Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Introduction

Brain aging is a complex process involving genetic, neurodevelopmental, and environmental factors. Inherent features of this process are cellular senescence, the development of senescence-associated secretory phenotype (SASP), and prolonged inflammation.

Methods

Recently, progress has been made in understanding the biological roles of FPR2 receptors and their ligands in the mechanism of inflammation resolution (RoI) in the brain. However, the number of studies comparing the influence of prenatal stress (PS) on RoI in physiological aging and neurodegenerative disorders pathology is very limited, and the data need to be more consistent. Here, we examined whether PS can condition the pattern of age-dependent cognitive and RoI changes in the prefrontal cortex and hippocampus in wild-type and hAPPNL-F/NL-F KI male mice.

Results

We discovered that in aging, the memory deficits are accompanied by the limitation of the availability of pro-resolving FPR2 ligands, the rising proinflammatory microglia polarization, and inflammatory ligands mediated FPR2 overactivation. Moreover, the present study suggested the subtle role of the RoI deficits in creating brain cells' senescence and shifting the immunomodulators to the proinflammatory direction. PS has been revealed as a substantial factor modulating the profile of inflame-aging in a manner strongly determined by the age of animals and the brain structure under study, mainly in hAPPNL-F/NL-F KI male mice.

Conclusion

Our results identify the FPR2 receptors as a driver regulating the RoI process in the brain and highlight that PS has diversified the picture of age-dependent neurodegenerative pathology.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X345385241004060055
2025-03-12
2025-09-24
Loading full text...

Full text loading...

References

  1. SilvaM.V.F. LouresC.M.G. AlvesL.C.V. de SouzaL.C. BorgesK.B.G. CarvalhoM.G. Alzheimer’s disease: Risk factors and potentially protective measures.J. Biomed. Sci.20192613310.1186/s12929‑019‑0524‑y 31072403
    [Google Scholar]
  2. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S200490
    [Google Scholar]
  3. KunduP. TorresE.R.S. StagamanK. KasschauK. OkhovatM. HoldenS. WardS. NevonenK.A. DavisB.A. SaitoT. SaidoT.C. CarboneL. SharptonT.J. RaberJ. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in] AppNL-G-F, AppNL-F, and wild type mice.Sci. Rep.2021111467810.1038/s41598‑021‑83851‑4 33633159
    [Google Scholar]
  4. MurakamiM. HiranoT. The molecular mechanisms of chronic inflammation development.Front. Immunol.2012332310.3389/fimmu.2012.00323 23162547
    [Google Scholar]
  5. HeadlandS.E. JonesH.R. NorlingL.V. KimA. SouzaP.R. CorsieroE. GilC.D. NervianiA. Dell’AccioF. PitzalisC. OlianiS.M. JanL.Y. PerrettiM. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis.Sci. Transl. Med.20157315315ra19010.1126/scitranslmed.aac5608 26606969
    [Google Scholar]
  6. ShaoF. WangX. WuH. WuQ. ZhangJ. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration.Front. Aging Neurosci.20221482508610.3389/fnagi.2022.825086 35401152
    [Google Scholar]
