Skip to content
2000
image of Nitric Oxide Metabolite Improves Cognitive Impairment by Reducing the Loss of Parvalbumin Inhibitory Interneurons in a Novel Mouse Model of Vascular Dementia

Abstract

Background

This work aimed to develop a new and simple method to establish a mouse model of vascular dementia (VD). We investigated whether a new nitric oxide metabolite in the botanical mixture (a NO-donating botanical mixture, NOBM) improved learning and memory in mice that underwent bilateral carotid artery stenosis (BCAS).

Methods

C57BL/6N mice received the NOBM orally (0.1 mL twice a day) after BCAS, from days 1 to 28. We assessed spatial memory using the Y maze and place recognition tests at 1 week and 4 weeks after the induction of BCAS. We quantified the parvalbumin protein in the cortex and hippocampus at 1 week and 4 weeks. We also quantified expression levels of neuronal nuclei, brain-derived neurotrophic factor, glial fibrillary acidic protein, and the number of dead neurons performed Fluoro-Jade B staining 31 days after BCAS.

Results

NOBM significantly improved learning and memory behaviour in BCAS mice. Immunohistochemistry staining and Western blotting data showed a significantly higher protein expression of parvalbumin in the cortex and hippocampus of NOBM-treated BCAS animals, especially in the early stage of BCAS. Moreover, NOBM reduces neuronal loss in the cortex and reduces neuroinflammation and oxidative stress. The observed effect suggests that the NOBM reduced the loss of parvalbumin inhibitory interneurons in the early stage of VD and inhibited neuroinflammation in the VD mice model.

Conclusion

Our results reveal a potential neuroprotective and therapeutic use of NOBM for cognitive dysfunction associated with cerebral hypoperfusion in a mouse model of VD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X356939250306075324
2025-05-07
2025-09-03
Loading full text...

Full text loading...

