Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery. Reactive oxygen species (ROS) generated by MAO can influence miRNA-CYP enzyme regulatory network and affect mitochondrial function. Tryptamine regulates AHR function by acting as an endogenous ligand for AHR, initiating AHR activation and inhibiting the expression of the CYP1A1 and CYP1A2 genes. The dysregulation of AHR signalling, triggered by endogenous tryptamine binding, can disrupt the regulation of prolactin levels. Depending on the tryptamine concentration and context, tryptamine can be beneficial or harmful. By acting as an agonist of inhibitory serotonin receptors and trace-amine associated receptor 1 (TAAR1) and an antagonist of excitatory serotonin receptors, it can engage in diverse physiological interactions with serotonin. Increased tryptamine production is observed under hypoxic conditions and is associated with hypoxia-inducible factor 1α (HIF-1α) activation, leading to AHR activation. Dysregulation of the association between tryptamine levels, AHR signalling pathway activation, and MAO activity is observed in Alzheimer’s disease (AD), Parkinson’s disease (PD), autism spectrum disorder (ASD) and schizophrenia.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X340635241022113450
2025-01-13
2025-09-02
Loading full text...

Full text loading...

/deliver/fulltext/cn/23/11/CN-23-11-02.html?itemId=/content/journals/cn/10.2174/011570159X340635241022113450&mimeType=html&fmt=ahah

References

  1. WarshJ.J. CoscinaD.V. GodseD.D. ChanP.W. Dependence of brain tryptamine formation on tryptophan availability.J. Neurochem.19793241191119610.1111/j.1471‑4159.1979.tb11046.x 430080
    [Google Scholar]
  2. BadawyA.A.B. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects.Int. J. Tryptophan Res.2017101117864691769193810.1177/1178646917691938 28469468
    [Google Scholar]
  3. Daujat-ChavanieuM. KotM. Albumin is a secret factor involved in multidirectional interactions among the serotoninergic, immune and endocrine systems that supervises the mechanism of CYP1A and CYP3A regulation in the liver.Pharmacol. Ther.202021510761610.1016/j.pharmthera.2020.107616 32590025
    [Google Scholar]
  4. KotM. NeglurP.K. PietraszewskaA. BuzanskaL. Boosting neurogenesis in the adult hippocampus using antidepressants and mesenchymal stem cells.Cells20221120323410.3390/cells11203234 36291101
    [Google Scholar]
  5. JonesR.S.G. Tryptamine: A neuromodulator or neurotransmitter in mammalian brain?Prog. Neurobiol.1982191-211713910.1016/0301‑0082(82)90023‑5 6131482
    [Google Scholar]
  6. MaoH. ChenB. QianX. LiuZ. Simultaneous determination of twelve biogenic amines in serum by high performance liquid chromatography.Microchem. J.200991217618010.1016/j.microc.2008.10.005
    [Google Scholar]
  7. WuQ.C. LinD.Q. ShiW. ZhangQ.L. YaoS.J. A mixed-mode resin with tryptamine ligand for human serum albumin separation.J. Chromatogr. A2016143114515310.1016/j.chroma.2015.12.066 26772961
    [Google Scholar]
  8. JonesR.S.G. In vivo pharmacological studies on the interactions between tryptamine and 5‐hydroxytryptamine.Br. J. Pharmacol.198173248549310.1111/j.1476‑5381.1981.tb10447.x 6972243
    [Google Scholar]
  9. KotM. DanielW.A. Cytochrome P450 is regulated by noradrenergic and serotonergic systems.Pharmacol. Res.201164437138010.1016/j.phrs.2011.06.020 21742037