  7. GreenwoodE.K. BrownD.R. Senescent microglia: The key to the ageing brain?Int. J. Mol. Sci.2021229440210.3390/ijms22094402
    [Google Scholar]
  8. MaciuszekM. CacaceA. BrennanE. GodsonC. ChapmanT.M. Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential.Eur. J. Med. Chem.202121311316710.1016/j.ejmech.2021.113167
    [Google Scholar]
  9. HeadlandS.E. NorlingL.V. The resolution of inflammation: Principles and challenges.Semin. Immunol.201527314916010.1016/j.smim.2015.03.014
    [Google Scholar]
  10. ZhouY. YouC.G. Lipoxin alleviates oxidative stress: A state-of-the-art review.Inflamm. Res.20227110-111169117910.1007/s00011‑022‑01621‑y
    [Google Scholar]
  11. MotwaniM.P. FlintJ.D. De MaeyerR.P.H. FullertonJ.N. SmithA.M. MarksD.J.B. GilroyD.W. Novel translational model of resolving inflammation triggered by UV-killed E. coli.J. Pathol. Clin. Res.20162315416510.1002/cjp2.43 27499924
    [Google Scholar]
  12. HeH.Q. YeR.D. The Formyl peptide receptors: Diversity of ligands and mechanism for recognition.Molecules201722345510.3390/molecules22030455
    [Google Scholar]
  13. BaeY. Young SongJ. KimY. YeR.D. KwakJ. SuhP. RyuS.H. Differential activation of formyl peptide receptor signaling by peptide ligands.Mol. Pharmacol.2003644841710.1124/mol.64.4.841
    [Google Scholar]
  14. KrugersH.J. ArpJ.M. XiongH. KanatsouS. LesuisS.L. KorosiA. JoelsM. LucassenP.J. Early life adversity: Lasting consequences for emotional learning.Neurobiol. Stress20166142110.1016/j.ynstr.2016.11.005
    [Google Scholar]
  15. JafariZ. OkumaM. KaremH. MehlaJ. KolbB.E. MohajeraniM.H. Prenatal noise stress aggravates cognitive decline and the onset and progression of beta amyloid pathology in a mouse model of Alzheimer’s disease.Neurobiol. Aging201977668610.1016/j.neurobiolaging.2019.01.019 30784814
    [Google Scholar]
  16. DevakumarD. BirchM. OsrinD. SondorpE. WellsJ.C.K. The intergenerational effects of war on the health of children.BMC Med.20141215710.1186/1741‑7015‑12‑57 24694212
    [Google Scholar]
  17. McCrearyJ.K. TruicaL.S. FriesenB. YaoY. OlsonD.M. KovalchukI. CrossA.R. MetzG.A.S. Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats.Neuroscience2016330798910.1016/j.neuroscience.2016.05.046 27241944
    [Google Scholar]
  18. MetzG.A.S. NgJ.W.Y. KovalchukI. OlsonD.M. Ancestral experience as a game changer in stress vulnerability and disease outcomes.BioEssays201537660261110.1002/bies.201400217
    [Google Scholar]
  19. WrightR.J. VisnessC.M. CalatroniA. GraysonM.H. GoldD.R. SandelM.T. Lee-ParritzA. WoodR.A. KattanM. BloombergG.R. BurgerM. TogiasA. WitterF.R. SperlingR.S. SadovskyY. GernJ.E. Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort.Am. J. Respir. Crit. Care Med.20101821253310.1164/rccm.200904‑0637OC 20194818
    [Google Scholar]
  20. CooksonH. GranellR. JoinsonC. Ben-ShlomoY. HendersonA.J. Mothers’ anxiety during pregnancy is associated with asthma in their children.J. Allergy Clin. Immunol.20091234847853.e1110.1016/j.jaci.2009.01.042 19348924
    [Google Scholar]
  21. PetersJ.L. CohenS. StaudenmayerJ. HosenJ. Platts-MillsT.A.E. WrightR.J. Prenatal negative life events increases cord blood IgE: Interactions with dust mite allergen and maternal atopy.Allergy201267454555110.1111/j.1398‑9995.2012.02791.x 22309645
