Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Microglia play a crucial role in the development, immune surveillance, and repair of the central nervous system. These cells play a multifaceted role in multiple sclerosis (MS), with evidence suggesting that microglia can promote both active inflammation and remyelination. For instance, it has been shown that microglia can support the development of oligodendrocytes and phagocytose myelin debris, thus aiding in proper remyelination. However, microglia overactivation in MS lesions exacerbates neuroinflammation by releasing inflammatory cytokines and facilitating the activation of astrocytes and immune cells, promoting demyelination and, ultimately, driving MS pathology. In fact, it has been shown that there is a correlation between activated microglia patterns and the chronicity of MS. Thus, although it is difficult to be certain whether these cells are friends or foes, there is no doubt that microglia will be a relevant target for MS diagnosis and treatment in the future, when further research will help to clarify the role of these cells in MS. MRI and PET scan allow evaluation of microglia/macrophages biomarkers, facilitating the clinical assessment of a patient's disease stage. Moreover, new microglia-specific markers are being discovered, which will increase diagnostic precision, helping to identify active and chronic MS lesions. Because microglia are involved in all MS phases, these cells are also an important drug target. In this review, we focus on the current understanding of the role of microglia in MS progression as well as on the evidence supporting both inflammatory and reparative functions of these cells. We will also review how microglia may yield new biomarkers for MS diagnosis and serve as a potential target for therapy.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X352356241126044933
2025-03-07
2025-09-02
Loading full text...

Full text loading...

References

  1. MosserC.A. BaptistaS. ArnouxI. AudinatE. Microglia in CNS development: Shaping the brain for the future.Prog. Neurobiol.2017149-15012010.1016/j.pneurobio.2017.01.002 28143732
    [Google Scholar]
  2. GinhouxF. GreterM. LeboeufM. NandiS. SeeP. GokhanS. MehlerM.F. ConwayS.J. NgL.G. StanleyE.R. SamokhvalovI.M. MeradM. Fate mapping analysis reveals that adult microglia derive from primitive macrophages.Science2010330600584184510.1126/science.1194637 20966214
    [Google Scholar]
  3. BruttgerJ. KarramK. WörtgeS. RegenT. MariniF. HoppmannN. KleinM. BlankT. YonaS. WolfY. MackM. PinteauxE. MüllerW. ZippF. BinderH. BoppT. PrinzM. JungS. WaismanA. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system.Immunity20154319210610.1016/j.immuni.2015.06.012 26163371
    [Google Scholar]
  4. ErblichB. ZhuL. EtgenA.M. DobrenisK. PollardJ.W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits.PLoS One2011610e2631710.1371/journal.pone.0026317 22046273
    [Google Scholar]
  5. SpittauB. DokalisN. PrinzM. The role of TGFβ signaling in microglia maturation and activation.Trends Immunol.202041983684810.1016/j.it.2020.07.003 32741652
    [Google Scholar]
  6. GosselinD. SkolaD. CoufalN.G. HoltmanI.R. SchlachetzkiJ.C.M. SajtiE. JaegerB.N. O’ConnorC. FitzpatrickC. PasillasM.P. PenaM. AdairA. GondaD.D. LevyM.L. RansohoffR.M. GageF.H. GlassC.K. An environment-dependent transcriptional network specifies human microglia identity.Science20173566344eaal322210.1126/science.aal3222 28546318
    [Google Scholar]
  7. Distéfano-GagnéF. BitarafanS. LacroixS. GosselinD. Roles and regulation of microglia activity in multiple sclerosis: Insights from animal models.Nat. Rev. Neurosci.202324739741510.1038/s41583‑023‑00709‑6 37268822
    [Google Scholar]
  8. LawsonL.J. PerryV.H. DriP. GordonS. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain.Neuroscience199039115117010.1016/0306‑4522(90)90229‑W 2089275
    [Google Scholar]
  9. AskewK. LiK. Olmos-AlonsoA. Garcia-MorenoF. LiangY. RichardsonP. TiptonT. ChapmanM.A. RieckenK. BeccariS. SierraA. MolnárZ. CraggM.S. GaraschukO. PerryV.H. Gomez-NicolaD. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain.Cell Rep.201718239140510.1016/j.celrep.2016.12.041 28076784
    [Google Scholar]
  10. PlemelJ.R. StrattonJ.A. MichaelsN.J. RawjiK.S. ZhangE. SinhaS. BaakliniC.S. DongY. HoM. ThorburnK. FriedmanT.N. JawadS. SilvaC. CaprarielloA.V. HoghooghiV. YueJ. JafferA. LeeK. KerrB.J. MidhaR. StysP.K. BiernaskieJ. YongV.W. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion.Sci. Adv.202063eaay632410.1126/sciadv.aay6324 31998844
    [Google Scholar]
  11. DjalaliS. HöltjeM. GroßeG. RotheT. StrohT. GroßeJ. DengD.R. HellwegR. GrantynR. HörtnaglH. Ahnert-HilgerG. Effects of brain‐derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development.J. Neurochem.200592361662710.1111/j.1471‑4159.2004.02911.x 15659231
    [Google Scholar]
  12. WlodarczykA. HoltmanI.R. KruegerM. YogevN. BruttgerJ. KhorooshiR. Benmamar-BadelA. de Boer-BergsmaJ.J. MartinN.A. KarramK. KramerI. BoddekeE.W.G.M. WaismanA. EggenB.J.L. OwensT. A novel microglial subset plays a key role in myelinogenesis in developing brain.EMBO J.201736223292330810.15252/embj.201696056 28963396
    [Google Scholar]
  13. ParkhurstC.N. YangG. NinanI. SavasJ.N. YatesJ.R.III LafailleJ.J. HempsteadB.L. LittmanD.R. GanW.B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.Cell201315571596160910.1016/j.cell.2013.11.030 24360280