References

  1. O’Brien J.T. Thomas A. Vascular dementia. Lancet 2015 386 10004 1698 1706 10.1016/S0140‑6736(15)00463‑8 26595643
    [Google Scholar]
  2. Hosoki S. Hansra G.K. Jayasena T. Poljak A. Mather K.A. Catts V.S. Rust R. Sagare A. Kovacic J.C. Brodtmann A. Wallin A. Zlokovic B.V. Ihara M. Sachdev P.S. Molecular biomarkers for vascular cognitive impairment and dementia. Nat. Rev. Neurol. 2023 19 12 737 753 10.1038/s41582‑023‑00884‑1 37957261
    [Google Scholar]
  3. Sun M.K. Potential therapeutics for vascular cognitive impairment and dementia. Curr. Neuropharmacol. 2018 16 7 1036 1044 10.2174/1570159X15666171016164734 29046153
    [Google Scholar]
  4. Iadecola C. Duering M. Hachinski V. Joutel A. Pendlebury S.T. Schneider J.A. Dichgans M. Vascular cognitive impairment and dementia. J. Am. Coll. Cardiol. 2019 73 25 3326 3344 10.1016/j.jacc.2019.04.034 31248555
    [Google Scholar]
  5. Rost N.S. Brodtmann A. Pase M.P. Veluw v.S.J. Biffi A. Duering M. Hinman J.D. Dichgans M. Post-stroke cognitive impairment and dementia. Circ. Res. 2022 130 8 1252 1271 10.1161/CIRCRESAHA.122.319951 35420911
    [Google Scholar]
  6. Poh L. Fann D.Y. Wong P. Lim H.M. Foo S.L. Kang S.W. Rajeev V. Selvaraji S. Iyer V.R. Parathy N. Khan M.B. Hess D.C. Jo D.G. Drummond G.R. Sobey C.G. Lai M.K.P. Chen C.L.H. Lim L.H.K. Arumugam T.V. AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Mol. Psychiatry 2021 26 8 4544 4560 10.1038/s41380‑020‑00971‑5 33299135
    [Google Scholar]
  7. Liu R. Berry R. Wang L. Chaudhari K. Winters A. Sun Y. Caballero C. Ampofo H. Shi Y. Thata B. Colon-Perez L. Sumien N. Yang S.H. Experimental ischemic stroke induces secondary bihemispheric white matter degeneration and long-term cognitive impairment. Transl. Stroke Res. 2024 1 10 10.1007/s12975‑024‑01241‑0 38488999
    [Google Scholar]
  8. Wolters F.J. Zonneveld H.I. Hofman A. van der Lugt A. Koudstaal P.J. Vernooij M.W. Ikram M.A. Cerebral perfusion and the risk of dementia. Circulation 2017 136 8 719 728 10.1161/CIRCULATIONAHA.117.027448 28588075
    [Google Scholar]
  9. Wolters F.J. Ikram M.A. Epidemiology of vascular dementia. arterioscler. thromb. vasc. biol. 2019 39 8 1542 1549 10.1161/ATVBAHA.119.311908 31294622
    [Google Scholar]
  10. Rundek T. Tolea M. Ariko T. Fagerli E.A. Camargo C.J. Vascular cognitive impairment (VCI). Neurotherapeutics 2022 19 1 68 88 10.1007/s13311‑021‑01170‑y 34939171
    [Google Scholar]
  11. Dichgans M. Leys D. Vascular cognitive impairment. Circ. Res. 2017 120 3 573 591 10.1161/CIRCRESAHA.116.308426 28154105
    [Google Scholar]
  12. Oveisgharan S. Dawe R.J. Yu L. Kapasi A. Arfanakis K. Hachinski V. Schneider J.A. Bennett D.A. Frequency and underlying pathology of pure vascular cognitive impairment. JAMA Neurol. 2022 79 12 1277 1286 10.1001/jamaneurol.2022.3472 36279115
    [Google Scholar]
  13. Rajeev V. Fann D.Y. Dinh Q.N. Kim H.A. Silva D.T.M. Lai M.K.P. Chen C.L.H. Drummond G.R. Sobey C.G. Arumugam T.V. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics 2022 12 4 1639 1658 10.7150/thno.68304 35198062
    [Google Scholar]
  14. Biesbroek J.M. Biessels G.J. Diagnosing vascular cognitive impairment: Current challenges and future perspectives. Int. J. Stroke 2023 18 1 36 43 10.1177/17474930211073387 35098817
    [Google Scholar]
  15. Tian D. Guo Y. Zhang D. Gao Q. Liu G. Lin J. Chang Z. Wang Y. Su R. Han Z. Shenzhi Jiannao formula ameliorates vascular dementia in vivo and in vitro by inhibition glutamate neurotoxicity via promoting clathrin-mediated endocytosis. Chin. Med. 2021 16 1 65 10.1186/s13020‑021‑00477‑4 34321050
    [Google Scholar]
  16. Poore C.P. Hazalin N.A.M.N. Wei S. Low S.W. Chen B. Nilius B. Hassan Z. Liao P. TRPM4 blocking antibody reduces neuronal excitotoxicity by specifically inhibiting glutamate-induced calcium influx under chronic hypoxia. Neurobiol. Dis. 2024 191 106408 10.1016/j.nbd.2024.106408 38199274