    [Google Scholar]
  22. LimR. FedulovA.V. KobzikL. Maternal stress during pregnancy increases neonatal allergy susceptibility: Role of glucocorticoids.Am. J. Physiol. Lung Cell. Mol. Physiol.20143072L141L14810.1152/ajplung.00250.2013 24838749
    [Google Scholar]
  23. BussC. EntringerS. MoogN.K. ToepferP. FairD.A. SimhanH.N. HeimC.M. WadhwaP.D. Intergenerational transmission of maternal childhood maltreatment exposure: Implications for fetal brain development.J. Am. Acad. Child Adolesc. Psychiatry201756537338210.1016/j.jaac.2017.03.001
    [Google Scholar]
  24. Ramo-FernándezL. BoeckC. KoenigA.M. SchuryK. BinderE.B. GündelH. FegertJ.M. KarabatsiakisA. KolassaI.T. The effects of childhood maltreatment on epigenetic regulation of stress-response associated genes: An intergenerational approach.Sci. Rep.20199198310.1038/s41598‑018‑36689‑2 31000782
    [Google Scholar]
  25. LesuisS.L. MaurinH. BorghgraefP. LucassenP.J. LeuvenF.V. KrugersH.J. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer’s disease.Oncotarget2016726391183913510.18632/oncotarget.9776 27259247
    [Google Scholar]
  26. McEwenB.S. NascaC. GrayJ.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex.Neuropsychopharmacology201641132310.1038/npp.2015.171
    [Google Scholar]
  27. HantsooL. KornfieldS. AngueraM.C. EppersonC.N. Inflammation: A proposed intermediary between maternal stress and offspring neuropsychiatric risk.Biol. Psychiatry20198529710610.1016/j.biopsych.2018.08.018
    [Google Scholar]
  28. BronsonS.L. BaleT.L. The placenta as a mediator of stress effects on neurodevelopmental reprogramming.Neuropsychopharmacology201641120721810.1038/npp.2015.231
    [Google Scholar]
  29. TeicherM.H. SamsonJ.A. AndersonC.M. OhashiK. The effects of childhood maltreatment on brain structure, function and connectivity.Nat. Rev. Neurosci.2016171065266610.1038/nrn.2016.111
    [Google Scholar]
  30. JafariZ. KolbB.E. MohajeraniM.H. Neural oscillations and brain stimulation in Alzheimer’s disease.Prog. Neurobiol.202019410187810.1016/j.pneurobio.2020.101878
    [Google Scholar]
  31. WeinstockM. Prenatal stressors in rodents: Effects on behavior.Neurobiol. Stress2016631310.1016/j.ynstr.2016.08.004
    [Google Scholar]
  32. GłombikK. StachowiczA. TrojanE. ŚlusarczykJ. SuskiM. ChameraK. KotarskaK. OlszaneckiR. Basta-KaimA. Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment.Pharmacol. Rep.201870232233010.1016/j.pharep.2017.11.016 29477041
    [Google Scholar]
  33. TrojanE. ChameraK. BryniarskaN. KotarskaK. LeśkiewiczM. RegulskaM. Basta-KaimA. Role of chronic administration of antidepressant drugs in the prenatal stress-evoked inflammatory response in the brain of adult offspring rats: Involvement of the NLRP3 inflammasome-related pathway.Mol. Neurobiol.20195685365538010.1007/s12035‑018‑1458‑1 30610610
    [Google Scholar]
  34. HoeijmakersL. AmelianchikA. VerhaagF. KotahJ. LucassenP.J. KorosiA. Early-life stress does not aggravate spatial memory or the process of hippocampal neurogenesis in adult and middle-aged APP/PS1 Mice.Front. Aging Neurosci.201810MAR6110.3389/fnagi.2018.00061 29563870
    [Google Scholar]