    [Google Scholar]
  14. PrinzM. MasudaT. WheelerM.A. QuintanaF.J. Microglia and central nervous system–associated macrophages—from origin to disease modulation.Annu. Rev. Immunol.202139125127710.1146/annurev‑immunol‑093019‑110159 33556248
    [Google Scholar]
  15. HickmanS.E. KingeryN.D. OhsumiT.K. BorowskyM.L. WangL. MeansT.K. El KhouryJ. The microglial sensome revealed by direct RNA sequencing.Nat. Neurosci.201316121896190510.1038/nn.3554 24162652
    [Google Scholar]
  16. FärberK. KettenmannH. Functional role of calcium signals for microglial function.Glia200654765666510.1002/glia.20412 17006894
    [Google Scholar]
  17. El KhouryJ.B. MooreK.J. MeansT.K. LeungJ. TeradaK. ToftM. FreemanM.W. LusterA.D. CD36 mediates the innate host response to beta-amyloid.J. Exp. Med.2003197121657166610.1084/jem.20021546 12796468
    [Google Scholar]
  18. HickmanS. IzzyS. SenP. MorsettL. El KhouryJ. Microglia in neurodegeneration.Nat. Neurosci.201821101359136910.1038/s41593‑018‑0242‑x 30258234
    [Google Scholar]
  19. UmpierreA.D. WuL.J. How microglia sense and regulate neuronal activity.Glia20216971637165310.1002/glia.23961 33369790
    [Google Scholar]
  20. WendimuM.Y. HooksS.B. Microglia phenotypes in aging and neurodegenerative diseases.Cells20221113209110.3390/cells11132091 35805174
    [Google Scholar]
  21. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  22. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑5 25598354
    [Google Scholar]
  23. LiddelowS.A. GuttenplanK.A. ClarkeL.E. BennettF.C. BohlenC.J. SchirmerL. BennettM.L. MünchA.E. ChungW.S. PetersonT.C. WiltonD.K. FrouinA. NapierB.A. PanickerN. KumarM. BuckwalterM.S. RowitchD.H. DawsonV.L. DawsonT.M. StevensB. BarresB.A. Neurotoxic reactive astrocytes are induced by activated microglia.Nature2017541763848148710.1038/nature21029 28099414
    [Google Scholar]
  24. RansohoffR.M. A polarizing question: do M1 and M2 microglia exist?Nat. Neurosci.201619898799110.1038/nn.4338 27459405
    [Google Scholar]
  25. LassmannH. van HorssenJ. MahadD. Progressive multiple sclerosis: pathology and pathogenesis.Nat. Rev. Neurol.201281164765610.1038/nrneurol.2012.168 23007702
    [Google Scholar]
  26. van der PoelM. UlasT. MizeeM.R. HsiaoC.C. MiedemaS.S.M. AdeliaS.K.G. HelderB. TasS.W. SchultzeJ.L. HamannJ. HuitingaI. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes.Nat. Commun.2019101113910.1038/s41467‑019‑08976‑7 30867424
    [Google Scholar]
  27. NimmerjahnA. KirchhoffF. HelmchenF. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.Science200530857261314131810.1126/science.1110647 15831717
    [Google Scholar]
  28. HellwigS. BrioschiS. DieniS. FringsL. MasuchA. BlankT. BiberK. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice.Brain Behav. Immun.20165512613710.1016/j.bbi.2015.11.008 26576722
    [Google Scholar]
  29. HuiC.W. St-PierreM.K. DetuncqJ. AumailleyL. DuboisM.J. CoutureV. SkukD. MaretteA. TremblayJ.P. LebelM. TremblayM.È. Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome.Brain Behav. Immun.20187345046910.1016/j.bbi.2018.06.007 29908963
    [Google Scholar]
  30. Keren-ShaulH. SpinradA. WeinerA. Matcovitch-NatanO. Dvir-SzternfeldR. UllandT.K. DavidE. BaruchK. Lara-AstaisoD. TothB. ItzkovitzS. ColonnaM. SchwartzM. AmitI. A Unique microglia type associated with restricting development of Alzheimer’s disease.Cell2017169712761290.e1710.1016/j.cell.2017.05.018 28602351
    [Google Scholar]
  31. LeeD.C. RizerJ. SelenicaM.L.B. ReidP. KraftC. JohnsonA. BlairL. GordonM.N. DickeyC.A. MorganD. LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice.J. Neuroinflammation2010715610.1186/1742‑2094‑7‑56 20846376
    [Google Scholar]
  32. AndreadouM. IngelfingerF. De FeoD. CramerT.L.M. TuzlakS. FriebelE. SchreinerB. EedeP. SchneebergerS. GeesdorfM. RidderF. WelshC.A. PowerL. KirschenbaumD. TyagarajanS.K. GreterM. HeppnerF.L. MundtS. BecherB. IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice.Nat. Neurosci.202326101701171210.1038/s41593‑023‑01435‑z 37749256
    [Google Scholar]
  33. CossburnM. IngramG. HirstC. Ben-ShlomoY. PickersgillT.P. RobertsonN.P. Age at onset as a determinant of presenting phenotype and initial relapse recovery in multiple sclerosis.Mult. Scler.2012181455410.1177/1352458511417479 21865412
    [Google Scholar]
  34. OlssonT. BarcellosL.F. AlfredssonL. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis.Nat. Rev. Neurol.2017131253610.1038/nrneurol.2016.187 27934854
    [Google Scholar]
  35. AttfieldK.E. JensenL.T. KaufmannM. FrieseM.A. FuggerL. The immunology of multiple sclerosis.Nat. Rev. Immunol.2022221273475010.1038/s41577‑022‑00718‑z 35508809
    [Google Scholar]
  36. CroxfordA.L. SpathS. BecherB. GM-CSF in neuroinflammation: Licensing myeloid cells for tissue damage.Trends Immunol.2015361065166210.1016/j.it.2015.08.004 26431942
    [Google Scholar]
  37. SerafiniB. RosicarelliB. MagliozziR. StiglianoE. AloisiF. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis.Brain Pathol.200414216417410.1111/j.1750‑3639.2004.tb00049.x 15193029
    [Google Scholar]
  38. WekerleH. B cells in multiple sclerosis.Autoimmunity2017501576010.1080/08916934.2017.1281914 28166681
    [Google Scholar]
  39. YongV.W. Microglia in multiple sclerosis: Protectors turn destroyers.Neuron2022110213534354810.1016/j.neuron.2022.06.023 35882229
