxide on Parkinson’s disease: A Mendelian randomization study. Eur. J. Neurol. 2023 30 11 3451 3461 10.1111/ene.15702 36692876
    [Google Scholar]
  75. Zhang B. Zhang R. Ren H. Guan Q. Fan W. Han L. Mendelian randomization analysis of the causal relationship between trimethylamine N oxide and its precursors and Parkinson’s disease. Arch. Med. Sci. 2024 20 6 1985 1992 10.5114/aoms/184128 39967928
    [Google Scholar]
  76. LeWitt P.A. Li J. Lu M. Beach T.G. Adler C.H. Guo L. 3‐hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov. Disord. 2013 28 12 1653 1660 10.1002/mds.25555 23873789
    [Google Scholar]
  77. Talavera Andújar B. Aurich D. Aho V.T.E. Singh R.R. Cheng T. Zaslavsky L. Bolton E.E. Mollenhauer B. Wilmes P. Schymanski E.L. Studying the Parkinson’s disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: A pilot study. Anal. Bioanal. Chem. 2022 414 25 7399 7419 10.1007/s00216‑022‑04207‑z 35829770
    [Google Scholar]
  78. Kalecký K. Ashcraft P. Bottiglieri T. One-carbon metabolism in Alzheimer’s disease and Parkinson’s disease brain tissue. Nutrients 2022 14 3 599 10.3390/nu14030599 35276958
    [Google Scholar]
  79. Owolabi M.O. Thrift A.G. Mahal A. Ishida M. Martins S. Johnson W.D. Pandian J. Abd-Allah F. Yaria J. Phan H.T. Roth G. Gall S.L. Beare R. Phan T.G. Mikulik R. Akinyemi R.O. Norrving B. Brainin M. Feigin V.L. Abanto C. Abera S.F. Addissie A. Adebayo O. Adeleye A.O. Adilbekov Y. Adilbekova B. Adoukonou T.A. Aguiar de Sousa D. Ajagbe T. Akhmetzhanova Z. Akpalu A. Álvarez Ahlgren J. Ameriso S. Andonova S. Awoniyi F.E. Bakhiet M. Barboza M. Basri H. Bath P. Bello O. Bereczki D. Beretta S. Berkowitz A. Bernabé-Ortiz A. Bernhardt J. Berzina G. Bisharyan M. Bovet P. Budincevic H. Cadilhac D. Caso V. Chen C. Chin J. Chwojnicki K. Conforto A. Cruz V.T. D’Amelio M. Danielyan K. Davis S. Demarin V. Dempsey R. Dichgans M. Dokova K. Donnan G. Elkind M.S. Endres M. Fischer U. Gankpé F. Gaye Saavedra A. Gil A. Giroud M. Gnedovskaya E. Hachinski V. Hafdi M. Hamadeh R. Hamzat T.K. Hankey G. Heldner M. Ibrahim E.A. Ibrahim N.M. Inoue M. Jee S. Jeng J-S. Kalkonde Y. Kamenova S. Karaszewski B. Kelly P. Khan T. Kiechl S. Kondybayeva A. Kõrv J. Kravchenko M. Krishnamurthi R.V. Kruja J. Lakkhanaloet M. Langhorne P. Lavados P.M. Law Z.K. Lawal A. Lazo-Porras M. Lebedynets D. Lee T-H. Leung T. Liebeskind D.S. Lindsay P. López-Jaramillo P. Lotufo P.A. Machline-Carrion J. Makanjuola A. Markus H.S. Marquez-Romero J.M. Medina M. Medukhanova S. Mehndiratta M.M. Merkin A. Mirrakhimov E. Mohl S. Moscoso-Porras M. Müller-Stierlin A. Murphy S. Musa K.I. Nasreldein A. Nogueira R.G. Nolte C. Noubiap J.J. Novarro-Escudero N. Ogun Y. Oguntoye R.A. Oraby M.I. Osundina M. Ovbiagele B. Orken D.N. Ozdemir A.Ö. Ozturk S. Paccot M. Phromjai J. Piradov P. Platz T. Potpara T. Ranta A. Rathore F. Richard E. Sacco R.L. Sahathevan R. Santos Carquín I. Saposnik G. Sarfo F.S. Sharma M. Sheth K. Shobhana A. Suwanwela N. Svyato I. Sylaja P.N. Tao X. Thakur K.T. Toni D. Topcuoglu M.A. Torales J. Towfighi A. Truelsen T.C. Tsiskaridze A. Tulloch-Reid M. Useche N. Vanacker P. Vassilopoulou S. Vukorepa G. Vuletic V. Wahab K.W. Wang W. Wijeratne T. Wolfe C. Yifru Y.M. Yock-Corrales A. Yonemoto N. Yperzeele L. Zhang P. Primary stroke prevention worldwide: Translating evidence into action. Lancet Public Health 2022 7 1 e74 e85 10.1016/S2468‑2667(21)00230‑9 34756176
    [Google Scholar]
  80. Yadav S. Kumar A. Singh S. Ahmad S. Singh G. Khan A.R. Chaurasia R.N. Kumar D. NMR based Serum metabolomics revealed metabolic signatures associated with oxidative stress and mitochondrial damage in brain stroke. Metab. Brain Dis. 2023 39 2 283 294 10.1007/s11011‑023‑01331‑2 38095788
    [Google Scholar]
  81. Zhong C. Miao M. Che B. Du J. Wang A. Peng H. Bu X. Zhang J. Ju Z. Xu T. He J. Zhang Y. Plasma choline and betaine and risks of cardiovascular events and recurrent stroke after ischemic stroke. Am. J. Clin. Nutr. 2021 114 4 1351 1359 10.1093/ajcn/nqab199 34159355
    [Google Scholar]
  82. Fang Z. Chang S. Niu P. Wang C. Zhang J. Multidimensional-based exploration of gut microbial and metabolite differences in patients with recurrent stroke. Neuroscience 2025 572 35 48 10.1016/j.neuroscience.2025.02.004 39914520
    [Google Scholar]
  83. Xie L. Zhao B. Luo J. Li Y. Zhu F. Li G. He M. Wang B. Zhang H. Cai Y. Huo Y. Wang X. Hou F.F. Xu X. Qin X. Nie J. A U-shaped association between serum betaine and incident risk of first ischemic stroke in hypertensive patients. Clin. Nutr. 2020 39 8 2517 2524 10.1016/j.clnu.2019.11.011 31806397
    [Google Scholar]
  84. Li J. He Q. Liu C. Zeng C. Tao C. Zhai Y. Liu W. Zhang Q. Wang R. Zhang Y. Ge P. Zhang D. Zhao J. Integrated analysis of the association between methionine cycle and risk of moyamoya disease. CNS Neurosci. Ther. 2023 29 11 3212 3227 10.1111/cns.14254 37183324
    [Google Scholar]
  85. Ge P. Zhao Y. Zhai Y. Zhang Q. Ye X. Wang J. Wang R. Zhang Y. Zhang D. Zhao J. Circulating choline pathway nutrients and risk of moyamoya disease. Front. Nutr. 2022 9 953426 10.3389/fnut.2022.953426 35978955
    [Google Scholar]
  86. Li Q. Qu M. Wang N. Wang L. Fan G. Yang C. Betaine protects rats against ischemia/reperfusion injury-induced brain damage. J. Neurophysiol. 2022 127 2 444 451 10.1152/jn.00400.2021 35020521
    [Google Scholar]
  87. Nemmar A. Yuvaraju P. Beegam S. Ali B.H. Betaine (N,N,N-trimethylglycine) averts photochemically-induced thrombosis in pial microvessels in vivo and platelet aggregation in vitro. Exp. Biol. Med. (Maywood) 2015 240 7 955 960 10.1177/1535370214564749 25662827
    [Google Scholar]
  88. Liu D. Gu S. Zhou Z. Ma Z. Zuo H. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case‐control study. J. Intern. Med. 2023 293 1 110 120 10.1111/joim.13572 36200542
    [Google Scholar]