  35. MohammadiM. HaeriR.A. YaghmaeiP. SahraeiH. Prenatal stress-induced spatial memory deficit in a sex-specific manner in mice: A possible involvement of hippocampal insulin resistance.Basic Clin. Neurosci.202213327528410.32598/bcn.2021.15.12 36457886
    [Google Scholar]
  36. SaitoT. MatsubaY. MihiraN. TakanoJ. NilssonP. ItoharaS. IwataN. SaidoT.C. Single App knock-in mouse models of Alzheimer’s disease.Nat. Neurosci.201417566166310.1038/nn.3697 24728269
    [Google Scholar]
  37. PaulsE. BayodS. MateoL. AlcaldeV. Juan-BlancoT. Sánchez-SotoM. SaidoT.C. SaitoT. Berrenguer-LlergoA. AttoliniC.S.O. GayM. de OliveiraE. Duran-FrigolaM. AloyP. Identification and drug-induced reversion of molecular signatures of Alzheimer’s disease onset and progression in AppNL-G-F, AppNL-F, and 3xTg-AD mouse models.Genome Med.202113116810.1186/s13073‑021‑00983‑y 34702310
    [Google Scholar]
  38. TrojanE. CurzytekK. CieślikP. WierońskaJ.M. GraffJ. LasońW. SaitoT. SaidoT.C. Basta-KaimA. Prenatal stress aggravates age-dependent cognitive decline, insulin signaling dysfunction, and the pro-inflammatory response in the APPNL-F/NL-F mouse model of Alzheimer’s disease.Neurobiol. Dis.202318410621910.1016/j.nbd.2023.106219 37422091
    [Google Scholar]
  39. CieślakP.E. LlamosasN. KosT. UgedoL. JastrzębskaK. TorrecillaM. RodriguezP.J. The role of NMDA receptor-dependent activity of noradrenergic neurons in attention, impulsivity and exploratory behaviors.Genes Brain Behav.201716881282210.1111/gbb.12383 28383797
    [Google Scholar]
  40. TrojanE. ŚlusarczykJ. ChameraK. KotarskaK. GłombikK. KuberaM. Basta-KaimA. The modulatory properties of chronic antidepressant drugs treatment on the brain chemokine - chemokine receptor network: A molecular study in an animal model of depression.Front. Pharmacol.20178NOV77910.3389/fphar.2017.00779 29163165
    [Google Scholar]
  41. TylekK. TrojanE. LeśkiewiczM. Ghafir El IdrissiI. LacivitaE. LeopoldoM. Basta-KaimA. Microglia depletion attenuates the pro-resolving activity of the formyl peptide receptor 2 agonist AMS21 related to inhibition of inflammasome NLRP3 Signalling Pathway: A study of organotypic hippocampal cultures.Cells20231221257010.3390/cells12212570 37947648
    [Google Scholar]
  42. LiuR.M. Cellular senescence, and Alzheimer’s disease.Int. J. Mol. Sci.2022234198910.3390/ijms23041989
    [Google Scholar]
  43. KomlevaY. ChernykhA. LopatinaO. GorinaY. LoktevaI. SalminaA. GollaschM. Inflamm-aging and brain insulin resistance: New insights and role of life-style strategies on cognitive and social determinants in aging and neurodegeneration.Front. Neurosci.20211461839510.3389/fnins.2020.618395
    [Google Scholar]
  44. NovoaC. SalazarP. CisternasP. GherardelliC. Vera-SalazarR. ZolezziJ.M. InestrosaN.C. Inflammation context in Alzheimer’s disease, a relationship intricate to define.Biol. Res.20225513910.1186/s40659‑022‑00404‑3
    [Google Scholar]
  45. WhyteL.S. HemsleyK.M. LauA.A. HassiotisS. SaitoT. SaidoT.C. HopwoodJ.J. SargeantT.J. Reduction in open field activity in the absence of memory deficits in the AppNL-G-F knock-in mouse model of Alzheimer’s disease.Behav. Brain Res.201833617718110.1016/j.bbr.2017.09.006 28887197
    [Google Scholar]