    [Google Scholar]
  40. FoxE.J. Immunopathology of multiple sclerosis.Neurology20046312Suppl. 6S3S7 15623668
    [Google Scholar]
  41. LublinF.D. ReingoldS.C. CohenJ.A. CutterG.R. SørensenP.S. ThompsonA.J. WolinskyJ.S. BalcerL.J. BanwellB. BarkhofF. BeboB.Jr CalabresiP.A. ClanetM. ComiG. FoxR.J. FreedmanM.S. GoodmanA.D. IngleseM. KapposL. KieseierB.C. LincolnJ.A. LubetzkiC. MillerA.E. MontalbanX. O’ConnorP.W. PetkauJ. PozzilliC. RudickR.A. SormaniM.P. StüveO. WaubantE. PolmanC.H. Defining the clinical course of multiple sclerosis.Neurology201483327828610.1212/WNL.0000000000000560 24871874
    [Google Scholar]
  42. KalincikT. BuzzardK. JokubaitisV. TrojanoM. DuquetteP. IzquierdoG. GirardM. LugaresiA. GrammondP. Grand’MaisonF. Oreja-GuevaraC. BozC. HuppertsR. PetersenT. GiulianiG. IulianoG. Lechner-ScottJ. BarnettM. BergamaschiR. Van PeschV. AmatoM.P. van MunsterE. Fernandez-BolanosR. VerheulF. FiolM. CristianoE. SleeM. RioM.E. SpitaleriD. AlroughaniR. GrayO. SaladinoM.L. FlechterS. HerbertJ. Cabrera-GomezJ.A. VellaN. PaineM. ShawC. MooreF. VucicS. SavinoA. SinghalB. Petkovska-BoskovaT. ParrattJ. SirbuC.A. RozsaC. LiewD. ButzkuevenH. Risk of relapse phenotype recurrence in multiple sclerosis.Mult. Scler.201420111511152210.1177/1352458514528762 24777276
    [Google Scholar]
  43. ThompsonA.J. BanwellB.L. BarkhofF. CarrollW.M. CoetzeeT. ComiG. CorrealeJ. FazekasF. FilippiM. FreedmanM.S. FujiharaK. GalettaS.L. HartungH.P. KapposL. LublinF.D. MarrieR.A. MillerA.E. MillerD.H. MontalbanX. MowryE.M. SorensenP.S. TintoréM. TraboulseeA.L. TrojanoM. UitdehaagB.M.J. VukusicS. WaubantE. WeinshenkerB.G. ReingoldS.C. CohenJ.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.Lancet Neurol.201817216217310.1016/S1474‑4422(17)30470‑2 29275977
    [Google Scholar]
  44. MüllerJ. CagolA. LorscheiderJ. TsagkasC. BenkertP. YaldizliÖ. KuhleJ. DerfussT. SormaniM.P. ThompsonA. GranzieraC. KapposL. Harmonizing definitions for progression independent of relapse activity in multiple sclerosis.JAMA Neurol.202380111232124510.1001/jamaneurol.2023.3331 37782515
    [Google Scholar]
  45. GaleaI. Ward-AbelN. HeesenC. Relapse in multiple sclerosis.BMJ2015350h176510.1136/bmj.h1765 25872511
    [Google Scholar]
  46. LublinF.D. HäringD.A. GanjgahiH. OcampoA. HatamiF. ČuklinaJ. AardenP. DahlkeF. ArnoldD.L. WiendlH. ChitnisT. NicholsT.E. KieseierB.C. BermelR.A. How patients with multiple sclerosis acquire disability.Brain202214593147316110.1093/brain/awac016 35104840
    [Google Scholar]
  47. GuerreroB.L. SicotteN.L. Microglia in multiple sclerosis: Friend or foe?Front. Immunol.20201137410.3389/fimmu.2020.00374 32265902
    [Google Scholar]
  48. KuhlmannT. LudwinS. PratA. AntelJ. BrückW. LassmannH. An updated histological classification system for multiple sclerosis lesions.Acta Neuropathol.20171331132410.1007/s00401‑016‑1653‑y 27988845
    [Google Scholar]
  49. LucchinettiC. BrückW. ParisiJ. ScheithauerB. RodriguezM. LassmannH. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination.Ann. Neurol.200047670771710.1002/1531‑8249(200006)47:6<707::AID‑ANA3>3.0.CO;2‑Q 10852536
    [Google Scholar]
  50. FrischerJ.M. WeigandS.D. GuoY. KaleN. ParisiJ.E. PirkoI. MandrekarJ. BramowS. MetzI. BrückW. LassmannH. LucchinettiC.F. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque.Ann. Neurol.201578571072110.1002/ana.24497 26239536
    [Google Scholar]
  51. LuchettiS. FransenN.L. van EdenC.G. RamagliaV. MasonM. HuitingaI. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis.Acta Neuropathol.2018135451152810.1007/s00401‑018‑1818‑y 29441412
    [Google Scholar]
  52. ZhangX. ChenF. SunM. WuN. LiuB. YiX. GeR. FanX. Microglia in the context of multiple sclerosis.Front. Neurol.202314115728710.3389/fneur.2023.1157287 37360338
    [Google Scholar]
  53. MatejukA. RansohoffR.M. Crosstalk between astrocytes and microglia: An overview.Front. Immunol.202011141610.3389/fimmu.2020.01416 32765501
    [Google Scholar]
  54. MarinelliS. BasilicoB. MarroneM.C. RagozzinoD. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission.Semin. Cell Dev. Biol.20199413815110.1016/j.semcdb.2019.05.017 31112798
    [Google Scholar]
  55. AllenN.J. LyonsD.A. Glia as architects of central nervous system formation and function.Science2018362641118118510.1126/science.aat0473 30309945
    [Google Scholar]
  56. FrostJ.L. SchaferD.P. Microglia: Architects of the developing nervous system.Trends Cell Biol.201626858759710.1016/j.tcb.2016.02.006 27004698
    [Google Scholar]
  57. LiuY.J. SpangenbergE.E. TangB. HolmesT.C. GreenK.N. XuX. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex.J. Neurosci.20214161274128710.1523/JNEUROSCI.2140‑20.2020 33380470
    [Google Scholar]
  58. RonzanoR. RouxT. ThetiotM. AigrotM.S. RichardL. LejeuneF.X. MazuirE. VallatJ.M. LubetzkiC. DesmazièresA. Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination.Nat. Commun.2021121521910.1038/s41467‑021‑25486‑7 34471138
    [Google Scholar]
  59. ZhouM. CornellJ. SalinasS. HuangH-Y. Microglia regulation of synaptic plasticity and learning and memory.Neural Regen. Res.202217470571610.4103/1673‑5374.322423 34472455
    [Google Scholar]
  60. LyonsA. DownerE.J. CrottyS. NolanY.M. MillsK.H.G. LynchM.A. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: A role for IL-4.J. Neurosci.200727318309831310.1523/JNEUROSCI.1781‑07.2007 17670977