    [Google Scholar]
  17. Washida K. Hattori Y. Ihara M. Animal models of chronic cerebral hypoperfusion: From mouse to primate. Int. J. Mol. Sci. 2019 20 24 6176 10.3390/ijms20246176 31817864
    [Google Scholar]
  18. Ishikawa H. Shindo A. Mizutani A. Tomimoto H. Lo E.H. Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J. Cereb. Blood Flow Metab. 2023 43 2_suppl Suppl. 18 36 10.1177/0271678X231154597 36883344
    [Google Scholar]
  19. Du S.Q. Wang X.R. Xiao L.Y. Tu J.F. Zhu W. He T. Liu C.Z. Molecular mechanisms of vascular dementia: What can be learned from animal models of chronic cerebral hypoperfusion? Mol. Neurobiol. 2017 54 5 3670 3682 10.1007/s12035‑016‑9915‑1 27206432
    [Google Scholar]
  20. Yang Y. Kimura-Ohba S. Thompson J. Rosenberg G.A. Rodent models of vascular cognitive impairment. Transl. Stroke Res. 2016 7 5 407 414 10.1007/s12975‑016‑0486‑2 27498679
    [Google Scholar]
  21. Jiang C. Wang X. Le Q. Liu P. Liu C. Wang Z. He G. Zheng P. Wang F. Ma L. Morphine coordinates SST and PV interneurons in the prelimbic cortex to disinhibit pyramidal neurons and enhance reward. Mol. Psychiatry 2021 26 4 1178 1193 10.1038/s41380‑019‑0480‑7 31413370
    [Google Scholar]
  22. Hijazi S. Smit A.B. Kesteren v.R.E. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer’s disease. Mol. Psychiatry 2023 28 12 4954 4967 10.1038/s41380‑023‑02168‑y 37419975
    [Google Scholar]
  23. Roque P.S. Perez T.C. Hooshmandi M. Wong C. Eslamizade M.J. Heshmati S. Brown N. Sharma V. Lister K.C. Goyon V.M. Neagu-Lund L. Shen C. Daccache N. Sato H. Sato T. Mogil J.S. Nader K. Gkogkas C.G. Iordanova M.D. Prager-Khoutorsky M. McBride H.M. Lacaille J.C. Wykes L. Schricker T. Khoutorsky A. Parvalbumin interneuron loss mediates repeated anesthesia-induced memory deficits in mice. J. Clin. Invest. 2023 133 2 e159344 10.1172/JCI159344 36394958
    [Google Scholar]
  24. Ruden J.B. Dugan L.L. Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 2021 46 2 279 287 10.1038/s41386‑020‑0778‑9 32722660
    [Google Scholar]
  25. Shu S. Xu S.Y. Ye L. Liu Y. Cao X. Jia J.Q. Bian H.J. Liu Y. Zhu X.L. Xu Y. Prefrontal parvalbumin interneurons deficits mediate early emotional dysfunction in Alzheimer’s disease. Neuropsychopharmacology 2023 48 2 391 401 10.1038/s41386‑022‑01435‑w 36229597
    [Google Scholar]
  26. Terstege D.J. Epp J.R. Parvalbumin as a sex-specific target in Alzheimer’s disease research – A mini-review. Neurosci. Biobehav. Rev. 2023 153 105370 10.1016/j.neubiorev.2023.105370 37619647
    [Google Scholar]
  27. Krogsgaard A. Sperling L. Dahlqvist M. Thomsen K. Vydmantaite G. Li F. Thunemann M. Lauritzen M. Lind B.L. PV interneurons evoke astrocytic C a 2+ responses in awake mice, which contributes to neurovascular coupling. Glia 2023 71 8 1830 1846 10.1002/glia.24370 36994892
    [Google Scholar]
  28. Lichvarova L. Henzi T. Safiulina D. Kaasik A. Schwaller B. Parvalbumin alters mitochondrial dynamics and affects cell morphology. Cell. Mol. Life Sci. 2018 75 24 4643 4666 10.1007/s00018‑018‑2921‑x 30255402
    [Google Scholar]
  29. Kann O. Papageorgiou I.E. Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow Metab. 2014 34 8 1270 1282 10.1038/jcbfm.2014.104 24896567
    [Google Scholar]
  30. Nahar L. Delacroix B.M. Nam H.W. The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Front. Psychiatry 2021 12 679960 10.3389/fpsyt.2021.679960 34220586
    [Google Scholar]
  31. Wang Z. Jin A. Yang Z. Huang W. Advanced nitric oxide generating nanomedicine for therapeutic applications. ACS Nano. 2023 17 10 8935 8965 10.1021/acsnano.3c02303 37126728
    [Google Scholar]