  89. Kijpaisalratana N. Ament Z. Bevers M.B. Bhave V.M. Garcia Guarniz A.L. Couch C.A. Irvin M.R. Kimberly W.T. Trimethylamine N-oxide and white matter hyperintensity volume among patients with acute ischemic stroke. JAMA Netw. Open 2023 6 8 2330446 10.1001/jamanetworkopen.2023.30446 37610752
    [Google Scholar]
  90. Shea J.W. Jacobs D.R. Howard A.G. Lulla A. Lloyd-Jones D.M. Murthy V.L. Shah R.V. Trujillo-Gonzalez I. Gordon-Larsen P. Meyer K.A. Choline metabolites and incident cardiovascular disease in a prospective cohort of adults: Coronary artery risk development in young adults (CARDIA) study. Am. J. Clin. Nutr. 2024 119 1 29 38 10.1016/j.ajcnut.2023.10.012 37865185
    [Google Scholar]
  91. Jakimovski D. Bittner S. Zivadinov R. Morrow S.A. Benedict R.H.B. Zipp F. Weinstock-Guttman B. Multiple sclerosis. Lancet 2024 403 10422 183 202 10.1016/S0140‑6736(23)01473‑3 37949093
    [Google Scholar]
  92. Lin W.S. Lin S.J. Liao P.Y. Suresh D. Hsu T.R. Wang P.Y. Role of ketogenic diets in multiple sclerosis and related animal models: An updated review. Adv. Nutr. 2022 13 5 2002 2014 10.1093/advances/nmac065 35679067
    [Google Scholar]
  93. Singhal N.K. Li S. Arning E. Alkhayer K. Clements R. Sarcyk Z. Dassanayake R.S. Brasch N.E. Freeman E.J. Bottiglieri T. McDonough J. Changes in methionine metabolism and histone H3 trimethylation are linked to mitochondrial defects in multiple sclerosis. J. Neurosci. 2015 35 45 15170 15186 10.1523/JNEUROSCI.4349‑14.2015 26558787
    [Google Scholar]
  94. Singhal N.K. Sternbach S. Fleming S. Alkhayer K. Shelestak J. Popescu D. Weaver A. Clements R. Wasek B. Bottiglieri T. Freeman E.J. McDonough J. Betaine restores epigenetic control and supports neuronal mitochondria in the cuprizone mouse model of multiple sclerosis. Epigenetics 2020 15 8 871 886 10.1080/15592294.2020.1735075 32096676
    [Google Scholar]
  95. Yang C. Lai W. Zhou J. Zheng X. Cai Y. Yang W. Xie S. Gao Y. Du C. Betaine ameliorates experimental autoimmune encephalomyelitis by inhibiting dendritic cell–derived IL-6 production and Th17 differentiation. J. Immunol. 2018 200 4 1316 1324 10.4049/jimmunol.1700920 29330324
    [Google Scholar]
  96. Rahdar S. Basir Z. Tabandeh M.R. Ghotbeddin Z. Khazaeel K. Betaine alleviates cerebellar endoplasmic reticulum stress and oxidative imbalance in a cuprizone model of multiple sclerosis in rat. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 3 2651 2664 10.1007/s00210‑024‑03381‑4 39249501
    [Google Scholar]
  97. Maas A.I.R. Menon D.K. Manley G.T. Abrams M. Åkerlund C. Andelic N. Aries M. Bashford T. Bell M.J. Bodien Y.G. Brett B.L. Büki A. Chesnut R.M. Citerio G. Clark D. Clasby B. Cooper D.J. Czeiter E. Czosnyka M. Dams-O’Connor K. De Keyser V. Diaz-Arrastia R. Ercole A. van Essen T.A. Falvey É. Ferguson A.R. Figaji A. Fitzgerald M. Foreman B. Gantner D. Gao G. Giacino J. Gravesteijn B. Guiza F. Gupta D. Gurnell M. Haagsma J.A. Hammond F.M. Hawryluk G. Hutchinson P. van der Jagt M. Jain S. Jain S. Jiang J. Kent H. Kolias A. Kompanje E.J.O. Lecky F. Lingsma H.F. Maegele M. Majdan M. Markowitz A. McCrea M. Meyfroidt G. Mikolić A. Mondello S. Mukherjee P. Nelson D. Nelson L.D. Newcombe V. Okonkwo D. Orešič M. Peul W. Pisică D. Polinder S. Ponsford J. Puybasset L. Raj R. Robba C. Røe C. Rosand J. Schueler P. Sharp D.J. Smielewski P. Stein M.B. von Steinbüchel N. Stewart W. Steyerberg E.W. Stocchetti N. Temkin N. Tenovuo O. Theadom A. Thomas I. Espin A.T. Turgeon A.F. Unterberg A. Van Praag D. van Veen E. Verheyden J. Vyvere T.V. Wang K.K.W. Wiegers E.J.A. Williams W.H. Wilson L. Wisniewski S.R. Younsi A. Yue J.K. Yuh E.L. Zeiler F.A. Zeldovich M. Zemek R. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022 21 11 1004 1060 10.1016/S1474‑4422(22)00309‑X 36183712
    [Google Scholar]
  98. Zhao S.Q. Shi Y.W. Wang X.G. Liu K. Zhao H. Advances and challenges in traumatic brain injury from a forensic perspective. Curr. Neuropharmacol. 2025 10.2174/011570159X352125241031030110 40012395
    [Google Scholar]
  99. Cai L. Gong Q. Qi L. Xu T. Suo Q. Li X. Wang W. Jing Y. Yang D. Xu Z. Yuan F. Tang Y. Yang G. Ding J. Chen H. Tian H. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun. Signal. 2022 20 1 56 10.1186/s12964‑022‑00862‑y 35461293
    [Google Scholar]
  100. Xu X. Gao W. Cheng S. Yin D. Li F. Wu Y. Sun D. Zhou S. Wang D. Zhang Y. Jiang R. Zhang J. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflammation 2017 14 1 167 10.1186/s12974‑017‑0934‑2 28835272
    [Google Scholar]
  101. Sajja V.S.S.S. Perrine S.A. Ghoddoussi F. Hall C.S. Galloway M.P. VandeVord P.J. Blast neurotrauma impairs working memory and disrupts prefrontal myo-inositol levels in rats. Mol. Cell. Neurosci. 2014 59 119 126 10.1016/j.mcn.2014.02.004 24534010
    [Google Scholar]
  102. Xiao X. Xu L. Lu H. Liu X. Sun H. Guo Z. Sun J. Qi F. Niu X. Wang A. Ge Q. Zhuang Y. Geng X. Chen X. Lan Y. He J. Sun W. Untargeted metabolomic analyses of body fluids to differentiate TBI DOC and NTBI DOC. Curr. Mol. Med. 2024 24 9 1183 1193 10.2174/0115665240249826230928104512 37817528
    [Google Scholar]
  103. van der Vaart A. de Borst M.H. Bakker S.J.L. Connelly M.A. van Dijk P.R. Dullaart R.P.F. Higher betaine is associated with lower incidence of microvascular complications in type 2 diabetes (Zodiac‐61). Eur. J. Clin. Invest. 2023 53 1 13873 10.1111/eci.13873 36102283
    [Google Scholar]
  104. Willingham B.D. Ragland T.J. Ormsbee M.J. Betaine supplementation may improve heat tolerance: Potential mechanisms in humans. Nutrients 2020 12 10 2939 10.3390/nu12102939 32992781
    [Google Scholar]
  105. Ataizi S. Ozkoc M. Kanbak G. Karimkhani H. Donmez D.B. Ustunisik N. Ozturk B. A possible protective role of betain and omega-3 supplementation in traumatic brain injury. Ann. Ital. Chir. 2019 90 174 181 [PMID: 31182701
    [Google Scholar]