    [Google Scholar]
  10. KotM. PilcA. DanielW.A. Simultaneous alterations of brain and plasma serotonin concentrations and liver cytochrome P450 in rats fed on a tryptophan-free diet.Pharmacol. Res.201266429229910.1016/j.phrs.2012.06.009 22749902
    [Google Scholar]
  11. LarsonA.A. DaloN.L. Quantification of tryptamine in brain using high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.19863751374710.1016/S0378‑4347(00)83689‑0 3958108
    [Google Scholar]
  12. CoxB. LeeT.F. MartinD. Different hypothalamic receptors mediate 5-hydroxytryptamine- and tryptamine-induced core temperature changes in the rat.Br. J. Pharmacol.198172347748210.1111/j.1476‑5381.1981.tb10999.x 7260487
    [Google Scholar]
  13. JonesR. A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat.Neuropharmacology198221320921410.1016/0028‑3908(82)90189‑7 7070598
    [Google Scholar]
  14. JonesR.S.G. BoultonA.A. Interactions between p -tyramine, m -tyramine, or β-phenylethylamine and dopamine on single neurones in the cortex and caudate nucleus of the rat.Can. J. Physiol. Pharmacol.198058222222710.1139/y80‑038 6247042
    [Google Scholar]
  15. BurchettS.A. HicksT.P. The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain.Prog. Neurobiol.2006795-622324610.1016/j.pneurobio.2006.07.003 16962229
    [Google Scholar]
  16. BunzowJ.R. SondersM.S. ArttamangkulS. HarrisonL.M. ZhangG. QuigleyD.I. DarlandT. SuchlandK.L. PasumamulaS. KennedyJ.L. OlsonS.B. MagenisR.E. AmaraS.G. GrandyD.K. Amphetamine, 3,4-methylenedioxymethampheta-mine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.Mol. Pharmacol.20016061181118810.1124/mol.60.6.1181 11723224
    [Google Scholar]
  17. BorowskyB. AdhamN. JonesK.A. RaddatzR. ArtymyshynR. OgozalekK.L. DurkinM.M. LakhlaniP.P. BoniniJ.A. PathiranaS. BoyleN. PuX. KouranovaE. LichtblauH. OchoaF.Y. BranchekT.A. GeraldC. Trace amines: Identification of a family of mammalian G protein-coupled receptors.Proc. Natl. Acad. Sci. USA200198168966897110.1073/pnas.151105198 11459929
    [Google Scholar]
  18. ZhangY. ZhangX.Q. NiuW.P. SunM. ZhangY. LiJ.T. SiT.M. SuY.A. TAAR1 in dentate gyrus is involved in chronic stress-induced impairments in hippocampal plasticity and cognitive function.Prog. Neuropsychopharmacol. Biol. Psychiatry202413211099510.1016/j.pnpbp.2024.110995 38514038
    [Google Scholar]
  19. DedicN. WangL. Hajos-KorcsokE. Hecksher-SørensenJ. RoostaluU. VickersS.P. WuS. AnackerC. SynanC. JonesP.G. MilanovicS. HopkinsS.C. BristowL.J. KoblanK.S. TAAR1 agonists improve glycemic control, reduce body weight and modulate neurocircuits governing energy balance and feeding.Mol. Metab.20248010188310.1016/j.molmet.2024.101883 38237896
    [Google Scholar]
  20. TakakiM. MaweG.M. BaraschJ.M. GershonM.D. GershonM.D. Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine.Neuroscience198516122324010.1016/0306‑4522(85)90059‑4 2940472
    [Google Scholar]
  21. CorrellC.U. KoblanK.S. HopkinsS.C. LiY. Safety and effectiveness of ulotaront (SEP-363856) in schizophrenia: Results of a 6-month, open-label extension study.NPJ Schizophr.2021716310.1038/s41537‑021‑00190‑z 34887427
    [Google Scholar]
  22. AchtyesE.D. HopkinsS.C. DedicN. DworakH. ZeniC. KoblanK. Ulotaront: Review of preliminary evidence for the efficacy and safety of a TAAR1 agonist in schizophrenia.Eur. Arch. Psychiatry Clin. Neurosci.202327371543155610.1007/s00406‑023‑01580‑3 37165101