    [Google Scholar]
  61. Dissing-OlesenL. LeDueJ.M. RungtaR.L. HefendehlJ.K. ChoiH.B. MacVicarB.A. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth.J. Neurosci.20143432105111052710.1523/JNEUROSCI.0405‑14.2014 25100586
    [Google Scholar]
  62. CentonzeD. MuzioL. RossiS. CavasinniF. De ChiaraV. BergamiA. MusellaA. D’AmelioM. CavallucciV. MartoranaA. BergamaschiA. CencioniM.T. DiamantiniA. ButtiE. ComiG. BernardiG. CecconiF. BattistiniL. FurlanR. MartinoG. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis.J. Neurosci.200929113442345210.1523/JNEUROSCI.5804‑08.2009 19295150
    [Google Scholar]
  63. Di FilippoM. de IureA. GiampàC. ChiasseriniD. TozziA. OrvietaniP.L. GhiglieriV. TantucciM. DuranteV. Quiroga-VarelaA. ManciniA. CostaC. SarchielliP. FuscoF.R. CalabresiP. Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis.Sci. Rep.2016612092610.1038/srep20926 26887636
    [Google Scholar]
  64. MusellaA. GentileA. GuadalupiL. RizzoF.R. De VitoF. FresegnaD. BrunoA. DolcettiE. VanniV. VitielloL. BullittaS. SannaK. CaioliS. BallettaS. NenciniM. ButtariF. StampanoniB.M. CentonzeD. MandolesiG. Central modulation of selective sphingosine-1-phosphate receptor 1 ameliorates experimental multiple sclerosis.Cells202095129010.3390/cells9051290 32455907
    [Google Scholar]
  65. GentileA. MusellaA. De VitoF. FresegnaD. BullittaS. RizzoF.R. CentonzeD. MandolesiG. Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake.J. Neuroinflammation2018151510.1186/s12974‑017‑1048‑6 29304807
    [Google Scholar]
  66. RossiS. Lo GiudiceT. De ChiaraV. MusellaA. StuderV. MottaC. BernardiG. MartinoG. FurlanR. MartoranaA. CentonzeD. Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis.Br. J. Pharmacol.2012165486186910.1111/j.1476‑5381.2011.01579.x 21740406
    [Google Scholar]
  67. ParodiB. RossiS. MorandoS. CordanoC. BragoniA. MottaC. UsaiC. WipkeB.T. ScannevinR.H. MancardiG.L. CentonzeD. Kerlero de RosboN. UccelliA. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS.Acta Neuropathol.2015130227929510.1007/s00401‑015‑1422‑3 25920452
    [Google Scholar]
  68. LinnerbauerM. WheelerM.A. QuintanaF.J. Astrocyte crosstalk in CNS inflammation.Neuron2020108460862210.1016/j.neuron.2020.08.012 32898475
    [Google Scholar]
  69. NordenD.M. FennA.M. DuganA. GodboutJ.P. TGFβ produced by IL‐10 redirected astrocytes attenuates microglial activation.Glia201462688189510.1002/glia.22647 24616125
    [Google Scholar]
  70. SenM.K. MahnsD.A. CoorssenJ.R. ShortlandP.J. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis.Glia20227071215125010.1002/glia.24148 35107839
    [Google Scholar]
  71. HagemeyerN. HanftK.M. AkriditouM.A. UngerN. ParkE.S. StanleyE.R. StaszewskiO. DimouL. PrinzM. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood.Acta Neuropathol.2017134344145810.1007/s00401‑017‑1747‑1 28685323
    [Google Scholar]
  72. PsenickaM.W. SmithB.C. TinkeyR.A. WilliamsJ.L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: are oligodendrocyte precursor cells a nexus of disease?Front. Cell. Neurosci.20211565428410.3389/fncel.2021.654284 34234647
    [Google Scholar]
  73. KalafatakisI. KaragogeosD. Oligodendrocytes and microglia: Key players in myelin development, damage and repair.Biomolecules2021117105810.3390/biom11071058 34356682
    [Google Scholar]
  74. van HorssenJ. SinghS. van der PolS. KippM. LimJ.L. PeferoenL. GerritsenW. KooiE.J. WitteM.E. GeurtsJ.J.G. de VriesH.E. Peferoen-BaertR. van den ElsenP.J. van der ValkP. AmorS. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation.J. Neuroinflammation20129160210.1186/1742‑2094‑9‑156 22747960
    [Google Scholar]
  75. FünfschillingU. SupplieL.M. MahadD. BoretiusS. SaabA.S. EdgarJ. BrinkmannB.G. KassmannC.M. TzvetanovaI.D. MöbiusW. DiazF. MeijerD. SuterU. HamprechtB. SeredaM.W. MoraesC.T. FrahmJ. GoebbelsS. NaveK.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.Nature2012485739951752110.1038/nature11007 22622581
    [Google Scholar]
  76. SaabA.S. TzvetavonaI.D. TrevisiolA. BaltanS. DibajP. KuschK. MöbiusW. GoetzeB. JahnH.M. HuangW. SteffensH. SchomburgE.D. Pérez-SamartínA. Pérez-CerdáF. BakhtiariD. MatuteC. LöwelS. GriesingerC. HirrlingerJ. KirchhoffF. NaveK.A. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism.Neuron201691111913210.1016/j.neuron.2016.05.016 27292539
    [Google Scholar]
  77. SimonsM. NaveK.A. Oligodendrocytes: Myelination and axonal support.Cold Spring Harb. Perspect. Biol.201681a02047910.1101/cshperspect.a020479 26101081
    [Google Scholar]
  78. BoukhvalovaM.S. KastrukoffL. BlancoJ.C.G. Alzheimer’s disease and multiple sclerosis: A possible connection through the viral demyelinating neurodegenerative trigger (vDENT).Front. Aging Neurosci.202315120485210.3389/fnagi.2023.1204852 37396655
    [Google Scholar]
  79. PoonK.W.C. BrideauC. KlaverR. SchenkG.J. GeurtsJ.J. StysP.K. Lipid biochemical changes detected in normal appearing white matter of chronic multiple sclerosis by spectral coherent Raman imaging.Chem. Sci. (Camb.)2018961586159510.1039/C7SC03992A 29675203
    [Google Scholar]
  80. TrakaM. PodojilJ.R. McCarthyD.P. MillerS.D. PopkoB. Oligodendrocyte death results in immune-mediated CNS demyelination.Nat. Neurosci.2016191657410.1038/nn.4193 26656646
    [Google Scholar]