  106. Dash P.K. Hergenroeder G.W. Jeter C.B. Choi H.A. Kobori N. Moore A.N. Traumatic brain injury alters methionine metabolism: Implications for pathophysiology. Front. Syst. Neurosci. 2016 10 36 10.3389/fnsys.2016.00036 27199685
    [Google Scholar]
  107. Knight L.S. Knight T.A. Making the case for prophylactic use of betaine to promote brain health in young (15–24 year old) athletes at risk for concussion. Front. Neurosci. 2023 17 1214976 10.3389/fnins.2023.1214976 37811321
    [Google Scholar]
  108. McIntyre R.S. Jain R. Glutamatergic modulators for major depression from theory to clinical use. CNS Drugs 2024 38 11 869 890 10.1007/s40263‑024‑01114‑y 39150594
    [Google Scholar]
  109. McIntyre R.S. Alsuwaidan M. Baune B.T. Berk M. Demyttenaere K. Goldberg J.F. Gorwood P. Ho R. Kasper S. Kennedy S.H. Ly-Uson J. Mansur R.B. McAllister-Williams R.H. Murrough J.W. Nemeroff C.B. Nierenberg A.A. Rosenblat J.D. Sanacora G. Schatzberg A.F. Shelton R. Stahl S.M. Trivedi M.H. Vieta E. Vinberg M. Williams N. Young A.H. Maj M. Treatment‐resistant depression: Definition, prevalence, detection, management, and investigational interventions. World Psychiatry 2023 22 3 394 412 10.1002/wps.21120 37713549
    [Google Scholar]
  110. Zakaria F. Akhtar M.T. Wan Ibrahim W.N. Abu Bakar N. Muhamad A. Shohaimi S. Maulidiani M. Ahmad H. Ismail I.S. Shaari K. Perturbations in amino acid metabolism in reserpine-treated zebrafish brain detected by 1 H nuclear magnetic resonance-based metabolomics. Zebrafish 2021 18 1 42 54 10.1089/zeb.2020.1895 33538644
    [Google Scholar]
  111. Pu J. Liu Y. Gui S. Tian L. Yu Y. Wang D. Zhong X. Chen W. Chen X. Chen Y. Chen X. Gong X. Liu L. Li W. Wang H. Xie P. Effects of pharmacological treatment on metabolomic alterations in animal models of depression. Transl. Psychiatry 2022 12 1 175 10.1038/s41398‑022‑01947‑5 35487889
    [Google Scholar]
  112. Kim S.J. Lee M.S. Kim J.H. Lee T.H. Shim I. Antidepressant-like effects of lycii radicis cortex and betaine in the forced swimming test in rats. Biomol. Ther. 2013 21 1 79 83 10.4062/biomolther.2012.072 24009863
    [Google Scholar]
  113. Haramipour P. Asghari A. Hassanpour S. Jahandideh A. Anti-depressant effect of betaine mediates via nitrergic and serotoninergic systems in ovariectomized mice. Arch. Razi Inst. 2021 76 5 1404 1417 10.22092/ari.2020.352221.1553 35355756
    [Google Scholar]
  114. Paternain L. Martisova E. Campión J. Martínez J.A. Ramírez M.J. Milagro F.I. Methyl donor supplementation in rats reverses the deleterious effect of maternal separation on depression-like behaviour. Behav. Brain Res. 2016 299 51 58 10.1016/j.bbr.2015.11.031 26628207
    [Google Scholar]
  115. Zhang M. Wang X.L. Shi H. Meng L.Q. Quan H.F. Yan L. Yang H.F. Peng X.D. Betaine inhibits NLRP3 inflammasome hyperactivation and regulates microglial M1/M2 phenotypic differentiation, thereby attenuating lipopolysaccharide-induced depression-like behavior. J. Immunol. Res. 2022 2022 1 14 10.1155/2022/9313436 36339940
    [Google Scholar]
  116. Qu Y. Zhang K. Pu Y. Chang L. Wang S. Tan Y. Wang X. Zhang J. Ohnishi T. Yoshikawa T. Hashimoto K. Betaine supplementation is associated with the resilience in mice after chronic social defeat stress: A role of brain-gut-microbiota axis. J. Affect. Disord. 2020 272 66 76 10.1016/j.jad.2020.03.095 32379622
    [Google Scholar]
  117. Gawande D. Barewar S. Taksande J. Umekar M. Ghule B. Taksande B. Kotagale N. Achyranthes aspera ameliorates stress induced depression in mice by regulating neuroinflammatory cytokines. J. Tradit. Complement. Med. 2022 12 6 545 555 10.1016/j.jtcme.2022.06.001 36325246
    [Google Scholar]
  118. Jeyhoonabadi M. Alimoahmmadi S. Hassanpour S. Hashemnia M. Betaine ameliorates depressive-like behaviors in zinc oxide nanoparticles exposed mice. Biol. Trace Elem. Res. 2022 200 11 4771 4781 10.1007/s12011‑021‑03068‑4 34993911
    [Google Scholar]
  119. Liang Y. Chen L. Huang Y. Xie L. Liu X. Zhou W. Cao W. Chen Z. Zhong X. Betaine eliminates CFA-induced depressive-like behaviour in mice may be through inhibition of microglia and astrocyte activation and polarization. Brain Res. Bull. 2024 206 110863 10.1016/j.brainresbull.2023.110863 38145759
    [Google Scholar]
  120. Sarkisova K.Y. Gabova A.V. Fedosova E.A. Shatskova A.B. Gender-dependent effect of maternal methyl-enriched diet on the expression of genetic absence epilepsy and comorbid depression in adult offspring of WAG/Rij rats. Dokl. Biol. Sci. 2020 494 1 244 247 10.1134/S0012496620050075 33083882
    [Google Scholar]
  121. Lin J.C. Lee M.Y. Chan M.H. Chen Y.C. Chen H.H. Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology 2016 233 17 3223 3235 10.1007/s00213‑016‑4359‑x 27363702
    [Google Scholar]
  122. Chen S.T. Hsieh C.P. Lee M.Y. Chen L.C. Huang C.M. Chen H.H. Chan M.H. Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice. Biomed. Pharmacother. 2021 144 112369 10.1016/j.biopha.2021.112369 34715446
    [Google Scholar]
  123. Mitro S.D. Larrabure-Torrealva G.T. Sanchez S.E. Molsberry S.A. Williams M.A. Clish C. Gelaye B. Metabolomic markers of antepartum depression and suicidal ideation. J. Affect. Disord. 2020 262 422 428 10.1016/j.jad.2019.11.061 31744743
    [Google Scholar]
  124. Miao M. Du J. Che B. Guo Y. Zhang J. Ju Z. Xu T. Zhong X. Zhang Y. Zhong C. Circulating choline pathway nutrients and depression after ischemic stroke. Eur. J. Neurol. 2022 29 2 459 468 10.1111/ene.15133 34611955
    [Google Scholar]
  125. Di Pierro F. Settembre R. Preliminary results of a randomized controlled trial carried out with a fixed combination of S-adenosyl-L-methionine and betaine versus amitriptyline in patients with mild depression. Int. J. Gen. Med. 2015 8 73 78 10.2147/IJGM.S79518 25678811
    [Google Scholar]