  32. Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 2021 17 9 575 590 10.1038/s41581‑021‑00429‑z 34075241
    [Google Scholar]
  33. Loscalzo J. Nitric oxide in vascular biology: Elegance in complexity. J. Clin. Invest. 2024 134 4 e176747 10.1172/JCI176747 38357929
    [Google Scholar]
  34. Ignarro L.J. Nitric oxide is not just blowing in the wind. Br. J. Pharmacol. 2019 176 2 131 134 10.1111/bph.14540 30556130
    [Google Scholar]
  35. Yang T. Zelikin A.N. Chandrawati R. Enzyme mimics for the catalytic generation of nitric oxide from endogenous prodrugs. Small 2020 16 27 1907635 10.1002/smll.201907635 32372556
    [Google Scholar]
  36. Ataabadi A.E. Golshiri K. Jüttner A. Krenning G. Danser A.H.J. Roks A.J.M. Nitric Oxide-cGMP signaling in hypertension. Hypertension 2020 76 4 1055 1068 10.1161/HYPERTENSIONAHA.120.15856 32829664
    [Google Scholar]
  37. Zhang X. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural. Regen. Res. 2025 20 2 402 415 10.4103/NRR.NRR‑D‑23‑01353
    [Google Scholar]
  38. Tropea M.R. Gulisano W. Vacanti V. Arancio O. Puzzo D. Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer’s disease. Free Radic. Biol. Med. 2022 193 Pt 2 657 668 10.1016/j.freeradbiomed.2022.11.022 36400326
    [Google Scholar]
  39. An L. Shen Y. Chopp M. Zacharek A. Venkat P. Chen Z. Li W. Qian Y. Landschoot-Ward J. Chen J. Deficiency of endothelial nitric oxide synthase (eNOS) exacerbates brain damage and cognitive deficit in a mouse model of vascular dementia. Aging Dis. 2021 12 3 732 746 10.14336/AD.2020.0523 34094639
    [Google Scholar]
  40. Zhu H.Y. Hong F.F. Yang S.L. The roles of nitric oxide synthase/nitric oxide pathway in the pathology of vascular dementia and related therapeutic approaches. Int. J. Mol. Sci. 2021 22 9 4540 10.3390/ijms22094540 33926146
    [Google Scholar]
  41. Wu H. Zheng J. Xu S. Fang Y. Wu Y. Zeng J. Shao A. Shi L. Lu J. Mei S. Wang X. Guo X. Wang Y. Zhao Z. Zhang J. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J. Neuroinflammat. 2021 18 1 2 10.1186/s12974‑020‑02041‑7 33402181
    [Google Scholar]
  42. Morou-Bermúdez E. Torres-Colón J.E. Bermúdez N.S. Patel R.P. Joshipura K.J. Pathways linking oral bacteria, nitric oxide metabolism, and health. J. Dent. Res. 2022 101 6 623 631 10.1177/00220345211064571 35081826
    [Google Scholar]
  43. Kapil V. Khambata R.S. Jones D.A. Rathod K. Primus C. Massimo G. Fukuto J.M. Ahluwalia A. The noncanonical pathway for in vivo nitric oxide generation: The nitrate-nitrite-nitric oxide pathway. Pharmacol. Rev. 2020 72 3 692 766 10.1124/pr.120.019240 32576603
    [Google Scholar]
  44. Amdahl M.B. DeMartino A.W. Gladwin M.T. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol. Chem. 2019 401 1 201 211 10.1515/hsz‑2019‑0349 31747370
    [Google Scholar]
  45. Kuhnle G.G. Luben R. Khaw K.T. Feelisch M. Sulfate, nitrate and blood pressure – An EPIC interaction between sulfur and nitrogen. Pharmacol. Res. 2017 122 127 129 10.1016/j.phrs.2017.06.006 28610958
    [Google Scholar]
  46. Park B.M. Cha S.A. Kim H.Y. Kang D.K. Yuan K. Chun H. Chae S.W. Kim S.H. Fermented garlic extract decreases blood pressure through nitrite and sGC-cGMP-PKG pathway in spontaneously hypertensive rats. J. Funct. Foods 2016 22 156 165 10.1016/j.jff.2016.01.034
    [Google Scholar]
  47. Baik J. Min J. Ju S. Ahn J. Ko S. Chon H. Kim M. Shin Y. Effects of fermented garlic extract containing nitric oxide metabolites on blood flow in healthy participants: A randomized controlled trial. Nutrients 2022 14 24 5238 10.3390/nu14245238 36558397
    [Google Scholar]
  48. Heredia-López F.J. Álvarez-Cervera F.J. Collí-Alfaro J.G. Bata-García J.L. Arankowsky-Sandoval G. Góngora-Alfaro J.L. An automated Y-maze based on a reduced instruction set computer (RISC) microcontroller for the assessment of continuous spontaneous alternation in rats. Behav. Res. Methods 2016 48 4 1631 1643 10.3758/s13428‑015‑0674‑0 26563396