    [Google Scholar]
  23. TsukadaH. MilanovicS.M. DarpoB. XueH. XiongK. TrippE. LennekL. WordenM. HopkinsS.C. GalluppiG.R. A randomized, single‐dose, crossover study of the effects of ulotaront on electrocardiogram intervals in subjects with schizophrenia.Clin. Transl. Sci.20231661063107410.1111/cts.13512 36949248
    [Google Scholar]
  24. MitchellJ.M. BogenschutzM. LiliensteinA. HarrisonC. KleimanS. Parker-GuilbertK. Ot’aloraG. M.; Garas, W.; Paleos, C.; Gorman, I.; Nicholas, C.; Mithoefer, M.; Carlin, S.; Poulter, B.; Mithoefer, A.; Quevedo, S.; Wells, G.; Klaire, S.S.; van der Kolk, B.; Tzarfaty, K.; Amiaz, R.; Worthy, R.; Shannon, S.; Woolley, J.D.; Marta, C.; Gelfand, Y.; Hapke, E.; Amar, S.; Wallach, Y.; Brown, R.; Hamilton, S.; Wang, J.B.; Coker, A.; Matthews, R.; de Boer, A.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted therapy for severe PTSD: A randomized, double-blind, placebo-controlled phase 3 study.Nat. Med.20212761025103310.1038/s41591‑021‑01336‑3 33972795
    [Google Scholar]
  25. Ho¨kfeltT. FuxeK. GoldsteinM. Immunohistochemical localization of aromatic L-amino acid decarboxylase (DOPA decarboxylase) in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat.Brain Res.197353117518010.1016/0006‑8993(73)90776‑2 4121370
    [Google Scholar]
  26. LiX.M. JuorioA.V. PatersonI.A. WalzW. ZhuM.Y. BoultonA.A. Gene expression of aromatic L-amino acid decarboxylase in cultured rat glial cells.J. Neurochem.19925931172117510.1111/j.1471‑4159.1992.tb08363.x 1494905
    [Google Scholar]
  27. JuorioA.V. LiX.M. WalzW. PatersonI.A. Decarboxylation of L-dopa by cultured mouse astrocytes.Brain Res.19936261-230630910.1016/0006‑8993(93)90592‑B 8281440
    [Google Scholar]
  28. EatonM.J. GudehithluK.P. QuachT. SilviaC.P. HadjiconstantinouM. NeffN.H. Distribution of aromatic L‐amino acid decarboxylase mRNA in mouse brain by in situ hybridization histology.J. Comp. Neurol.1993337464065410.1002/cne.903370409 7904615
    [Google Scholar]
  29. KubovcakovaL. KrizanovaO. KvetnanskyR. Identification of the aromatic l-amino acid decarboxylase gene expression in various mice tissues and its modulation by immobilization stress in stellate ganglia.Neuroscience2004126237538010.1016/j.neuroscience.2004.04.005 15207355
    [Google Scholar]
  30. BerryM.D. JuorioA.V. LiX.M. BoultonA.A. Aromaticl-amino acid decarboxylase: A neglected and misunderstood enzyme.Neurochem. Res.19962191075108710.1007/BF02532418 8897471
    [Google Scholar]
  31. PearsonT.S. GilbertL. OpladenT. Garcia-CazorlaA. MastrangeloM. LeuzziV. TayS.K.H. Sykut-CegielskaJ. PonsR. Mercimek-AndrewsS. KatoM. LückeT. OppebøenM. KurianM.A. SteelD. MantiF. MeeksK.D. JeltschK. FlintL. AADC deficiency from infancy to adulthood: Symptoms and developmental outcome in an international cohort of 63 patients.J. Inherit. Metab. Dis.20204351121113010.1002/jimd.12247 32369189
    [Google Scholar]
  32. BucklandP.R. MarshallR. WatkinsP. McGuffinP. Does phenylethylamine have a role in schizophrenia?: LSD and PCP up-regulate aromatic l-amino acid decarboxylase mRNA levels.Brain Res. Mol. Brain Res.1997491-226627010.1016/S0169‑328X(97)00160‑5 9387886
    [Google Scholar]
  33. RoagerH.M. LichtT.R. Microbial tryptophan catabolites in health and disease.Nat. Commun.201891329410.1038/s41467‑018‑05470‑4 30120222