  46. BeilharzR.G. CoxD.F. Genetic analysis of open field behavior in swine.J. Anim. Sci.196726598899010.2527/jas1967.265988x 6077180
    [Google Scholar]
  47. WirthsO. BayerT.A. Motor impairment in Alzheimer’s disease and transgenic Alzheimer’s disease mouse models.Genes Brain Behav.20087s11510.1111/j.1601‑183X.2007.00373.x 18184365
    [Google Scholar]
  48. CondeJ.R. StreitW.J. Microglia in the aging brain.J. Neuropathol. Exp. Neurol.200665319920310.1097/01.jnen.0000202887.22082.63 16651881
    [Google Scholar]
  49. TylekK. TrojanE. LeśkiewiczM. FrancavillaF. LacivitaE. LeopoldoM. Basta-KaimA. Stimulation of formyl peptide receptor-2 by the new agonist CMC23 protects against endotoxin-induced neuroinflammatory response: A study in organotypic hippocampal cultures.ACS Chem. Neurosci.202314203869388210.1021/acschemneuro.3c00525 37775304
    [Google Scholar]
  50. TrojanE. BryniarskaN. LeśkiewiczM. RegulskaM. ChameraK. Szuster-GłuszczakM. LeopoldoM. LacivitaE. Basta-KaimA. The contribution of formyl peptide receptor dysfunction to the course of neuroinflammation: A potential role in the brain pathology.Curr. Neuropharmacol.202018322924910.2174/1570159X17666191019170244 31629396
    [Google Scholar]
  51. TylekK. TrojanE. RegulskaM. LacivitaE. LeopoldoM. Basta-KaimA. Formyl peptide receptor 2, as an important target for ligands triggering the inflammatory response regulation: A link to brain pathology.Pharmacol. Rep.20217341004101910.1007/s43440‑021‑00271‑x
    [Google Scholar]
  52. TrojanE. LeśkiewiczM. LacivitaE. LeopoldoM. Basta-KaimA. The formyl peptide receptor 2 as a target for promotion of resolution of inflammation.Curr. Neuropharmacol.20232171482148710.2174/1570159X20666220913155248 36100993
    [Google Scholar]
  53. PrinciottaC.L. MauriM. CosentinoM. VersinoM. MarinoF. Alzheimer’s disease: From immune homeostasis to neuroinflammatory condition.Int. J. Mol. Sci.202223211300810.3390/ijms232113008
    [Google Scholar]
  54. SerhanC.N. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution.Prostaglandins Leukot. Essent. Fatty Acids2005733-414116210.1016/j.plefa.2005.05.002 16005201
    [Google Scholar]
  55. RegulskaM. Szuster-GłuszczakM. TrojanE. LeśkiewiczM. Basta-KaimA. The emerging role of the double-edged impact of arachidonic acid-derived eicosanoids in the neuroinflammatory background of depression.Curr. Neuropharmacol.202119227829310.2174/18756190MTA4dOTMh0 32851950
    [Google Scholar]
  56. TylekK. TrojanE. LeśkiewiczM. RegulskaM. BryniarskaN. CurzytekK. LacivitaE. LeopoldoM. Basta-KaimA. Time-dependent protective and pro-resolving effects of FPR2 agonists on lipopolysaccharide-exposed microglia cells involve inhibition of NF-κB and MAPKs pathways.Cells2021109237310.3390/cells10092373 34572022
    [Google Scholar]
  57. MedeirosR. KitazawaM. PassosG.F. Baglietto-VargasD. ChengD. CribbsD.H. LaFerlaF.M. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice.Am. J. Pathol.201318251780178910.1016/j.ajpath.2013.01.051 23506847
    [Google Scholar]
  58. WangX. ZhuM. HjorthE. Cortés-ToroV. EyjolfsdottirH. GraffC. NennesmoI. PalmbladJ. EriksdotterM. SambamurtiK. FitzgeraldJ.M. SerhanC.N. GranholmA.C. SchultzbergM. Resolution of inflammation is altered in Alzheimer’s disease.Alzheimers Dement.201511140-50.e1, 2.10.1016/j.jalz.2013.12.024 24530025