  126. Lotfi K. Keshteli A.H. Saneei P. Afshar H. Esmaillzadeh A. Adibi P. Dietary methyl donor micronutrients intake in relation to psychological disorders in adults. Br. J. Nutr. 2022 128 1 64 74 10.1017/S0007114521003081 34392852
    [Google Scholar]
  127. Penninx B.W.J.H. Pine D.S. Holmes E.A. Reif A. Anxiety disorders. Lancet 2021 397 10277 914 927 10.1016/S0140‑6736(21)00359‑7 33581801
    [Google Scholar]
  128. Le J. Peng R. Li Y. Trimethylamine-N-oxide and precursors as novel potential biomarkers for anxiety disorder. Lab. Med. 2022 53 2 177 182 10.1093/labmed/lmab063 34480186
    [Google Scholar]
  129. Liu W. Zhong X. Yi Y. Xie L. Zhou W. Cao W. Chen L. Prophylactic effects of betaine on depression and anxiety behaviors in mice with dextran sulfate sodium-induced colitis. J. Agric. Food Chem. 2024 72 38 21041 21051 10.1021/acs.jafc.4c05547 39276097
    [Google Scholar]
  130. Owumi S.E. Oluwawibe B.J. Chimezie J. Babalola J.J. Ogunyemi O.M. Gyebi G.A. Otunla M.T. Altayyar A. Arunsi U.O. Irozuru C.E. Owoeye O.O. An in vivo and in silico probing of the protective potential of betaine against sodium fluoride-induced neurotoxicity. BMC Pharmacol. Toxicol. 2024 25 1 87 10.1186/s40360‑024‑00812‑z 39548593
    [Google Scholar]
  131. Yu M.C. Wang T.M. Chiou Y.H. Yu M.K. Lin C.F. Chiu C.Y. Urine metabolic phenotyping in children with nocturnal enuresis and comorbid neurobehavioral disorders. Sci. Rep. 2021 11 1 16592 10.1038/s41598‑021‑96104‑1 34400733
    [Google Scholar]
  132. van Lee L. Quah P.L. Saw S.M. Yap F.K.P. Godfrey K.M. Chong Y.S. Meaney M.J. Chen H. Chong M.F.F. Maternal choline status during pregnancy, but not that of betaine, is related to antenatal mental well-being: The growing up in Singapore toward healthy outcomes cohort. Depress. Anxiety 2017 34 10 877 887 10.1002/da.22637 28471488
    [Google Scholar]
  133. Marder S.R. Cannon T.D. Schizophrenia. N. Engl. J. Med. 2019 381 18 1753 1761 10.1056/NEJMra1808803 31665579
    [Google Scholar]
  134. Ohnishi T. Balan S. Toyoshima M. Maekawa M. Ohba H. Watanabe A. Iwayama Y. Fujita Y. Tan Y. Hisano Y. Shimamoto-Mitsuyama C. Nozaki Y. Esaki K. Nagaoka A. Matsumoto J. Hino M. Mataga N. Hayashi-Takagi A. Hashimoto K. Kunii Y. Kakita A. Yabe H. Yoshikawa T. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 2019 45 432 446 10.1016/j.ebiom.2019.05.062 31255657
    [Google Scholar]
  135. Koike S. Bundo M. Iwamoto K. Suga M. Kuwabara H. Ohashi Y. Shinoda K. Takano Y. Iwashiro N. Satomura Y. Nagai T. Natsubori T. Tada M. Yamasue H. Kasai K. A snapshot of plasma metabolites in first-episode schizophrenia: A capillary electrophoresis time-of-flight mass spectrometry study. Transl. Psychiatry 2014 4 4 379 10.1038/tp.2014.19 24713860
    [Google Scholar]
  136. Murata Y. Ikegame T. Koike S. Saito T. Ikeda M. Sasaki T. Iwata N. Kasai K. Bundo M. Iwamoto K. Global DNA hypomethylation and its correlation to the betaine level in peripheral blood of patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020 99 109855 10.1016/j.pnpbp.2019.109855 31911076
    [Google Scholar]
  137. Yao G. Zeng J. Huang Y. Lu H. Ping J. Wan J. Jiang T. Deng F. Li C. Liu X. Tang C. Lu L. Discovery of biological markers for schizophrenia based on metabolomics: A systematic review. Front. Psychiatry 2025 16 1540260 10.3389/fpsyt.2025.1540260 40225847
    [Google Scholar]
  138. Kirihara K. Fujioka M. Suga M. Kondo S. Ichihashi K. Koshiyama D. Morita K. Ikegame T. Tada M. Araki T. Jinde S. Taniguchi K. Hosokawa T. Sugishita K. Dogan S. Marumo K. Itokawa M. Kasai K. Betaine supplementation improves positive symptoms in schizophrenia. Schizophr. Res. 2022 250 120 122 10.1016/j.schres.2022.11.009 36401992
    [Google Scholar]
  139. Ward K.M. Burghardt K. Kraal A.Z. Jaeger A. Yeomans L. McHugh C. Karnovsky A. Stringer K.A. Ellingrod V.L. Genetic and metabolite variability in one-carbon metabolism applied to an insulin resistance model in patients with schizophrenia receiving atypical antipsychotics. Front. Psychiatry 2021 12 623143 10.3389/fpsyt.2021.623143 34113268
    [Google Scholar]
  140. Yoshihara S. Jiang X. Morikawa M. Ogawa T. Ichinose S. Yabe H. Kakita A. Toyoshima M. Kunii Y. Yoshikawa T. Tanaka Y. Hirokawa N. Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Rep. 2021 35 2 108971 10.1016/j.celrep.2021.108971 33852848
    [Google Scholar]
  141. Lord C. Brugha T.S. Charman T. Cusack J. Dumas G. Frazier T. Jones E.J.H. Jones R.M. Pickles A. State M.W. Taylor J.L. Veenstra-VanderWeele J. Autism spectrum disorder. Nat. Rev. Dis. Primers 2020 6 1 5 10.1038/s41572‑019‑0138‑4 31949163
    [Google Scholar]
  142. James S.J. Cutler P. Melnyk S. Jernigan S. Janak L. Gaylor D.W. Neubrander J.A. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr. 2004 80 6 1611 1617 10.1093/ajcn/80.6.1611 15585776
    [Google Scholar]
  143. Lussu M. Noto A. Masili A. Rinaldi A.C. Dessì A. De Angelis M. De Giacomo A. Fanos V. Atzori L. Francavilla R. The urinary 1 H‐NMR metabolomics profile of an Italian autistic children population and their unaffected siblings. Autism Res. 2017 10 6 1058 1066 10.1002/aur.1748 28296209
    [Google Scholar]
  144. Zhu Y. Mordaunt C.E. Durbin-Johnson B.P. Caudill M.A. Malysheva O.V. Miller J.W. Green R. James S.J. Melnyk S.B. Fallin M.D. Hertz-Picciotto I. Schmidt R.J. LaSalle J.M. Expression changes in epigenetic gene pathways associated with one‐carbon nutritional metabolites in maternal blood from pregnancies resulting in autism and non‐typical neurodevelopment. Autism Res. 2021 14 1 11 28 10.1002/aur.2428 33159718
    [Google Scholar]
  145. Gagliano A. Murgia F. Capodiferro A.M. Tanca M.G. Hendren A. Falqui S.G. Aresti M. Comini M. Carucci S. Cocco E. Lorefice L. Roccella M. Vetri L. Sotgiu S. Zuddas A. Atzori L. 1H-NMR-based metabolomics in autism spectrum disorder and pediatric acute-onset neuropsychiatric syndrome. J. Clin. Med. 2022 11 21 6493 10.3390/jcm11216493 36362721