  81. ErikS. MarBosch-Queralt JuliaM.E. MariaL. JudithS. NikoF. TheresaK. PeterW. StefanA.B. TiloR. MartinK. MarkusM. WiebkeM. AlonsoBarrantes-Freer JensS. TingS. GesineS. MarkusH.S. ChristophW. MaximilianF. MarcoP. DanielS.R. AlexanderF. ChristineS. RobertF. Klaus-ArminN. RuthM.S. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease.Nat Neurosci20232671218122810.1038/s41593‑023‑01366‑9
    [Google Scholar]
  82. ChapmanT.W. OlvedaG.E. BameX. PereiraE. HillR.A. Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice.Nat. Neurosci.202326455556910.1038/s41593‑023‑01271‑1 36928635
    [Google Scholar]
  83. RomanelliE. MerklerD. MezydloA. WeilM.T. WeberM.S. NikićI. PotzS. MeinlE. MatznickF.E.H. KreutzfeldtM. GhanemA. ConzelmannK.K. MetzI. BrückW. RouthM. SimonsM. BishopD. MisgeldT. KerschensteinerM. Myelinosome formation represents an early stage of oligodendrocyte damage in multiple sclerosis and its animal model.Nat. Commun.2016711327510.1038/ncomms13275 27848954
    [Google Scholar]
  84. AberE.R. GriffeyC.J. DaviesT. LiA.M. YangY.J. CroceK.R. GoldmanJ.E. GrutzendlerJ. CanmanJ.C. YamamotoA. Oligodendroglial macroautophagy is essential for myelin sheath turnover to prevent neurodegeneration and death.Cell Rep.202241311148010.1016/j.celrep.2022.111480 36261002
    [Google Scholar]
  85. FranklinR.J.M. ffrench-Constant, C. Regenerating CNS myelin - from mechanisms to experimental medicines.Nat. Rev. Neurosci.2017181275376910.1038/nrn.2017.136 29142295
    [Google Scholar]
  86. LubetzkiC. ZalcB. WilliamsA. StadelmannC. StankoffB. Remyelination in multiple sclerosis: From basic science to clinical translation.Lancet Neurol.202019867868810.1016/S1474‑4422(20)30140‑X 32702337
    [Google Scholar]
  87. KremerD. AktasO. HartungH.P. KüryP. The complex world of oligodendroglial differentiation inhibitors.Ann. Neurol.201169460261810.1002/ana.22415 21520230
    [Google Scholar]
  88. GruchotJ. WeyersV. GöttleP. FörsterM. HartungH.P. KüryP. KremerD. The molecular basis for remyelination failure in multiple sclerosis.Cells20198882510.3390/cells8080825 31382620
    [Google Scholar]
  89. KuhlmannT. MironV. CuoQ. WegnerC. AntelJ. BrückW. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis.Brain200813171749175810.1093/brain/awn096 18515322
    [Google Scholar]
  90. YuZ. FangX. LiuW. SunR. ZhouJ. PuY. ZhaoM. SunD. XiangZ. LiuP. DingY. CaoL. HeC. Microglia regulate blood-brain barrier integrity via MiR‐126a‐5p/MMP9 axis during inflammatory demyelination.Adv. Sci. (Weinh.)2022924210544210.1002/advs.202105442 35758549
    [Google Scholar]
  91. JieZ. KoC.J. WangH. XieX. LiY. GuM. ZhuL. YangJ.Y. GaoT. RuW. TangS.J. ChengX. SunS.C. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway.Sci. Adv.2021736eabh060910.1126/sciadv.abh0609 34516909
    [Google Scholar]
  92. MarzanD.E. Brügger-VerdonV. WestB.L. LiddelowS. SamantaJ. SalzerJ.L. Activated microglia drive demyelination via CSF1R signaling.Glia20216961583160410.1002/glia.23980 33620118
    [Google Scholar]
  93. BeckmannN. GiorgettiE. NeuhausA. ZurbrueggS. AccartN. SmithP. PerdouxJ. PerrotL. NashM. DesrayaudS. WipfliP. FrieauffW. ShimshekD.R. Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945.Acta Neuropathol. Commun.201861910.1186/s40478‑018‑0510‑8 29448957
    [Google Scholar]
  94. TahmasebiF. PasbakhshP. MortezaeeK. MadadiS. BaratiS. KashaniI.R. Effect of the CSF1R inhibitor PLX3397 on remyelination of corpus callosum in a cuprizone‐induced demyelination mouse model.J. Cell. Biochem.20191206105761058610.1002/jcb.28344 30628737
    [Google Scholar]
  95. TanabeS. SaitohS. MiyajimaH. ItokazuT. YamashitaT. Microglia suppress the secondary progression of autoimmune encephalomyelitis.Glia20196791694170410.1002/glia.23640 31106910
    [Google Scholar]
  96. KentS.A. MironV.E. Microglia regulation of central nervous system myelin health and regeneration.Nat. Rev. Immunol.2024241496310.1038/s41577‑023‑00907‑4 37452201
    [Google Scholar]
  97. Cantuti-CastelvetriL. FitznerD. Bosch-QueraltM. WeilM.T. SuM. SenP. RuhwedelT. MitkovskiM. TrendelenburgG. LütjohannD. MöbiusW. SimonsM. Defective cholesterol clearance limits remyelination in the aged central nervous system.Science2018359637668468810.1126/science.aan4183 29301957
    [Google Scholar]
  98. HametnerS. WimmerI. HaiderL. PfeifenbringS. BrückW. LassmannH. Iron and neurodegeneration in the multiple sclerosis brain.Ann. Neurol.201374684886110.1002/ana.23974 23868451
    [Google Scholar]
  99. BagnatoF. HametnerS. YaoB. van GelderenP. MerkleH. CantorF.K. LassmannH. DuynJ.H. Tracking iron in multiple sclerosis: A combined imaging and histopathological study at 7 Tesla.Brain2011134123602361510.1093/brain/awr278 22171355
    [Google Scholar]
  100. MehtaV. PeiW. YangG. LiS. SwamyE. BosterA. SchmalbrockP. PittD. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions.PLoS One201383e5757310.1371/journal.pone.0057573 23516409
    [Google Scholar]
  101. GillenK.M. MubarakM. NguyenT.D. PittD. Significance and in vivo detection of iron-laden microglia in white matter multiple sclerosis lesions.Front. Immunol.2018925510.3389/fimmu.2018.00255 29515576
    [Google Scholar]
  102. NeemaM. AroraA. HealyB.C. GussZ.D. BrassS.D. DuanY. BuckleG.J. GlanzB.I. StazzoneL. KhouryS.J. WeinerH.L. GuttmannC.R.G. BakshiR. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis.J. Neuroimaging20091913810.1111/j.1552‑6569.2008.00296.x 19192042