    [Google Scholar]
  34. MartinA.M. SunE.W. RogersG.B. KeatingD.J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release.Front. Physiol.20191042810.3389/fphys.2019.00428 31057420
    [Google Scholar]
  35. DinanT.G. CryanJ.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration.J. Physiol.2017595248950310.1113/JP273106 27641441
    [Google Scholar]
  36. SharonG. CruzN.J. KangD.W. GandalM.J. WangB. KimY.M. ZinkE.M. CaseyC.P. TaylorB.C. LaneC.J. BramerL.M. IsernN.G. HoytD.W. NoeckerC. SweredoskiM.J. MoradianA. BorensteinE. JanssonJ.K. KnightR. MetzT.O. LoisC. GeschwindD.H. Krajmalnik-BrownR. MazmanianS.K. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice.Cell2019177616001618.e1710.1016/j.cell.2019.05.004 31150625
    [Google Scholar]
  37. ClarkeG. GrenhamS. ScullyP. FitzgeraldP. MoloneyR.D. ShanahanF. DinanT.G. CryanJ.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.Mol. Psychiatry201318666667310.1038/mp.2012.77 22688187
    [Google Scholar]
  38. NeufeldK.M. KangN. BienenstockJ. FosterJ.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice.Neurogastroenterol. Motil.201123325526410.1111/j.1365‑2982.2010.01620.x 21054680
    [Google Scholar]
  39. AtarashiK. TanoueT. OshimaK. SudaW. NaganoY. NishikawaH. FukudaS. SaitoT. NarushimaS. HaseK. KimS. FritzJ.V. WilmesP. UehaS. MatsushimaK. OhnoH. OlleB. SakaguchiS. TaniguchiT. MoritaH. HattoriM. HondaK. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.Nature2013500746123223610.1038/nature12331 23842501
    [Google Scholar]
  40. ArchambaudC. SismeiroO. ToedlingJ. SoubigouG. BécavinC. LechatP. LebretonA. CiaudoC. CossartP. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection.MBio201346e00707e0071310.1128/mBio.00707‑13 24327339
    [Google Scholar]
  41. BerryM.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators.J. Neurochem.200490225727110.1111/j.1471‑4159.2004.02501.x 15228583
    [Google Scholar]
  42. GreenH. SawyerJ.L. Correlation of tryptamine-induced convulsions in rats with brain tryptamine concentration.Exp. Biol. Med. (Maywood)1960104115315510.3181/00379727‑104‑25762 13851488
    [Google Scholar]
  43. BurdenD.A. PhilipsS.R. Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain.J. Neurochem.19803461725173210.1111/j.1471‑4159.1980.tb11267.x 7381498
    [Google Scholar]
  44. DominoE.F. GahaganS. In vitro half-life of 14-C-tryptamine in whole blood of drug-free chronic schizophrenic patients.Am. J. Psychiatry1977134111280128210.1176/ajp.134.11.1280 910985
    [Google Scholar]
  45. TabakoffB. MosesF. PhilipsS.R. BoultonA.A. Effects of tranylcypromine and pargyline on brain tryptamine.Experientia197733338038110.1007/BF02002839 870336
    [Google Scholar]
  46. PhilipsS.R. BoultonA.A. The effect of monoamine oxidase inhibitors on some arylalkylamines in rate striatum.J. Neurochem.197933115916710.1111/j.1471‑4159.1979.tb11718.x 572413
    [Google Scholar]
  47. PhilipsS.R. BakerG.B. McKimH.R. Effects of tranylcypromine on the concentrations of some trace amines in the diencephalon and hippocampus of the rat.Experientia198036224124210.1007/BF01953756 7371771
    [Google Scholar]
  48. SullivanJ.P. McDonnellL. HardimanO.M. FarrellM.A. PhillipsJ.P. TiptonK.F. The oxidation of tryptamine by the two forms of monoamine oxidase in human tissues.Biochem. Pharmacol.198635193255326010.1016/0006‑2952(86)90421‑1 3094536