    [Google Scholar]
  49. Mo J. Enkhjargal B. Travis Z.D. Zhou K. Wu P. Zhang G. Zhu Q. Zhang T. Peng J. Xu W. Ocak U. Chen Y. Tang J. Zhang J. Zhang J.H. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019 20 75 86 10.1016/j.redox.2018.09.022 30296700
    [Google Scholar]
  50. Kim K.J. Diaz J.R. Presa J.L. Muller P.R. Brands M.W. Khan M.B. Hess D.C. Althammer F. Stern J.E. Filosa J.A. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. Geroscience 2021 43 3 1405 1422 10.1007/s11357‑020‑00305‑x 33410092
    [Google Scholar]
  51. Ben-Ari H. Lifschytz T. Wolf G. Rigbi A. Blumenfeld-Katzir T. Merzel T.K. Koroukhov N. Lotan A. Lerer B. White matter lesions, cerebral inflammation and cognitive function in a mouse model of cerebral hypoperfusion. Brain Res. 2019 1711 193 201 10.1016/j.brainres.2019.01.017 30659829
    [Google Scholar]
  52. Hase Y. Craggs L. Hase M. Stevenson W. Slade J. Lopez D. Mehta R. Chen A. Liang D. Oakley A. Ihara M. Horsburgh K. Kalaria R.N. Effects of environmental enrichment on white matter glial responses in a mouse model of chronic cerebral hypoperfusion. J. Neuroinflammation 2017 14 1 81 10.1186/s12974‑017‑0850‑5 28399892
    [Google Scholar]
  53. Sigfridsson E. Marangoni M. Hardingham G.E. Horsburgh K. Fowler J.H. Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment. J. Neuroinflammation 2020 17 1 367 10.1186/s12974‑020‑02038‑2 33261626
    [Google Scholar]
  54. Liu Q. Bhuiyan M.I.H. Liu R. Song S. Begum G. Young C.B. Foley L.M. Chen F. Hitchens T.K. Cao G. Chattopadhyay A. He L. Sun D. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. J. Neuroinflammation 2021 18 1 187 10.1186/s12974‑021‑02234‑8 34454529
    [Google Scholar]
  55. Selvaraji S. Efthymios M. Foo R.S.Y. Fann D.Y. Lai M.K.P. Chen C.L.H. Lim K.L. Arumugam T.V. Time-restricted feeding modulates the DNA methylation landscape, attenuates hallmark neuropathology and cognitive impairment in a mouse model of vascular dementia. Theranostics 2022 12 7 3007 3023 10.7150/thno.71815 35547760
    [Google Scholar]
  56. Lin H. Zhang J. Dai Y. Liu H. He X. Chen L. Tao J. Li C. Liu W. Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion. J. Sport Health Sci. 2023 12 1 116 129 10.1016/j.jshs.2022.01.008 35066217
    [Google Scholar]
  57. Oo E.M. Ruamyod K. Khowawisetsut L. Turbpaiboon C. Chaisuksunt V. Uawithya P. Pholphana N. Rangkadilok N. Chompoopong S. Germinated brown rice attenuates cell death in vascular cognitive impaired mice and glutamate-induced toxicity in HT22 Cells. J. Agric. Food Chem. 2020 68 18 5093 5106 10.1021/acs.jafc.9b07957 32275827
    [Google Scholar]
  58. Zhang N. Xing M. Wang Y. Tao H. Cheng Y. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF–NMDAR pathways in a rat model of vascular dementia. Neuroscience 2015 311 284 291 10.1016/j.neuroscience.2015.10.038 26518460
    [Google Scholar]
  59. Pal M.M. Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders. Front. Hum. Neurosci. 2021 15 722323 10.3389/fnhum.2021.722323 34776901
    [Google Scholar]
  60. Tiwari D.K. Sharma G. Prakash M.M. Parihar M.S. Dawane V. Effects of high glutamate concentrations on mitochondria of human neuroblastoma SH-SY5Y cells. Ann. Pharm. Fr. 2023 81 3 457 465 10.1016/j.pharma.2022.10.003 36252868
    [Google Scholar]
  61. Jindal A. Rajagopal S. Winter L. Miller J.W. Jacobsen D.W. Brigman J. Allan A.M. Paul S. Poddar R. Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol. Dis. 2019 127 287 302 10.1016/j.nbd.2019.03.012 30885791
    [Google Scholar]
  62. Neves D. Salazar I.L. Almeida R.D. Silva R.M. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci. 2023 328 121814 10.1016/j.lfs.2023.121814 37236602