    [Google Scholar]
  146. Hasegawa Y. Zhang Z. Taha A.Y. Capitanio J.P. Bauman M.D. Golub M.S. Van de Water J. VandeVoort C.A. Walker C.K. Slupsky C.M. Impact of maternal obesity on the gestational metabolome and infant metabolome, brain, and behavioral development in rhesus macaques. Metabolites 2022 12 8 764 10.3390/metabo12080764 36005637
    [Google Scholar]
  147. Huang F. Chen X. Jiang X. Niu J. Cui C. Chen Z. Sun J. Betaine ameliorates prenatal valproic‐acid‐induced autism‐like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin. Neurosci. 2019 73 6 317 322 10.1111/pcn.12833 30821067
    [Google Scholar]
  148. Zhong J.G. Lan W.T. Feng Y.Q. Li Y.H. Shen Y.Y. Gong J.H. Zou Z. Hou X. Associations between dysbiosis gut microbiota and changes of neurotransmitters and short-chain fatty acids in valproic acid model rats. Front. Physiol. 2023 14 1077821 10.3389/fphys.2023.1077821 37035670
    [Google Scholar]
  149. Orenbuch A. Fortis K. Taesuwan S. Yaffe R. Caudill M.A. Golan H.M. Prenatal nutritional intervention reduces autistic-like behavior rates among Mthfr-Deficient mice. Front. Neurosci. 2019 13 383 10.3389/fnins.2019.00383 31133774
    [Google Scholar]
  150. Liu D. Bu D. Li H. Wang Q. Ding X. Fang X. Intestinal metabolites and the risk of autistic spectrum disorder: A two-sample Mendelian randomization study. Front. Psychiatry 2023 13 1034214 10.3389/fpsyt.2022.1034214 36713927
    [Google Scholar]
  151. Gros P. Videnovic A. Overview of sleep and circadian rhythm disorders in Parkinson disease. Clin. Geriatr. Med. 2020 36 1 119 130 10.1016/j.cger.2019.09.005 31733692
    [Google Scholar]
  152. Roliz A.H. Kothare S. The interaction between sleep and epilepsy. Curr. Neurol. Neurosci. Rep. 2022 22 9 551 563 10.1007/s11910‑022‑01219‑1 35802300
    [Google Scholar]
  153. Riemann D. Krone L.B. Wulff K. Nissen C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020 45 1 74 89 10.1038/s41386‑019‑0411‑y 31071719
    [Google Scholar]
  154. Yu X. Zhao G. Wang D. Wang S. Li R. Li A. Wang H. Nollet M. Chun Y.Y. Zhao T. Yustos R. Li H. Zhao J. Li J. Cai M. Vyssotski A.L. Li Y. Dong H. Franks N.P. Wisden W. A specific circuit in the midbrain detects stress and induces restorative sleep. Science 2022 377 6601 63 72 10.1126/science.abn0853 35771921
    [Google Scholar]
  155. Yin J. Gong R. Zhang M. Ding L. Shen T. Cai Y. He S. Peng D. Associations between sleep disturbance, inflammatory markers and depressive symptoms: Mediation analyses in a large NHANES community sample. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023 126 110786 10.1016/j.pnpbp.2023.110786 37178815
    [Google Scholar]
  156. Doherty R. Madigan S. Warrington G. Ellis J. Sleep and nutrition interactions: Implications for athletes. Nutrients 2019 11 4 822 10.3390/nu11040822 30979048
    [Google Scholar]
  157. Zhao M. Tuo H. Wang S. Zhao L. The effects of dietary nutrition on sleep and sleep disorders. Mediators Inflamm. 2020 2020 1 7 10.1155/2020/3142874 32684833
    [Google Scholar]
  158. Clayton P. Hill M. Bogoda N. Subah S. Venkatesh R. Palmitoylethanolamide: A natural compound for health management. Int. J. Mol. Sci. 2021 22 10 5305 10.3390/ijms22105305 34069940
    [Google Scholar]
  159. Suzuki-Abe H. Sonomura K. Nakata S. Miyanishi K. Mahmoud A. Hotta-Hirashima N. Miyoshi C. Sato T.A. Funato H. Yanagisawa M. Metabolomic and pharmacologic analyses of brain substances associated with sleep pressure in mice. Neurosci. Res. 2022 177 16 24 10.1016/j.neures.2021.11.008 34856199
    [Google Scholar]
  160. Yang B. Yin H. Wang J. Gan J. Li J. Han R. Pei M. Song L. Yang H. A metabolic biomarker panel of restless legs syndrome in peritoneal dialysis patients. Metabolomics 2022 18 11 79 10.1007/s11306‑022‑01938‑z 36260187
    [Google Scholar]
  161. Popova S. Lange S. Probst C. Gmel G. Rehm J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Glob. Health 2017 5 3 e290 e299 10.1016/S2214‑109X(17)30021‑9 28089487
    [Google Scholar]
  162. McIntosh E.R. McClatchie T. Lee M. Zeisel S.H. Jurisicova A. Baltz J.M. The origin of betaine in mouse oocytes and preimplantation embryos. Biol. Reprod. 2024 111 1 63 75 10.1093/biolre/ioae053 38702845
    [Google Scholar]
  163. Xu J. Sinclair K.D. One-carbon metabolism and epigenetic regulation of embryo development. Reprod. Fertil. Dev. 2015 27 4 667 676 10.1071/RD14377 25710200
    [Google Scholar]
  164. Joselit Y. Nanobashvili K. Jack-Roberts C. Greenwald E. Malysheva O.V. Caudill M.A. Saxena A. Jiang X. Maternal betaine supplementation affects fetal growth and lipid metabolism of high-fat fed mice in a temporal-specific manner. Nutr. Diabetes 2018 8 1 41 10.1038/s41387‑018‑0035‑z 30026535
    [Google Scholar]
  165. Kusat Ol K. Kanbak G. Oğlakcı Ilhan A. Burukoglu D. Yücel F. The investigation of the prenatal and postnatal alcohol exposure-induced neurodegeneration in rat brain: Protection by betaine and/or omega-3. Childs Nerv. Syst. 2016 32 3 467 474 10.1007/s00381‑015‑2990‑1 26732065
    [Google Scholar]
  166. Sogut I. Uysal O. Oglakci A. Yucel F. Kartkaya K. Kanbak G. Prenatal alcohol–induced neuroapoptosis in rat brain cerebral cortex: Protective effect of folic acid and betaine. Childs Nerv. Syst. 2017 33 3 407 417 10.1007/s00381‑016‑3309‑6 28062893
    [Google Scholar]
  167. Breton-Larrivée M. Elder E. Legault L.M. Langford-Avelar A. MacFarlane A.J. McGraw S. Mitigating the detrimental developmental impact of early fetal alcohol exposure using a maternal methyl donor‐enriched diet. FASEB J. 2023 37 4 22829 10.1096/fj.202201564R 36856720
    [Google Scholar]
  168. Karunamuni G. Sheehan M.M. Doughman Y.Q. Gu S. Sun J. Li Y. Strainic J.P. Rollins A.M. Jenkins M.W. Watanabe M. Supplementation with the methyl donor betaine prevents congenital defects induced by prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2017 41 11 1917 1927 10.1111/acer.13495 28888041
