Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Introduction

Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal, and rapidly progressive neurodegenerative disease. At present, neurofilament light (NFL) and phosphorylated neurofilament heavy (pNfH) proteins in biological fluids are commonly known prognostic biomarkers, but their levels stabilize over time. Thus, there is a critical gap in the field to identify unique biomarkers that can aid disease diagnosis, progression and monitoring the therapy response.

Aims

To evaluate the presence of extracellular domain of p75 (p75ecd) in urine of ALS patients and healthy control volunteers in the North American cohort.

Methods

An enzyme-linked immunoassay (ELISA) and creatinine assay was used to determine the levels of p75ecd and creatinine in the urine of ALS patients and healthy control volunteers respectively. This assay demonstrated clear discrimination in the levels of the p75ecd in the urine samples of ALS patients as compared to healthy individuals.

Results

It was found that the concentration of p75ecd in ALS samples was significantly higher than that of healthy controls group. Additionally, high p75ecd levels were segregated with respect to age, sex, family history, occupation and drug treatment, medication status. Moreover, we observed differential expression patterns among the different stages of the disease. Our results followed the pattern that was observed in the Chinese, and Australian cohort.

Conclusion

Altogether, our results indicate that the development of an efficient system for the detection of elevated levels of p75ecd in the urine could serve as a useful modality for early ALS diagnosis, disease progression, and monitoring the effectiveness of therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X352364250212035802
2025-05-09
2025-10-31
Loading full text...

Full text loading...