    [Google Scholar]
  63. Zhong W. Cheng J. Yang X. Liu W. Li Y. Heliox preconditioning exerts neuroprotective effects on neonatal ischemia/hypoxia injury by inhibiting necroptosis induced by Ca2+ elevation. Transl. Stroke Res. 2023 14 3 409 424 10.1007/s12975‑022‑01021‑8 35445968
    [Google Scholar]
  64. Winkel F. Ryazantseva M. Voigt M.B. Didio G. Lilja A. Pou L.M. Steinzeig A. Harkki J. Englund J. Khirug S. Rivera C. Palva S. Taira T. Lauri S.E. Umemori J. Castrén E. Pharmacological and optical activation of TrkB in Parvalbumin interneurons regulate intrinsic states to orchestrate cortical plasticity. Mol. Psychiatry 2021 26 12 7247 7256 10.1038/s41380‑021‑01211‑0 34321594
    [Google Scholar]
  65. Ali F. Baringer S.L. Neal A. Choi E.Y. Kwan A.C. Parvalbumin-positive neuron loss and amyloid-β deposits in the frontal cortex of alzheimer’s disease-related mice. J. Alzheimers Dis. 2019 72 4 1323 1339 10.3233/JAD‑181190 31743995
    [Google Scholar]
  66. Hongo N. Takamura Y. Nishimaru H. Matsumoto J. Tobe K. Saito T. Saido T.C. Nishijo H. Astaxanthin ameliorated parvalbumin-positive neuron deficits and alzheimer’s disease-related pathological progression in the hippocampus of AppNL-G-F/NL-G-F mice. Front. Pharmacol. 2020 11 307 10.3389/fphar.2020.00307 32218736
    [Google Scholar]
  67. Gantner B.N. LaFond K.M. Bonini M.G. Nitric oxide in cellular adaptation and disease. Redox Biol. 2020 34 101550 10.1016/j.redox.2020.101550 32438317
    [Google Scholar]
  68. Tripathi M.K. Kartawy M. Amal H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol. 2020 34 101567 10.1016/j.redox.2020.101567 32464501
    [Google Scholar]
  69. Li S. Wang Y. Jiang Z. Huai Y. Liao J.K. Lynch K.A. Zafonte R. Wood L.J. Wang Q.M. Impaired Cognitive Performance in Endothelial Nitric Oxide Synthase Knockout Mice After Ischemic Stroke. Am. J. Phys. Med. Rehabil. 2018 97 7 492 499 10.1097/PHM.0000000000000904 29406402
    [Google Scholar]
  70. Yang H.H. Chen Y. Gao C.Y. Cui Z.T. Yao J.M. Protective effects of MicroRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cell. Physiol. Biochem. 2017 42 2 506 518 10.1159/000477597 28578351
    [Google Scholar]
  71. Park B.M. Chun H. Chae S.W. Kim S.H. Fermented garlic extract ameliorates monocrotaline-induced pulmonary hypertension in rats. J. Funct. Foods 2017 30 247 253 10.1016/j.jff.2017.01.024
    [Google Scholar]
  72. Lee Y.J. Lee D. Shin S.M. Lee J.S. Chun H.S. Quan F-S. Shin J.H. Lee G-J. Potential protective effects of fermented garlic extract on myocardial ischemia-reperfusion injury utilizing in vitro and ex vivo models. J. Funct. Foods 2017 33 278 285 10.1016/j.jff.2017.03.058
    [Google Scholar]
  73. Zhang X. Yang S.B. Cheng L. Ho K. Kim M.S. Botanical mixture containing nitric oxide metabolite enhances neural plasticity to improve cognitive impairment in a vascular dementia rat model. Nutrients 2023 15 20 4381 10.3390/nu15204381 37892455
    [Google Scholar]
  74. Yang Y. Zhao X. Zhu Z. Zhang L. Vascular dementia: A microglia’s perspective. Ageing Res. Rev. 2022 81 101734 10.1016/j.arr.2022.101734 36113763
    [Google Scholar]
  75. Wang Q. Zheng J. Pettersson S. Reynolds R. Tan E.K. The link between neuroinflammation and the neurovascular unit in synucleinopathies. Sci. Adv. 2023 9 7 eabq1141 10.1126/sciadv.abq1141 36791205
    [Google Scholar]
  76. Ribeiro F.M. Understanding brain diseases: From receptor dysregulation to neurodegeneration, neuroinflammation and memory impairment. Curr. Neuropharmacol. 2023 21 2 162 163 10.2174/1570159X2102221212143233 36859816
    [Google Scholar]
/content/journals/cn/10.2174/011570159X356939250306075324
Loading
/content/journals/cn/10.2174/011570159X356939250306075324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test