    [Google Scholar]
  169. Mohrman A.E. Farrag M. Huang H. Ossowski S. Haft S. Shriver L.P. Leipzig N.D. Spinal cord transcriptomic and metabolomic analysis after excitotoxic injection injury model of syringomyelia. J. Neurotrauma 2017 34 3 720 733 10.1089/neu.2015.4341 27736311
    [Google Scholar]
  170. Pukale D.D. Farrag M. Gudneppanavar R. Baumann H.J. Konopka M. Shriver L.P. Leipzig N.D. Osmoregulatory role of betaine and Betaine/γ-aminobutyric acid transporter 1 in post-traumatic syringomyelia. ACS Chem. Neurosci. 2021 12 19 3567 3578 10.1021/acschemneuro.1c00056 34550670
    [Google Scholar]
  171. Pukale D.D. Lazarenko D. Aryal S.R. Khabaz F. Shriver L.P. Leipzig N.D. Osmotic contribution of synthesized betaine by choline dehydrogenase using in vivo and in vitro models of post-traumatic syringomyelia. Cell. Mol. Bioeng. 2023 16 1 41 54 10.1007/s12195‑022‑00749‑5 36660584
    [Google Scholar]
  172. Pukale D.D. Adkins-Travis K. Aryal S.R. Shriver L.P. Patti G.J. Leipzig N.D. Investigating post-traumatic syringomyelia and local fluid osmoregulation via a rat model. Fluids Barriers CNS 2024 21 1 19 10.1186/s12987‑024‑00514‑y 38409031
    [Google Scholar]
  173. Friedes B.D. Molloy E. Strickland T. Zhu J. Slevin M. Donoghue V. Sweetman D. Kelly L. O’Dea M. Roux A. Harlan R. Ellis G. Manlhiot C. Graham D. Northington F. Everett A.D. Neonatal encephalopathy plasma metabolites are associated with neurodevelopmental outcomes. Pediatr. Res. 2022 92 2 466 473 10.1038/s41390‑021‑01741‑x 34621028
    [Google Scholar]
  174. Cascant-Vilaplana M.M. Piñeiro-Ramos J.D. Soláz-García Á. Lara-Cantón I. Izquierdo I. Llorens R. Marin P. Torres-Martínez E. Molitor C. Mohareb F. Boronat N. Quintás G. Kuligowski J. Vento M. Gimeno A. Gormaz M. Escrig R. Cernada M. Aguar M. Núñez-Ramiro A. Benavente-Fernández I. Valverde E. Cordeiro M. Blanco D. Boix H. Cabañas F. Chaffanel M. Fernández-Colomer B. Fernández-Lorenzo J.R. Loureiro B. Moral-Pumarega M.T. Pavón A. Tofé I. Searching molecular biomarkers correlating with BSID-III at 24 months in infants with neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 2024 183 9 3933 3942 10.1007/s00431‑024‑05652‑x 38916739
    [Google Scholar]
  175. Tiwari V. Hemalatha S. Betaine attenuates chronic constriction injury-induced neuropathic pain in rats by inhibiting KIF17-mediated nociception. ACS Chem. Neurosci. 2022 13 23 3362 3377 10.1021/acschemneuro.2c00380 36367842
    [Google Scholar]
  176. Hassanpour S. Rezaei H. Razavi S.M. Anti-nociceptive and antioxidant activity of betaine on formalin- and writhing tests induced pain in mice. Behav. Brain Res. 2020 390 112699 10.1016/j.bbr.2020.112699 32417277
    [Google Scholar]
  177. Tseng H.C. Wang M.H. Fang C.H. Lin Y.W. Soung H.S. Involvement of antioxidant and prevention of mitochondrial dysfunction, anti-neuroinflammatory effect and anti-apoptotic effect: Betaine ameliorates haloperidol-induced orofacial dyskinesia in rats. Brain Sci. 2023 13 7 1064 10.3390/brainsci13071064 37508996
    [Google Scholar]
  178. Lee E.C. Maresh C.M. Kraemer W.J. Yamamoto L.M. Hatfield D.L. Bailey B.L. Armstrong L.E. Volek J.S. McDermott B.P. Craig S.A.S. Ergogenic effects of betaine supplementation on strength and power performance. J. Int. Soc. Sports Nutr. 2010 7 1 27 10.1186/1550‑2783‑7‑27 20642826
    [Google Scholar]
  179. Nobari H. Cholewa J.M. Castillo-Rodríguez A. Kargarfard M. Pérez-Gómez J. Effects of chronic betaine supplementation on performance in professional young soccer players during a competitive season: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2021 18 1 67 10.1186/s12970‑021‑00464‑y 34663363
    [Google Scholar]
  180. Chen S. Lu X.T. He T.T. Yishake D. Tan X.Y. Hou M.J. Luo Y. Long J.A. Tang Z.H. Zhong R.H. Fang A.P. Zhu H.L. Betaine delayed muscle loss by attenuating samtor complex inhibition for mTORC1 signaling via increasing SAM level. Mol. Nutr. Food Res. 2021 65 15 2100157 10.1002/mnfr.202100157 34061446
    [Google Scholar]
  181. Wang R. Yang S. Xiao P. Sun Y. Li J. Jiang X. Wu W. Fluorination and betaine modification augment the blood–brain barrier‐crossing ability of cylindrical polymer brushes. Angew. Chem. Int. Ed. 2022 61 19 202201390 10.1002/anie.202201390 35143085
    [Google Scholar]
  182. Peña-Bautista C. Flor L. López-Nogueroles M. García L. Ferrer I. Baquero M. Vento M. Cháfer-Pericás C. Plasma alterations in cholinergic and serotonergic systems in early Alzheimer Disease: Diagnosis utility. Clin. Chim. Acta 2020 500 233 240 10.1016/j.cca.2019.10.023 31678274
    [Google Scholar]
  183. Ren Y. Chen Z.Z. Sun X.L. Duan H.J. Tian J.S. Wang J.Y. Yang H. Metabolomic analysis to detect urinary molecular changes associated with bipolar depression. Neurosci. Lett. 2021 742 135515 10.1016/j.neulet.2020.135515 33227370
    [Google Scholar]
  184. Mao Q. Tian T. Chen J. Guo X. Zhang X. Zou T. Serum metabolic profiling of late-pregnant women with antenatal depressive symptoms. Front. Psychiatry 2021 12 679451 10.3389/fpsyt.2021.679451 34305679
    [Google Scholar]
  185. Loo R.L. Zou X. Appel L.J. Nicholson J.K. Holmes E. Characterization of metabolic responses to healthy diets and association with blood pressure: Application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. Am. J. Clin. Nutr. 2018 107 3 323 334 10.1093/ajcn/nqx072 29506183
    [Google Scholar]
  186. Guasch-Ferré M. Hu F.B. Ruiz-Canela M. Bulló M. Toledo E. Wang D.D. Corella D. Gómez-Gracia E. Fiol M. Estruch R. Lapetra J. Fitó M. Arós F. Serra-Majem L. Ros E. Dennis C. Liang L. Clish C.B. Martínez-González M.A. Salas-Salvadó J. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (Prevention With Mediterranean Diet) study. J. Am. Heart Assoc. 2017 6 11 006524 10.1161/JAHA.117.006524 29080862
    [Google Scholar]