References

  1. SunW. LiuS.H. WeiX.J. SunH. MaZ.W. YuX.F. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: From structure to metabolism.J. Neurol.202427152238225710.1007/s00415‑024‑12201‑x 38367047
    [Google Scholar]
  2. YangT. LiC. WeiQ. PangD. ChengY. HuangJ. LinJ. XiaoY. JiangQ. WangS. ShangH. Genome-wide DNA methylation analysis related to ALS patient progression and survival.J. Neurol.202427152672268310.1007/s00415‑024‑12222‑6 38372747
    [Google Scholar]
  3. DhasmanaS. DhasmanaA. KotnalaS. MangtaniV. NarulaA.S. HaqueS. JaggiM. YallapuM.M. ChauhanS.C. Boosting mitochondrial potential: An imperative therapeutic intervention in amyotrophic lateral sclerosis.Curr. Neuropharmacol.20232151117113810.2174/1570159X20666220915092703 36111770
    [Google Scholar]
  4. HardimanO. Al-ChalabiA. ChioA. CorrE.M. LogroscinoG. RobberechtW. ShawP.J. SimmonsZ. van den BergL.H. Amyotrophic lateral sclerosis.Nat. Rev. Dis. Primers2017311707110.1038/nrdp.2017.71 28980624
    [Google Scholar]
  5. IrwinK.E. ShethU. WongP.C. GendronT.F. Fluid biomarkers for amyotrophic lateral sclerosis: A review.Mol. Neurodegener.2024191910.1186/s13024‑023‑00685‑6 38267984
    [Google Scholar]
  6. ShepheardS.R. WuuJ. CardosoM. WiklendtL. DinningP.G. ChatawayT. SchultzD. BenatarM. RogersM.L. Urinary p75 ECD.Neurology201788121137114310.1212/WNL.0000000000003741 28228570
    [Google Scholar]
  7. JiaR. ShepheardS. JinJ.T. HuF.F. ZhaoX. XueL. Urinary extracellular domain of neurotrophin receptor p75 as a biomarker for amyotrophic lateral sclerosis in a chinese cohort.Sci. Rep.201771512710.1038/s41598‑017‑05430‑w
    [Google Scholar]
  8. JourdiG. FleuryS. BoukhatemI. LordkipanidzéM. Soluble p75 neurotrophic receptor as a reliable biomarker in neurodegenerative diseases: What is the evidence?Neural Regen. Res.202419353654110.4103/1673‑5374.380873 37721281
    [Google Scholar]
  9. ShepheardS.R. KarnarosV. BenyaminB. SchultzD.W. DubowskyM. WuuJ. ChatawayT. MalaspinaA. BenatarM. RogersM.L. Urinary neopterin: A novel biomarker of disease progression in amyotrophic lateral sclerosis.Eur. J. Neurol.202229499099910.1111/ene.15237 34967083
    [Google Scholar]
  10. JohnsonD. LanahanA. BuckC.R. SehgalA. MorganC. MercerE. BothwellM. ChaoM. Expression and structure of the human NGF receptor.Cell198647454555410.1016/0092‑8674(86)90619‑7 3022937
    [Google Scholar]
  11. MalikS.C. SozmenE.G. Baeza-RajaB. MoanL.N. AkassoglouK. SchachtrupC. In vivo functions of p75NTR: Challenges and opportunities for an emerging therapeutic target.Trends Pharmacol. Sci.202142977278810.1016/j.tips.2021.06.006 34334250
    [Google Scholar]
  12. BrunoF. AbondioP. MontesantoA. LuiselliD. BruniA.C. MalettaR. The nerve growth factor receptor (NGFR/p75NTR): A major player in Alzheimer’s disease.Int. J. Mol. Sci.2023244320010.3390/ijms24043200 36834612
    [Google Scholar]
  13. ShuY.H. LuX.M. WeiJ.X. XiaoL. WangY.T. Update on the role of p75NTR in neurological disorders: A novel therapeutic target.Biomed. Pharmacother.201576172310.1016/j.biopha.2015.10.010 26653545
    [Google Scholar]
  14. ShiG. ShaoS. ZhouJ. HuangK. BiF.F. Urinary p75 ECD levels in patients with amyotrophic lateral sclerosis: A meta-analysis.Amyotroph. Lat. Scler. Frontotemp. Degener.2022235-643844510.1080/21678421.2021.1990345 34726989
    [Google Scholar]
  15. ZampieriN. XuC.F. NeubertT.A. ChaoM.V. Cleavage of p75 neurotrophin receptor by alpha-secretase and gamma-secretase requires specific receptor domains.J. Biol. Chem.200528015145631457110.1074/jbc.M412957200 15701642
    [Google Scholar]
  16. MatusicaD. AlfonsiF. TurnerB.J. ButlerT.J. ShepheardS.R. RogersM.L. SkeldalS. UnderwoodC.K. MangelsdorfM. CoulsonE.J. Inhibition of motor neuron death in vitro and in vivo by a p75 neurotrophin receptor intracellular domain fragment.J. Cell Sci.2016129351753010.1242/jcs.173864 26503157
    [Google Scholar]
  17. ShepheardS.R. ChatawayT. SchultzD.W. RushR.A. RogersM.L. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.PLoS One201491e8739810.1371/journal.pone.0087398 24475283
    [Google Scholar]
  18. YamadaS. HashizumeA. HijikataY. ItoD. KishimotoY. IidaM. KoikeH. HirakawaA. KatsunoM. Ratio of urinary N-terminal titin fragment to urinary creatinine is a novel biomarker for amyotrophic lateral sclerosis.J. Neurol. Neurosurg. Psychiatry202192101072107910.1136/jnnp‑2020‑324615 33737450
    [Google Scholar]
  19. KjerulffB. DowsettJ. JacobsenR.L. GladovJ. LarsenM.H. LundgaardA.T. BanasikK. WestergaardD. MikkelsenS. DinhK.M. HindhedeL. KaspersenK.A. SchwinnM. JuulA. PoulsenB. LindegaardB. PedersenC.B. SabelC.E. BundgaardH. NielsenH.S. MøllerJ.A. BoldsenJ.K. BurgdorfK.S. KessingL.V. HandgaardL.J. ThørnerL.W. DidriksenM. NyegaardM. GrarupN. ØdumN. JohanssonP.I. JennumP. Frikke-SchmidtR. BergerS.S. BrunakS. JacobsenS. HansenT.F. LundquistT.K. HansenT. SørensenT.L. SigsgaardT. NielsenK.R. BruunM.T. HjalgrimH. UllumH. RostgaardK. SørensenE. PedersenO.B. OstrowskiS.R. ErikstrupC. Lifestyle and demographic associations with 47 inflammatory and vascular stress biomarkers in 9876 blood donors.Commun. Med.2024415010.1038/s43856‑024‑00474‑2 38493237
    [Google Scholar]
  20. DhasmanaS. DhasmanaA. NarulaA.S. JaggiM. YallapuM.M. ChauhanS.C. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder.Life Sci.202228812015610.1016/j.lfs.2021.120156 34801512
    [Google Scholar]
  21. WagnerB.D. AccursoF.J. LagunaT.A. The applicability of urinary creatinine as a method of specimen normalization in the cystic fibrosis population.J. Cyst. Fibros.20109321221610.1016/j.jcf.2010.02.004 20227353