    [Google Scholar]
  103. StüberC. PittD. WangY. Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping.Int. J. Mol. Sci.201617110010.3390/ijms17010100 26784172
    [Google Scholar]
  104. LloydA.F. MironV.E. The pro-remyelination properties of microglia in the central nervous system.Nat. Rev. Neurol.201915844745810.1038/s41582‑019‑0184‑2 31256193
    [Google Scholar]
  105. YeungM.S.Y. DjelloulM. SteinerE. BernardS. SalehpourM. PossnertG. BrundinL. FrisénJ. Dynamics of oligodendrocyte generation in multiple sclerosis.Nature2019566774553854210.1038/s41586‑018‑0842‑3 30675058
    [Google Scholar]
  106. BerghoffS.A. SpiethL. SaherG. Local cholesterol metabolism orchestrates remyelination.Trends Neurosci.202245427228310.1016/j.tins.2022.01.001 35153084
    [Google Scholar]
  107. BerghoffS.A. SpiethL. SunT. HosangL. SchlaphoffL. DeppC. DükingT. WinchenbachJ. NeuberJ. EwersD. ScholzP. van der MeerF. Cantuti-CastelvetriL. SasmitaA.O. MeschkatM. RuhwedelT. MöbiusW. SankowskiR. PrinzM. HuitingaI. SeredaM.W. OdoardiF. IschebeckT. SimonsM. Stadelmann-NesslerC. EdgarJ.M. NaveK.A. SaherG. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis.Nat. Neurosci.2021241476010.1038/s41593‑020‑00757‑6 33349711
    [Google Scholar]
  108. CannonA.S. NagarkattiP.S. NagarkattiM. Targeting AhR as a novel therapeutic modality against inflammatory diseases.Int. J. Mol. Sci.202123128810.3390/ijms23010288 35008717
    [Google Scholar]
  109. NeavinD.R. LiuD. RayB. WeinshilboumR.M. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases.Int. J. Mol. Sci.20181912385110.3390/ijms19123851 30513921
    [Google Scholar]
  110. WangY. LiuT. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker.Magn. Reson. Med.20157318210110.1002/mrm.25358 25044035
    [Google Scholar]
  111. CignarellaF. FilipelloF. BollmanB. CantoniC. LoccaA. MikesellR. ManisM. IbrahimA. DengL. BenitezB.A. CruchagaC. LicastroD. MihindukulasuriyaK. HarariO. BucklandM. HoltzmanD.M. RosenthalA. SchwabeT. TassiI. PiccioL. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis.Acta Neuropathol.2020140451353410.1007/s00401‑020‑02193‑z 32772264
    [Google Scholar]
  112. BaakliniC.S. HoM.F.S. LangeT. HammondB.P. PandaS.P. ZirngiblM. ZiaS. HimmelsbachK. RanaH. PhillipsB. AntoszkoD. IbangaJ. LopezM. LeeK.V. KeoughM.B. CaprarielloA.V. KerrB.J. PlemelJ.R. Microglia promote remyelination independent of their role in clearing myelin debris.Cell Rep.2023421211357410.1016/j.celrep.2023.113574 38100356
    [Google Scholar]
  113. GrohJ. AbdelwahabT. KattimaniY. HörnerM. LoserthS. GudiV. AdalbertR. ImdahlF. SalibaA.E. ColemanM. StangelM. SimonsM. MartiniR. Microglia-mediated demyelination protects against CD8+ T cell-driven axon degeneration in mice carrying PLP defects.Nat. Commun.2023141691110.1038/s41467‑023‑42570‑2 37903797
    [Google Scholar]
  114. Dal-BiancoA. GrabnerG. KronnerwetterC. WeberM. HöftbergerR. BergerT. AuffE. LeutmezerF. TrattnigS. LassmannH. BagnatoF. HametnerS. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging.Acta Neuropathol.20171331254210.1007/s00401‑016‑1636‑z 27796537
    [Google Scholar]
  115. AbsintaM. MaricD. GharagozlooM. GartonT. SmithM.D. JinJ. FitzgeraldK.C. SongA. LiuP. LinJ.P. WuT. JohnsonK.R. McGavernD.B. SchaferD.P. CalabresiP.A. ReichD.S. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis.Nature2021597787870971410.1038/s41586‑021‑03892‑7 34497421
    [Google Scholar]
  116. AirasL. RissanenE. RinneJ. Imaging of microglial activation in MS using PET: Research use and potential future clinical application.Mult. Scler.201723449650410.1177/1352458516674568 27760860
    [Google Scholar]
  117. GiannettiP. PolitisM. SuP. TurkheimerF.E. MalikO. KeihaninejadS. WuK. WaldmanA. ReynoldsR. NicholasR. PicciniP. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome.Brain2015138111011910.1093/brain/awu331 25416179
    [Google Scholar]
  118. KaunznerU.W. KangY. MonohanE. KothariP.J. NealonN. PerumalJ. VartanianT. KuceyeskiA. VallabhajosulaS. MozleyP.D. RileyC.S. NewmanS.M. GauthierS.A. Reduction of PK11195 uptake observed in multiple sclerosis lesions after natalizumab initiation.Mult. Scler. Relat. Disord.201715273310.1016/j.msard.2017.04.008 28641769
    [Google Scholar]
  119. RissanenE. TuiskuJ. VahlbergT. SucksdorffM. PaavilainenT. ParkkolaR. RokkaJ. GerhardA. HinzR. TalbotP.S. RinneJ.O. AirasL. Microglial activation, white matter tract damage, and disability in MS.Neurol. Neuroimmunol. Neuroinflamm.201853e44310.1212/NXI.0000000000000443 29520366
    [Google Scholar]
  120. KhalilM. TeunissenC.E. OttoM. PiehlF. SormaniM.P. GattringerT. BarroC. KapposL. ComabellaM. FazekasF. PetzoldA. BlennowK. ZetterbergH. KuhleJ. Neurofilaments as biomarkers in neurological disorders.Nat. Rev. Neurol.2018141057758910.1038/s41582‑018‑0058‑z 30171200
    [Google Scholar]
  121. SarasteM. MatilainenM. VuorimaaA. LaaksonenS. SucksdorffM. LeppertD. KuhleJ. AirasL. Association of serum neurofilament light with microglial activation in multiple sclerosis.J. Neurol. Neurosurg. Psychiatry202394969870610.1136/jnnp‑2023‑331051 37130728
    [Google Scholar]
  122. RommerP.S. MiloR. HanM.H. SatyanarayanS. SellnerJ. HauerL. IllesZ. WarnkeC. LaurentS. WeberM.S. ZhangY. StuveO. Immunological aspects of approved MS therapeutics.Front. Immunol.201910156410.3389/fimmu.2019.01564 31354720