    [Google Scholar]
  49. YuA.M. GranvilC.P. HainingR.L. KrauszK.W. CorcheroJ. KüpferA. IdleJ.R. GonzalezF.J. The relative contribution of monoamine oxidase and cytochrome p450 isozymes to the metabolic deamination of the trace amine tryptamine.J. Pharmacol. Exp. Ther.2003304253954610.1124/jpet.102.043786 12538805
    [Google Scholar]
  50. WangC.C. BorchertA. Ugun-KlusekA. TangL.Y. LuiW.T. ChuC.Y. BillettE. KuhnH. UferC. Monoamine oxidase a expression is vital for embryonic brain development by modulating developmental apoptosis.J. Biol. Chem.201128632283222833010.1074/jbc.M111.241422 21697081
    [Google Scholar]
  51. ShihJ.C. ChenK. RiddM.J. Monoamine oxidase: From genes to behavior.Annu. Rev. Neurosci.199922119721710.1146/annurev.neuro.22.1.197 10202537
    [Google Scholar]
  52. KuczynskaZ. NeglurP.K. MetinE. LiputM. ZychowiczM. ZayatV. KrześniakN.E. BuzanskaL. KotM. Safety of GMP-compliant iPSC lines generated by Sendai virus transduction is dependent upon clone identity and sex of the donor.Folia Neuropathol.2024621324610.5114/fn.2024.134026 38741435
    [Google Scholar]
  53. FowlerJ.S. Alia-KleinN. KriplaniA. LoganJ. WilliamsB. ZhuW. CraigI.W. TelangF. GoldsteinR. VolkowN.D. VaskaP. WangG.J. Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects.Biol. Psychiatry200762435535810.1016/j.biopsych.2006.08.038 17141746
    [Google Scholar]
  54. ErnstM. MoolchanE.T. RobinsonM.L. Behavioral and neural consequences of prenatal exposure to nicotine.J. Am. Acad. Child Adolesc. Psychiatry200140663064110.1097/00004583‑200106000‑00007 11392340
    [Google Scholar]
  55. LeroyC. BragulatV. BerlinI. GrégoireM.C. BottlaenderM. RoumenovD. DolléF. BourgeoisS. PenttiläJ. ArtigesE. MartinotJ.L. TrichardC. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]befloxatone.J. Clin. Psychopharmacol.2009291868810.1097/JCP.0b013e31819e98f 19142115
    [Google Scholar]
  56. FowlerJ.S. VolkowN.D. WangG.J. PappasN. LoganJ. MacgregorR. AlexoffD. WolfA.P. WarnerD. CilentoR. ZezulkovaI. Neuropharmacological actions of cigarette smoke: Brain monoamine oxidase B (MAO B) inhibition.J. Addict. Dis.1998171233410.1300/J069v17n01_03 9549600
    [Google Scholar]
  57. MantleT.J. GarrettN.J. TiptonK.F. The development of monoamine oxidase in rat liver and brain.FEBS Lett.197664122722910.1016/0014‑5793(76)80289‑X 1269755
    [Google Scholar]
  58. BenedettiM.S. DosiertP. TiptonK.F. Developmental aspects of the monoamine-degrading enzyme monoamine oxidase.Dev. Pharmacol. Ther.1992183-419120010.1159/000480622 1306808
    [Google Scholar]
  59. WilloughbyJ. GloverV. SandlerM. Histochemical localisation of monoamine oxidase A and B in rat brain.J. Neural Transm. (Vienna)1988741294210.1007/BF01243573 3171572
    [Google Scholar]
  60. SauraJ. BleuelZ. UlrichJ. MendelowitschA. ChenK. ShihJ.C. MalherbeP. Da PradaM. RichardsJ.G. Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry.Neuroscience199670375577410.1016/S0306‑4522(96)83013‑2 9045087
    [Google Scholar]
  61. JahngJ.W. HouptT.A. WesselT.C. ChenK. ShihJ.C. JohT.H. Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization.Synapse19972513036 8987145
    [Google Scholar]