    [Google Scholar]
  59. McArthurS. CristanteE. PaternoM. ChristianH. RoncaroliF. GilliesG.E. SolitoE. Annexin A1: A central player in the anti-inflammatory and neuroprotective role of microglia.J. Immunol.2010185106317632810.4049/jimmunol.1001095 20962261
    [Google Scholar]
  60. da RochaG.H.O. LoiolaR.A. PantaleãoL.N. ReutelingspergerC. SolitoE. FarskyS.H.P. Control of expression and activity of peroxisome proliferated-activated receptor γ by Annexin A1 on microglia during efferocytosis.Cell Biochem. Funct.201937756056810.1002/cbf.3433 31479167
    [Google Scholar]
  61. RiesM. WattsH. MotaB.C. LopezM.Y. DonatC.K. BaxanN. PickeringJ.A. ChauT.W. SemmlerA. GurungB. AleksynasR. Abelleira-HervasL. IqbalS.J. Romero-MolinaC. Hernandez-MirG. d’AmatiA. ReutelingspergerC. GoldfingerM.H. GentlemanS.M. Van LeuvenF. SolitoE. SastreM. Annexin A1 restores cerebrovascular integrity concomitant with reduced amyloid-β and tau pathology.Brain202114451526154110.1093/brain/awab050 34148071
    [Google Scholar]
  62. LeeC. HanJ. JungY. Formyl peptide receptor 2 is an emerging modulator of inflammation in the liver.Exp. Mol. Med.202355232533210.1038/s12276‑023‑00941‑1
    [Google Scholar]
  63. CostelloD.A. KeenanK. McManusR.M. FalveyA. LynchM.A. The age-related neuroinflammatory environment promotes macrophage activation, which negatively impacts synaptic function.Neurobiol. Aging20164314014810.1016/j.neurobiolaging.2016.04.001 27255823
    [Google Scholar]
  64. ShaoB.Z. XuZ.Q. HanB.Z. SuD.F. LiuC. NLRP3 inflammasome and its inhibitors: A review.Front. Pharmacol.2015626210.3389/fphar.2015.00262
    [Google Scholar]
  65. CatrysseL. Farhang GhahremaniM. VereeckeL. YoussefS.A. Mc GuireC. SzeM. WeberA. HeikenwalderM. de BruinA. BeyaertR. van LooG. A20 prevents chronic liver inflammation and cancer by protecting hepatocytes from death.Cell Death Dis.201676e225010.1038/cddis.2016.154 27253414
    [Google Scholar]
  66. XuH. WangL. ZhengP. LiuY. ZhangC. JiangK. SongH. JiG. Elevated serum A20 is associated with severity of chronic hepatitis B and A20 inhibits NF-κB-mediated inflammatory response.Oncotarget2017824389143892610.18632/oncotarget.17153
    [Google Scholar]
  67. MalynnB.A. MaA. A multifunctional tool for regulating immunity and preventing disease.Cell. Immunol.201934010391410.1016/j.cellimm.2019.04.002
    [Google Scholar]
  68. PengX. ZhangC. BaoJ.P. ZhuL. ShiR. XieZ.Y. WangF. WangK. WuX. A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment.Bone Joint Res.20209522523510.1302/2046‑3758.95.BJR‑2019‑0230.R1 32566144
    [Google Scholar]
  69. FlanaryB.E. SammonsN.W. NguyenC. WalkerD. StreitW.J. Evidence that aging and amyloid promote microglial cell senescence.Rejuvenation Res.2007101617410.1089/rej.2006.9096 17378753
    [Google Scholar]
  70. MijitM. CaraccioloV. MelilloA. AmicarelliF. GiordanoA. Role of p53 in the regulation of cellular senescence.Biomolecules202010342010.3390/biom10030420
    [Google Scholar]
  71. StojiljkovicM.R. AinQ. BondevaT. HellerR. SchmeerC. WitteO.W. Phenotypic and functional differences between senescent and aged murine microglia.Neurobiol. Aging201974566910.1016/j.neurobiolaging.2018.10.007 30439594