    [Google Scholar]
  123. HealyL.M. Michell-RobinsonM.A. AntelJ.P. Regulation of human glia by multiple sclerosis disease modifying therapies.Semin. Immunopathol.201537663964910.1007/s00281‑015‑0514‑4 26259734
    [Google Scholar]
  124. SimonsenC.S. FlemmenH.Ø. BrochL. BrunborgC. Berg-HansenP. MoenS.M. CeliusE.G. Early high efficacy treatment in multiple sclerosis is the best predictor of future disease activity over 1 and 2 years in a norwegian population-based registry.Front. Neurol.20211269301710.3389/fneur.2021.693017 34220694
    [Google Scholar]
  125. LiD.K.B. ZhaoG.J. PatyD.W. Randomized controlled trial of interferon-beta-1a in secondary progressive MS: MRI results.Neurology200156111505151310.1212/WNL.56.11.1505 11402107
    [Google Scholar]
  126. Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: Clinical results.Neurology200156111496150410.1212/WNL.56.11.1496 11402106
    [Google Scholar]
  127. KrumbholzM. FaberH. SteinmeyerF. HoffmannL.A. KümpfelT. PellkoferH. DerfussT. IonescuC. StarckM. HafnerC. HohlfeldR. MeinlE. Interferon-β increases BAFF levels in multiple sclerosis: Implications for B cell autoimmunity.Brain200813161455146310.1093/brain/awn077 18474519
    [Google Scholar]
  128. MooreC.S. CuiQ.L. WarsiN.M. DurafourtB.A. ZorkoN. OwenD.R. AntelJ.P. Bar-OrA. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation.J. Immunol.2015194276177210.4049/jimmunol.1401156 25505283
    [Google Scholar]
  129. StoofT.J. FlierJ. SampatS. NieboerC. TensenC.P. BoorsmaD.M. The antipsoriatic drug dimethylfumarate strongly suppresses chemokine production in human keratinocytes and peripheral blood mononuclear cells.Br. J. Dermatol.200114461114112010.1046/j.1365‑2133.2001.04220.x 11422029
    [Google Scholar]
  130. HuangH. TarabolettiA. ShriverL.P. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.Redox Biol.2015516917510.1016/j.redox.2015.04.011 25967672
    [Google Scholar]
  131. GreeneS. WatanabeK. Braatz-TrulsonJ. LouL. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide.Biochem. Pharmacol.199550686186710.1016/0006‑2952(95)00255‑X 7575649
    [Google Scholar]
  132. Bar-OrA. PachnerA. Menguy-VacheronF. KaplanJ. WiendlH. Teriflunomide and its mechanism of action in multiple sclerosis.Drugs201474665967410.1007/s40265‑014‑0212‑x 24740824
    [Google Scholar]
  133. FosterC.A. HowardL.M. SchweitzerA. PersohnE. HiestandP.C. BalatoniB. ReuschelR. BeerliC. SchwartzM. BillichA. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: Consequences for mode of action in multiple sclerosis.J. Pharmacol. Exp. Ther.2007323246947510.1124/jpet.107.127183 17682127
    [Google Scholar]
  134. KapposL. RadueE.W. O’ConnorP. PolmanC. HohlfeldR. CalabresiP. SelmajK. AgoropoulouC. LeykM. Zhang-AubersonL. BurtinP. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis.N. Engl. J. Med.2010362538740110.1056/NEJMoa0909494 20089952
    [Google Scholar]
  135. LublinF. MillerD.H. FreedmanM.S. CreeB.A.C. WolinskyJ.S. WeinerH. LubetzkiC. HartungH.P. MontalbanX. UitdehaagB.M.J. MerschhemkeM. LiB. PutzkiN. LiuF.C. HäringD.A. KapposL. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): A phase 3, randomised, double-blind, placebo-controlled trial.Lancet2016387100231075108410.1016/S0140‑6736(15)01314‑8 26827074
    [Google Scholar]
  136. PhamT.H.M. OkadaT. MatloubianM. LoC.G. CysterJ.G. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress.Immunity200828112213310.1016/j.immuni.2007.11.017 18164221
    [Google Scholar]
  137. DevK.K. MullershausenF. MattesH. KuhnR.R. BilbeG. HoyerD. MirA. Brain sphingosine-1-phosphate receptors: Implication for FTY720 in the treatment of multiple sclerosis.Pharmacol. Ther.20081171779310.1016/j.pharmthera.2007.08.005 17961662
    [Google Scholar]
  138. NodaH. TakeuchiH. MizunoT. SuzumuraA. Fingolimod phosphate promotes the neuroprotective effects of microglia.J. Neuroimmunol.20132561-2131810.1016/j.jneuroim.2012.12.005 23290828
    [Google Scholar]
  139. KapposL. LiD.K.B. StüveO. HartungH.P. FreedmanM.S. HemmerB. RieckmannP. MontalbanX. ZiemssenT. HunterB. ArnouldS. WallströmE. SelmajK. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis.JAMA Neurol.20167391089109810.1001/jamaneurol.2016.1451 27380540
    [Google Scholar]
  140. GruchotJ. LeinF. LewenI. ReicheL. WeyersV. PetzschP. GöttleP. KöhrerK. HartungH.P. KüryP. KremerD. Siponimod modulates the reaction of microglial cells to pro-inflammatory stimulation.Int. J. Mol. Sci.202223211327810.3390/ijms232113278 36362063
    [Google Scholar]
  141. KolliasG. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease.Ann. Rheum. Dis.199958Suppl. 1323910.1136/ard.58.2008.i32
    [Google Scholar]
  142. ShariefM.K. HentgesR. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis.N. Engl. J. Med.1991325746747210.1056/NEJM199108153250704 1852181
    [Google Scholar]
  143. PolmanC.H. O’ConnorP.W. HavrdovaE. HutchinsonM. KapposL. MillerD.H. PhillipsJ.T. LublinF.D. GiovannoniG. WajgtA. ToalM. LynnF. PanzaraM.A. SandrockA.W. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis.N. Engl. J. Med.2006354989991010.1056/NEJMoa044397 16510744
    [Google Scholar]
  144. Ramos-CejudoJ. Oreja-GuevaraC. StarkA.L. Rodriguez, de Antonio, L.; Chamorro, B.; Diez-Tejedor, E. Treatment with natalizumab in relapsing-remitting multiple sclerosis patients induces changes in inflammatory mechanism.J. Clin. Immunol.201131462363110.1007/s10875‑011‑9522‑x 21491095