  62. CasesO. VitalisT. SeifI. De MaeyerE. SoteloC. GasparP. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: Role of a serotonin excess during the critical period.Neuron199616229730710.1016/S0896‑6273(00)80048‑3 8789945
    [Google Scholar]
  63. TanY.Y. JennerP. ChenS.D. Monoamine oxidase-B inhibitors for the treatment of parkinson’s disease: Past, present, and future.J. Parkinsons Dis.202212247749310.3233/JPD‑212976 34957948
    [Google Scholar]
  64. ZhongG. GuoJ. PangC. SuD. TangC. JingL. ZhangF. HeP. YanY. ChenZ. LiuJ. JiangN. Novel AP2238-clorgiline hybrids as multi-target agents for the treatment of Alzheimer’s disease: Design, synthesis, and biological evaluation.Bioorg. Chem.202313010622410.1016/j.bioorg.2022.106224 36332315
    [Google Scholar]
  65. CohenG. FarooquiR. KeslerN. Parkinson disease: A new link between monoamine oxidase and mitochondrial electron flow.Proc. Natl. Acad. Sci. USA199794104890489410.1073/pnas.94.10.4890 9144160
    [Google Scholar]
  66. UferC. WangC.C. BorchertA. HeydeckD. KuhnH. Redox control in mammalian embryo development.Antioxid. Redox Signal.201013683387510.1089/ars.2009.3044 20367257
    [Google Scholar]
  67. MagentaA. CencioniC. FasanaroP. ZaccagniniG. GrecoS. Sarra-FerrarisG. AntoniniA. MartelliF. CapogrossiM.C. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition.Cell Death Differ.201118101628163910.1038/cdd.2011.42 21527937
    [Google Scholar]
  68. Ugun-KlusekA. TheodosiT.S. FitzgeraldJ.C. BurtéF. UferC. BoocockD.J. Yu-Wai-ManP. BedfordL. BillettE.E. Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation.Redox Biol.20192016718110.1016/j.redox.2018.10.003 30336354
    [Google Scholar]
  69. DavalliP. MiticT. CaporaliA. LauriolaA. D’ArcaD. ROS, cell senescence, and novel molecular mechanisms in aging and age‐related diseases.Oxid. Med. Cell. Longev.201620161356512710.1155/2016/3565127 27247702
    [Google Scholar]
  70. SantinY. RestaJ. PariniA. Mialet-PerezJ. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes.Ageing Res. Rev.20216610125610.1016/j.arr.2021.101256 33434685
    [Google Scholar]
  71. ZhangR. ZhangQ. NiuJ. LuK. XieB. CuiD. XuS. Screening of microRNAs associated with Alzheimer’s disease using oxidative stress cell model and different strains of senescence accelerated mice.J. Neurol. Sci.20143381-2576410.1016/j.jns.2013.12.017 24423585
    [Google Scholar]
  72. Miñones-MoyanoE. PortaS. EscaramísG. RabionetR. IraolaS. KagerbauerB. Espinosa-ParrillaY. FerrerI. EstivillX. MartíE. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function.Hum. Mol. Genet.201120153067307810.1093/hmg/ddr210 21558425
    [Google Scholar]
  73. YoungW.F. LawsE.R. SharbroughF.W. WeinshilboumR.M. Human monoamine oxidase. Lack of brain and platelet correlation.Arch. Gen. Psychiatry198643660460910.1001/archpsyc.1986.01800060098012 3085628
    [Google Scholar]
  74. LuqueJ.M. KwanS.W. AbellC.W. PradaM.D. RichardsJ.G. Cellular expression of mRNAs encoding monoamine oxidases A and B in the rat central nervous system.J. Comp. Neurol.1995363466568010.1002/cne.903630410 8847423
    [Google Scholar]
  75. LevittP. PintarJ.E. BreakefieldX.O. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons.Proc. Natl. Acad. Sci. USA198279206385638910.1073/pnas.79.20.6385 6755469
    [Google Scholar]
  76. VitalisT. FouquetC. AlvarezC. SeifI. PriceD. GasparP. CasesO. Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse.J. Comp. Neurol.2002442433134710.1002/cne.10093 11793338