  187. dos Santos J.F. Mota L.R. Rocha P.H.S.A. Ferreira de Lima R.L.L. A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome. Mol. Biol. Rep. 2016 43 11 1221 1225 10.1007/s11033‑016‑4055‑2 27535666
    [Google Scholar]
  188. Meguid N.A. Ismail M.F. El-Mahdy R.S. Barakat M.A. El-Awady M.K. Simple molecular diagnostic method for fragile X syndrome in Egyptian patients: Pilot study. Acta Biochim. Pol. 2014 61 2 259 263 10.18388/abp.2014_1893 24936518
    [Google Scholar]
  189. Todorov T. Todorova A. Georgieva B. Mitev V. A unified rapid PCR method for detection of normal and expanded trinucleotide alleles of CAG repeats in huntington chorea and CGG repeats in fragile X syndrome. Mol. Biotechnol. 2010 45 2 150 154 10.1007/s12033‑010‑9260‑y 20217280
    [Google Scholar]
  190. Kanbak G. Arslan O.C. Dokumacioglu A. Kartkaya K. İnal M.E. Effects of chronic ethanol consumption on brain synaptosomes and protective role of betaine. Neurochem. Res. 2008 33 3 539 544 10.1007/s11064‑007‑9472‑0 17763942
    [Google Scholar]
  191. Lin H.C. Hsieh H.M. Chen Y.H. Hu M.L. S-Adenosylhomocysteine increases β-amyloid formation in BV-2 microglial cells by increased expressions of β-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. Neurotoxicology 2009 30 4 622 627 10.1016/j.neuro.2009.03.011 19635394
    [Google Scholar]
  192. Xie F. Zhao Y. Ma J. Gong J.B. Wang S.D. Zhang L. Gao X.J. Qian L.J. The involvement of homocysteine in stress-induced Aβ precursor protein misprocessing and related cognitive decline in rats. Cell Stress Chaperones 2016 21 5 915 926 10.1007/s12192‑016‑0718‑0 27435080
    [Google Scholar]
  193. Miwa M. Tsuboi M. Noguchi Y. Enokishima A. Nabeshima T. Hiramatsu M. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J. Neuroinflammation 2011 8 1 153 10.1186/1742‑2094‑8‑153 22053950
    [Google Scholar]
  194. Szkudelska K. Chan M.H. Okulicz M. Jasaszwili M. Lukomska A. Malek E. Shah M. Sunder S. Szkudelski T. Betaine supplementation to rats alleviates disturbances induced by high-fat diet: pleiotropic effects in model of type 2 diabetes. J. Physiol. Pharmacol. 2021 72 5 10.26402.10.26402/jpp.2021.5.11 35288478
    [Google Scholar]
  195. Schwahn B.C. Laryea M.D. Chen Z. Melnyk S. Pogribny I. Garrow T. James S.J. Rozen R. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency. Biochem. J. 2004 382 3 831 840 10.1042/BJ20030822 15217352
    [Google Scholar]
  196. Billington C.J. Schmidt B. Zhang L. Hodges J.S. Georgieff M.K. Schotta G. Gopalakrishnan R. Petryk A. Maternal diet supplementation with methyl donors and increased parity affect the incidence of craniofacial defects in the offspring of twisted gastrulation mutant mice. J. Nutr. 2013 143 3 332 339 10.3945/jn.112.168906 23343680
    [Google Scholar]
  197. Shaw G.M. Carmichael S.L. Yang W. Selvin S. Schaffer D.M. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am. J. Epidemiol. 2004 160 2 102 109 10.1093/aje/kwh187 15234930
    [Google Scholar]
  198. Li K. Wahlqvist M. Li D. Nutrition, one-carbon metabolism and neural tube defects: A review. Nutrients 2016 8 11 741 10.3390/nu8110741 27886045
    [Google Scholar]
  199. Diekman E.F. de Koning T.J. Verhoeven-Duif N.M. Rovers M.M. van Hasselt P.M. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency. JAMA Neurol. 2014 71 2 188 194 10.1001/jamaneurol.2013.4915 24323041
    [Google Scholar]
  200. Huemer M. Diodato D. Schwahn B. Schiff M. Bandeira A. Benoist J.F. Burlina A. Cerone R. Couce M.L. Garcia-Cazorla A. la Marca G. Pasquini E. Vilarinho L. Weisfeld-Adams J.D. Kožich V. Blom H. Baumgartner M.R. Dionisi-Vici C. Guidelines for diagnosis and management of the cobalamin‐related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J. Inherit. Metab. Dis. 2017 40 1 21 48 10.1007/s10545‑016‑9991‑4 27905001
    [Google Scholar]
  201. Díez-Ricote L. San-Cristobal R. Concejo M.J. Martínez-González M.Á. Corella D. Salas-Salvadó J. Goday A. Martínez J.A. Alonso-Gómez Á.M. Wärnberg J. Vioque J. Romaguera D. López-Miranda J. Estruch R. Tinahones F.J. Lapetra J. Serra-Majem L. Bueno-Cavanillas A. Tur J.A. Martín Sánchez V. Pintó X. Gaforio J.J. Matía-Martín P. Vidal J. Mas Fontao S. Ros E. Vázquez-Ruiz Z. Ortega-Azorín C. García-Gavilán J.F. Malcampo M. Martínez-Urbistondo D. Tojal-Sierra L. García Rodríguez A. Gómez-Bellvert N. Chaplin A. García-Ríos A. Bernal-López R.M. Santos-Lozano J.M. Basterra-Gortari J. Sorlí J.V. Murphy M. Gasulla G. Micó V. Salaverria-Lete I. Goñi Ochandorena E. Babio N. Herraiz X. Ordovás J.M. Daimiel L. One-year longitudinal association between changes in dietary choline or betaine intake and cardiometabolic variables in the prevención con dieta mediterránea-plus (PREDIMED-Plus) trial. Am. J. Clin. Nutr. 2022 116 6 1565 1579 10.1093/ajcn/nqac255 36124652
    [Google Scholar]
  202. Nobari H. Cholewa J.M. Pérez-Gómez J. Castillo-Rodríguez A. Effects of 14-weeks betaine supplementation on pro-inflammatory cytokines and hematology status in professional youth soccer players during a competition season: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2021 18 1 42 10.1186/s12970‑021‑00441‑5 34090451
    [Google Scholar]
  203. Turck D. Castenmiller J. De Henauw S. Hirsch-Ernst K.I. Kearney J. Maciuk A. Mangelsdorf I. McArdle H.J. Naska A. Pelaez C. Pentieva K. Siani A. Thies F. Tsabouri S. Vinceti M. Cubadda F. Engel K.H. Frenzel T. Heinonen M. Marchelli R. Neuhäuser-Berthold M. Pöting A. Poulsen M. Sanz Y. Schlatter J.R. van Loveren H. Turla E. Knutsen H.K. Safety of betaine as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2019 17 4 05658 10.2903/j.efsa.2019.5658 32626284
    [Google Scholar]