    [Google Scholar]
  145. SucksdorffM. TuiskuJ. MatilainenM. VuorimaaA. SmithS. KeitiläJ. RokkaJ. ParkkolaR. NylundM. RinneJ. RissanenE. AirasL. Natalizumab treatment reduces microglial activation in the white matter of the MS brain.Neurol. Neuroimmunol. Neuroinflamm.201964e57410.1212/NXI.0000000000000574 31355310
    [Google Scholar]
  146. LiR. PattersonK.R. Bar-OrA. Reassessing B cell contributions in multiple sclerosis.Nat. Immunol.201819769670710.1038/s41590‑018‑0135‑x 29925992
    [Google Scholar]
  147. HauserS.L. KapposL. ArnoldD.L. Bar-OrA. BrochetB. NaismithR.T. TraboulseeA. WolinskyJ.S. BelachewS. KoendgenH. LevesqueV. ManfriniM. ModelF. HubeauxS. MehtaL. MontalbanX. Five years of ocrelizumab in relapsing multiple sclerosis.Neurology20209513e1854e186710.1212/WNL.0000000000010376 32690791
    [Google Scholar]
  148. MontalbanX. HauserS.L. KapposL. ArnoldD.L. Bar-OrA. ComiG. de SezeJ. GiovannoniG. HartungH.P. HemmerB. LublinF. RammohanK.W. SelmajK. TraboulseeA. SauterA. MastermanD. FontouraP. BelachewS. GarrenH. MaironN. ChinP. WolinskyJ.S. Ocrelizumab versus placebo in primary progressive multiple sclerosis.N. Engl. J. Med.2017376320922010.1056/NEJMoa1606468 28002688
    [Google Scholar]
  149. HauserS.L. Bar-OrA. CohenJ.A. ComiG. CorrealeJ. CoyleP.K. CrossA.H. de SezeJ. LeppertD. MontalbanX. SelmajK. WiendlH. KerloeguenC. WilliR. LiB. KakariekaA. TomicD. GoodyearA. PingiliR. HäringD.A. RamanathanK. MerschhemkeM. KapposL. Ofatumumab versus teriflunomide in multiple sclerosis.N. Engl. J. Med.2020383654655710.1056/NEJMoa1917246 32757523
    [Google Scholar]
  150. SteinmanL. FoxE. HartungH.P. AlvarezE. QianP. WrayS. RobertsonD. HuangD. SelmajK. WynnD. CutterG. MokK. HsuY. XuY. WeissM.S. BoscoJ.A. PowerS.A. LeeL. MiskinH.P. CreeB.A.C. Ublituximab versus teriflunomide in relapsing multiple sclerosis.N. Engl. J. Med.2022387870471410.1056/NEJMoa2201904 36001711
    [Google Scholar]
  151. BourdetteD. YadavV. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis.Curr. Neurol. Neurosci. Rep.20088541741810.1007/s11910‑008‑0064‑4 18713578
    [Google Scholar]
  152. Machado-SantosJ. SajiE. TröscherA.R. PaunovicM. LiblauR. GabrielyG. BienC.G. BauerJ. LassmannH. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells.Brain201814172066208210.1093/brain/awy151 29873694
    [Google Scholar]
  153. MargoniM. PreziosaP. FilippiM. RoccaM.A. Anti-CD20 therapies for multiple sclerosis: Current status and future perspectives.J. Neurol.202226931316133410.1007/s00415‑021‑10744‑x 34382120
    [Google Scholar]
  154. ProsperiniL. AnnovazziP. BoffaL. BuscarinuM.C. GalloA. MattaM. MoiolaL. MusuL. PeriniP. AvolioC. BarcellaV. BiancoA. FarinaD. FerraroE. PontecorvoS. GranellaF. GrimaldiL.M.E. LaroniA. LusG. PattiF. PucciE. PascaM. SarchielliP. GhezziA. ZaffaroniM. BaronciniD. ButtariF. CentonzeD. FornasieroA. SalvettiM. DocimoR. SignorielloE. TedeschiG. BertolottoA. CapobiancoM. ComiG. CoccoE. GalloP. PuthenparampilM. GrassoR. Di FrancescantonioV. RottoliM.R. MirabellaM. LugaresiA. De LucaG. Di IoiaM. Di TommasoV. MancinelliL. Di BattistaG. FranciaA. RuggieriS. PozzilliC. CurtiE. TsantesE. PalmeriB. LapicciC. MancardiG.L. UccelliA. ChisariC. D’AmicoE. CartechiniE. RepiceA.M. MagnaniE. MassaccesiL. CalabresiP. Di FilippoM. Di GregorioM. No evidence of disease activity (NEDA-3) and disability improvement after alemtuzumab treatment for multiple sclerosis: A 36-month real-world study.J. Neurol.2018265122851286010.1007/s00415‑018‑9070‑x 30259178
    [Google Scholar]
  155. JonesJ.L. AndersonJ.M. PhuahC.L. FoxE.J. SelmajK. MargolinD. LakeS.L. PalmerJ. ThompsonS.J. WilkinsA. WebberD.J. CompstonD.A. ColesA.J. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity.Brain201013382232224710.1093/brain/awq176 20659956
    [Google Scholar]
  156. GiovannoniG. Cladribine to treat relapsing forms of multiple sclerosis.Neurotherapeutics201714487488710.1007/s13311‑017‑0573‑4 29168160
    [Google Scholar]
  157. JørgensenL.Ø. HyrlovK.H. ElkjaerM.L. WeberA.B. PedersenA.E. SvenningsenÅ.F. IllesZ. Cladribine modifies functional properties of microglia.Clin. Exp. Immunol.2020201332834010.1111/cei.13473 32492189
    [Google Scholar]
  158. KrämerJ. Bar-OrA. TurnerT.J. WiendlH. Bruton tyrosine kinase inhibitors for multiple sclerosis.Nat. Rev. Neurol.202319528930410.1038/s41582‑023‑00800‑7 37055617
    [Google Scholar]
  159. CaldwellR.D. QiuH. AskewB.C. BenderA.T. BruggerN. CampsM. DhanabalM. DuttV. EichhornT. GardbergA.S. GoutopoulosA. GrenninglohR. HeadJ. HealeyB. HodousB.L. HuckB.R. JohnsonT.L. JonesC. JonesR.C. MochalkinI. MorandiF. NguyenN. MeyringM. PotnickJ.R. SantosD.C. SchmidtR. ShererB. ShutesA. UrbahnsK. FollisA.V. WegenerA.A. ZimmerliS.C. Liu-BujalskiL. Discovery of Evobrutinib: An oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases.J. Med. Chem.201962177643765510.1021/acs.jmedchem.9b00794 31368705
    [Google Scholar]
  160. BarbozaA. It is time to rethink clinical trials on Bruton’s tyrosine kinase inhibitors in multiple sclerosis.Mult. Scler. Relat. Disord.20248210539510.1016/j.msard.2023.105395 38184909
    [Google Scholar]
/content/journals/cn/10.2174/011570159X352356241126044933
Loading
/content/journals/cn/10.2174/011570159X352356241126044933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test