    [Google Scholar]
  72. BakerD.J. ChildsB.G. DurikM. WijersM.E. SiebenC.J. ZhongJ. SaltnessA. JeganathanK.B. VerzosaG.C. PezeshkiA. Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan.Nature2016530758918418910.1038/nature16932 26840489
    [Google Scholar]
  73. OgrodnikM. EvansS.A. FielderE. VictorelliS. KrugerP. SalmonowiczH. WeigandB.M. PatelA.D. PirtskhalavaT. InmanC.L. JohnsonK.O. DickinsonS.L. RochaA. SchaferM.J. ZhuY. AllisonD.B. von ZglinickiT. LeBrasseurN.K. TchkoniaT. NerettiN. PassosJ.F. KirklandJ.L. JurkD. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice.Aging Cell2021202e1329610.1111/acel.13296 33470505
    [Google Scholar]
  74. CudejkoC. WoutersK. FuentesL. HannouS.A. PaquetC. BantubungiK. BouchaertE. VanhoutteJ. FleuryS. RemyP. TailleuxA. Chinetti-GbaguidiG. DombrowiczD. StaelsB. PaumelleR. p16INK4a deficiency promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages.Blood201111892556256610.1182/blood‑2010‑10‑313106 21636855
    [Google Scholar]
  75. HeN. JinW-L. LokK-H. WangY. YinM. WangZ-J. Amyloid-β1-42 oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2.Cell Death Dis.2013411e92410.1038/cddis.2013.437 24263098
    [Google Scholar]
  76. TominagaK. SuzukiH.I. TGF-β signaling in cellular senescence and aging-related pathology.Int. J. Mol. Sci.20192020500210.3390/ijms20205002
    [Google Scholar]
  77. MeyersE.A. KesslerJ.A. TGF-β family signaling in neural and neuronal differentiation, development, and function.Cold Spring Harb. Perspect. Biol.201798a02224410.1101/cshperspect.a022244 28130363
    [Google Scholar]
  78. ZetterbergH. AndreasenN. BlennowK. Increased cerebrospinal fluid levels of transforming growth factor-β1 in Alzheimer’s disease.Neurosci. Lett.2004367219419610.1016/j.neulet.2004.06.001 15331151
    [Google Scholar]
  79. RotaE. BelloneG. RoccaP. BergamascoB. EmanuelliG. FerreroP. Increased intrathecal TGF-β1, but not IL-12, IFN-γ and IL-10 levels in Alzheimer’s disease patients.Neurol. Sci.2006271333910.1007/s10072‑006‑0562‑6 16688597
    [Google Scholar]
  80. KashimaR. HataA. The role of TGF-β superfamily signaling in neurological disorders.Acta Biochim. Biophys. Sin. (Shanghai)201850110612010.1093/abbs/gmx124
    [Google Scholar]
  81. WangM.M. MiaoD. CaoX.P. TanL. TanL. Innate immune activation in Alzheimer’s disease.Ann. Transl. Med.201861017717710.21037/atm.2018.04.20 29951499
    [Google Scholar]
  82. BagnoliS. CelliniE. TeddeA. NacmiasB. PiacentiniS. BessiV. BraccoL. SorbiS. Association of IL10 promoter polymorphism in Italian Alzheimer’s disease.Neurosci. Lett.2007418326226510.1016/j.neulet.2007.03.030 17420099
    [Google Scholar]
  83. AndersonG. A more holistic perspective of Alzheimer’s disease: roles of gut microbiome, adipocytes, HPA axis, melatonergic pathway and astrocyte mitochondria in the emergence of autoimmunity.Frontiers in Bioscience-Landmark2023281235510.31083/j.fbl2812355 38179773
    [Google Scholar]
/content/journals/cn/10.2174/011570159X345385241004060055
Loading
/content/journals/cn/10.2174/011570159X345385241004060055
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test