  204. Turck D. Bresson J.L. Burlingame B. Dean T. Fairweather-Tait S. Heinonen M. Hirsch-Ernst K.I. Mangelsdorf I. McArdle H.J. Naska A. Neuhäuser-Berthold M. Nowicka G. Pentieva K. Sanz Y. Siani A. Sjödin A. Stern M. Tomé D. Vinceti M. Willatts P. Engel K.H. Marchelli R. Pöting A. Poulsen M. Schlatter J.R. Turla E. van Loveren H. Safety of betaine as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017 15 11 05057 10.2903/j.efsa.2017.5057 32625349
    [Google Scholar]
  205. Schwab U. Törrönen A. Toppinen L. Alfthan G. Saarinen M. Aro A. Uusitupa M. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am. J. Clin. Nutr. 2002 76 5 961 967 10.1093/ajcn/76.5.961 12399266
    [Google Scholar]
  206. Cai D. Yuan M. Liu H. Pan S. Ma W. Hong J. Zhao R. Maternal betaine supplementation throughout gestation and lactation modifies hepatic cholesterol metabolic genes in weaning piglets via AMPK/LXR-mediated pathway and histone modification. Nutrients 2016 8 10 646 10.3390/nu8100646 27763549
    [Google Scholar]
  207. Zhao N. Yang S. Feng Y. Sun B. Zhao R. Enhanced hepatic cholesterol accumulation induced by maternal betaine exposure is associated with hypermethylation of CYP7A1 gene promoter. Endocrine 2019 64 3 544 551 10.1007/s12020‑019‑01906‑z 30924082
    [Google Scholar]
  208. Abdelmalek M.F. Angulo P. Jorgensen R.A. Sylvestre P.B. Lindor K.D. Betaine, a promising new agent for patients with nonalcoholic steatohepatitis: Results of a pilot study. Am. J. Gastroenterol. 2001 96 9 2711 2717 10.1111/j.1572‑0241.2001.04129.x 11569700
    [Google Scholar]
  209. Ji C. Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 2003 124 5 1488 1499 10.1016/S0016‑5085(03)00276‑2 12730887
    [Google Scholar]
  210. Zhao N. Yang S. Jia Y. Sun B. He B. Zhao R. Maternal betaine supplementation attenuates glucocorticoid-induced hepatic lipid accumulation through epigenetic modification in adult offspring rats. J. Nutr. Biochem. 2018 54 105 112 10.1016/j.jnutbio.2017.12.003 29331496
    [Google Scholar]
  211. Teixeira Araújo G. Domenici F. Elias J. Vannucchi H. Betaine: A potential agent for the treatment of hepatopathy associated with short bowel syndrome. Nutr. Hosp. 2014 29 6 1366 1371 10.3305/nh.2014.29.6.7378 24972476
    [Google Scholar]
  212. Mütze U. Gleich F. Garbade S.F. Plisson C. Aldámiz-Echevarría L. Arrieta F. Ballhausen D. Zielonka M. Petković Ramadža D. Baumgartner M.R. Cano A. García Jiménez M.C. Dionisi-Vici C. Ješina P. Blom H.J. Couce M.L. Meavilla Olivas S. Mention K. Mochel F. Morris A.A.M. Mundy H. Redonnet-Vernhet I. Santra S. Schiff M. Servais A. Vitoria I. Huemer M. Kožich V. Kölker S. Postauthorization safety study of betaine anhydrous. J. Inherit. Metab. Dis. 2022 45 4 719 733 10.1002/jimd.12499 35358327
    [Google Scholar]
  213. Valayannopoulos V. Schiff M. Guffon N. Nadjar Y. García-Cazorla A. Martinez-Pardo Casanova M. Cano A. Couce M.L. Dalmau J. Peña-Quintana L. Rigalleau V. Touati G. Aldamiz-Echevarria L. Cathebras P. Eyer D. Brunet D. Damaj L. Dobbelaere D. Gay C. Hiéronimus S. Levrat V. Maillot F. Betaine anhydrous in homocystinuria: Results from the RoCH registry. Orphanet J. Rare Dis. 2019 14 1 66 10.1186/s13023‑019‑1036‑2 30871635
    [Google Scholar]
  214. Devlin A.M. Hajipour L. Gholkar A. Fernandes H. Ramesh V. Morris A.A.M. Cerebral edema associated with betaine treatment in classical homocystinuria. J. Pediatr. 2004 144 4 545 548 10.1016/j.jpeds.2003.12.041 15069409
    [Google Scholar]
  215. Sasai H. Shimozawa N. Asano T. Kawamoto N. Yamamoto T. Kimura T. Kawamoto M. Matsui E. Fukao T. Successive MRI findings of reversible cerebral white matter lesions in a patient with cystathionine β-synthase deficiency. Tohoku J. Exp. Med. 2015 237 4 323 327 10.1620/tjem.237.323 26639091
    [Google Scholar]
  216. Kedia A.W. Hofheins J.E. Habowski S.M. Ferrando A.A. Gothard M.D. Lopez H.L. Effects of a pre-workout supplement on lean mass, muscular performance, subjective workout experience and biomarkers of safety. Int. J. Med. Sci. 2014 11 2 116 126 10.7150/ijms.7073 24465156
    [Google Scholar]
  217. Imbard A. Toumazi A. Magréault S. Garcia-Segarra N. Schlemmer D. Kaguelidou F. Perronneau I. Haignere J. de Baulny H.O. Kuster A. Feillet F. Alberti C. Guilmin-Crépon S. Benoist J.F. Schiff M. Efficacy and pharmacokinetics of betaine in CBS and cblC deficiencies: A cross-over randomized controlled trial. Orphanet J. Rare Dis. 2022 17 1 417 10.1186/s13023‑022‑02567‑4 36376887
    [Google Scholar]
  218. Ship J.A. McCutcheon J.A. Spivakovsky S. Kerr A.R. Safety and effectiveness of topical dry mouth products containing olive oil, betaine, and xylitol in reducing xerostomia for polypharmacy‐induced dry mouth. J. Oral Rehabil. 2007 34 10 724 732 10.1111/j.1365‑2842.2006.01718.x 17824884
    [Google Scholar]
  219. López-Jornet P. Camacho-Alonso F. Rodriguez-Aguado C. Evaluation of the clinical efficacy of a betaine‐containing mouthwash and an intraoral device for the treatment of dry mouth. J. Oral Pathol. Med. 2012 41 3 201 206 10.1111/j.1600‑0714.2011.01088.x 21950587
    [Google Scholar]
  220. Tran J.M. Comstock J.R. Reeder M.J. Natural is not always better: The prevalence of allergenic ingredients in “clean” beauty products. Dermatitis 2022 33 3 215 219 10.1097/DER.0000000000000863 35256558
    [Google Scholar]
  221. Sanz-Serrano J. Vettorazzi A. Muruzabal D. Azqueta A. López de Cerain A. In vitro genotoxicity assessment of functional ingredients: Betaine, choline, and taurine. Foods 2021 10 2 339 10.3390/foods10020339 33562510
    [Google Scholar]
  222. Mitrevski J. Pantelić N.Đ. Laličić-Petronijević J. Kojić J.S. Zlatanović S. Gorjanović S. Avramov S. Dodevska M.S. Antić V.V. Low glycemic index biscuits enriched with beetroot powder as a source of betaine and mineral nutrients. Foods 2025 14 5 814 10.3390/foods14050814 40077517
    [Google Scholar]
/content/journals/cn/10.2174/011570159X375540250718094903
Loading
/content/journals/cn/10.2174/011570159X375540250718094903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test