    [Google Scholar]
  22. DiStefanoP.S. Clagett-DameM. ChelseaD.M. LoyR. Developmental regulation of human truncated nerve growth factor receptor.Ann. Neurol.1991291132010.1002/ana.410290105 1847613
    [Google Scholar]
  23. DharmageS.C. HamiltonG.S. AbramsonM.J. Major contributions by and the future scope of cohort studies to advance respiratory and sleep medicine.Respirology201924111049105010.1111/resp.13652 31348576
    [Google Scholar]
  24. BellR.J. Why do we need cohort studies?Climacteric202023432132210.1080/13697137.2020.1764526 32419510
    [Google Scholar]
  25. IngreC. RoosP.M. PiehlF. KamelF. FangF. Risk factors for amyotrophic lateral sclerosis.Clin. Epidemiol.20157181193 25709501
    [Google Scholar]
  26. PolinaS. GoncharovaT.K.D. NataliaA. Epidemiology of amyotrophic aateral sclerosis. Personal. Psychiat.Neurology2022215766
    [Google Scholar]
  27. BerryJ.D. BlanchardM. BonarK. DraneE. MurtonM. PlougU. Ricchetti-MastersonK. SavicN. WorthingtonE. Heiman-PattersonT. Epidemiology and economic burden of amyotrophic lateral sclerosis in the United States: A literature review.Amyotroph. Lateral Scler. Frontotemp. Degener.2023245-643644810.1080/21678421.2023.2165947 36748473
    [Google Scholar]
  28. BattyG.D. GaleC.R. Pre-morbid risk factors for amyotrophic lateral sclerosis: Prospective cohort study.Clin. Epidemiol.20211394194710.2147/CLEP.S329521 34675682
    [Google Scholar]
  29. MasroriP. DammeV.P. Amyotrophic lateral sclerosis: A clinical review.Eur. J. Neurol.202027101918192910.1111/ene.14393 32526057
    [Google Scholar]
  30. ManjalyZ.R. ScottK.M. AbhinavK. WijesekeraL. GanesalingamJ. GoldsteinL.H. JanssenA. DoughertyA. WilleyE. StantonB.R. TurnerM.R. AmpongM.A. SakelM. OrrellR.W. HowardR. ShawC.E. LeighP.N. Al-ChalabiA. The sex ratio in amyotrophic lateral sclerosis: A population based study.Amyotroph. Lateral Scler.201011543944210.3109/17482961003610853 20225930
    [Google Scholar]
  31. LonginettiE. FangF. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature.Curr. Opin. Neurol.201932577177610.1097/WCO.0000000000000730 31361627
    [Google Scholar]
  32. BombaciA. LazzaroC. BertoliC.A. LacillaM. NdrevD. ChiòA. AlberaA. CalvoA. CanaleA. Stapedial reflex: A possible novel biomarker of early bulbar involvement in amyotrophic lateral sclerosis patients.Audiol. Neurotol.202126535336010.1159/000513482 33849007
    [Google Scholar]
  33. Fujimura-KiyonoC. KimuraF. IshidaS. NakajimaH. HosokawaT. SuginoM. HanafusaT. Onset and spreading patterns of lower motor neuron involvements predict survival in sporadic amyotrophic lateral sclerosis.J. Neurol. Neurosurg. Psychiat.201182111244124910.1136/jnnp‑2011‑300141 21921087
    [Google Scholar]
  34. HosakaT. TsujiH. KwakS. Roles of aging, circular RNAs, and RNA editing in the pathogenesis of amyotrophic lateral sclerosis: Potential biomarkers and therapeutic targets.Cells20231210144310.3390/cells12101443 37408276
    [Google Scholar]
  35. SiddiqueT. Ajroud-DrissS. Familial amyotrophic lateral sclerosis, a historical perspective.Acta Myol.2011302117120 22106714
    [Google Scholar]
  36. RyanM. HeverinM. DohertyM.A. DavisN. CorrE.M. VajdaA. PenderN. McLaughlinR. HardimanO. Determining the incidence of familiality in ALS.Neurol. Genet.201843e23910.1212/NXG.0000000000000239 29845113
    [Google Scholar]
  37. WingoT.S. CutlerD.J. YarabN. KellyC.M. GlassJ.D. The heritability of amyotrophic lateral sclerosis in a clinically ascertained United States research registry.PLoS One2011611e2798510.1371/journal.pone.0027985 22132186
    [Google Scholar]
  38. WainbergM. AndrewsS.J. TripathyS.J. Shared genetic risk loci between Alzheimer’s disease and related dementias, Parkinson’s disease, and amyotrophic lateral sclerosis.Alzheimers Res. Ther.202315111310.1186/s13195‑023‑01244‑3 37328865
    [Google Scholar]
  39. ZhuQ. ZhouJ. ZhangY. HuangH. HanJ. CaoB. XuD. ZhaoY. ChenG. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: A systematic review and meta-analysis.Front. Neurosci.202317119672210.3389/fnins.2023.1196722 37284659
    [Google Scholar]
  40. ReD.B. YanB. Calderón-GarcidueñasL. AndrewA.S. TischbeinM. StommelE.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk.J. Neurol.202226952359237710.1007/s00415‑021‑10928‑5 34973105
    [Google Scholar]
  41. McKayK.A. SmithK.A. SmertinaiteL. FangF. IngreC. TaubeF. Military service and related risk factors for amyotrophic lateral sclerosis.Acta Neurol. Scand.20211431395010.1111/ane.13345 32905613
    [Google Scholar]
  42. WeisskopfM.G. CudkowiczM.E. JohnsonN. Military service and amyotrophic lateral sclerosis in a population-based cohort.Epidemiology201526683183810.1097/EDE.0000000000000376 26414854
    [Google Scholar]
  43. LynchK. Optimizing pharmacologic treatment for ALS to improve outcomes and quality of life.Am. J. Manag. Care2023297S112S119 37433092
    [Google Scholar]
  44. SharmaS. MehanS. Overview of amyotrophic lateral sclerosis and medications for disease progression.Pharmaspire2023151414310.56933/Pharmaspire.2023.15108
    [Google Scholar]
/content/journals/cn/10.2174/011570159X352364250212035802
Loading
/content/journals/cn/10.2174/011570159X352364250212035802
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Amyotrophic lateral sclerosis; biomarker; early diagnosis; ELISA; p75ecd; urine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test