    [Google Scholar]
  77. EmilssonL. SaetreP. BalciunieneJ. CastenssonA. CairnsN. JazinE.E. Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients.Neurosci. Lett.20023261566010.1016/S0304‑3940(02)00307‑5 12052537
    [Google Scholar]
  78. AdolfssonR. GottfriesC-G. OrelandL. WibergÅ. WinbladB. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type.Life Sci.198027121029103410.1016/0024‑3205(80)90025‑9 7421397
    [Google Scholar]
  79. OrelandL. GottfriesC.G. Brain and brain monoamine oxidase in aging and in dementia of Alzheimer’s type.Prog. Neuropsychopharmacol. Biol. Psychiatry1986103-553354010.1016/0278‑5846(86)90023‑0 3797686
    [Google Scholar]
  80. AhlskogJ.E. UittiR.J. TyceG.M. O’BrienJ.F. PetersenR.C. KokmenE. Plasma catechols and monoamine oxidase metabolites in untreated Parkinson’s and Alzheimer’s diseases.J. Neurol. Sci.19961361-216216810.1016/0022‑510X(95)00318‑V 8815165
    [Google Scholar]
  81. Muck-SelerD. PreseckiP. MimicaN. MustapicM. PivacN. BabicA. NedicG. Folnegovic-SmalcV. Platelet serotonin concentration and monoamine oxidase type B activity in female patients in early, middle and late phase of Alzheimer’s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry20093371226123110.1016/j.pnpbp.2009.07.004 19602426
    [Google Scholar]
  82. TiptonK.F. O’CarrollA.M. McCroddenJ.M. The catalytic behaviour of monoamine oxidase.J. Neural Transm. Suppl.1987232535 3295115
    [Google Scholar]
  83. CrostE.H. ColettoE. BellA. JugeN. Ruminococcus gnavus: Friend or foe for human health.FEMS Microbiol. Rev.2023472fuad01410.1093/femsre/fuad014 37015876
    [Google Scholar]
  84. MariatD. FirmesseO. LevenezF. GuimarăesV.D. SokolH. DoréJ. CorthierG. FuretJ-P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age.BMC Microbiol.20099112310.1186/1471‑2180‑9‑123 19508720
    [Google Scholar]
  85. Vann JonesS.A. O’KellyA. Psychedelics as a treatment for Alzheimer’s disease dementia.Front. Synaptic Neurosci.2020123410.3389/fnsyn.2020.00034
    [Google Scholar]
  86. SkillbäckT. DelsingL. SynnergrenJ. MattssonN. JanelidzeS. NäggaK. KilanderL. HicksR. WimoA. WinbladB. HanssonO. BlennowK. EriksdotterM. ZetterbergH. CSF/] serum albumin ratio in dementias: A cross-sectional study on 1861 patients.Neurobiol. Aging2017591910.1016/j.neurobiolaging.2017.06.028 28779628
    [Google Scholar]
  87. AlafuzoffI. AdolfssonR. BuchtG. WinbladB. Albumin and immunoglobulin in plasma and cerebrospinal fluid, and blood-cerebrospinal fluid barrier function in patients with dementia of alzheimer type and multi-infarct dementia.J. Neurol. Sci.198360346547210.1016/0022‑510X(83)90157‑0 6631444
    [Google Scholar]
  88. BraganzaO. BednerP. HüttmannK. von StadenE. FriedmanA. SeifertG. SteinhäuserC. Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling.Epilepsia201253111898190610.1111/j.1528‑1167.2012.03665.x 22967085
    [Google Scholar]
  89. Guzman-MartinezL. MaccioniR.B. AndradeV. NavarreteL.P. PastorM.G. Ramos-EscobarN. Neuroinflammation as a common feature of neurodegenerative disorders.Front. Pharmacol.201910100810.3389/fphar.2019.01008 31572186
    [Google Scholar]
  90. CarterS.F. SchöllM. AlmkvistO. WallA. EnglerH. LångströmB. NordbergA. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG.J. Nucl. Med.2012531374610.2967/jnumed.110.087031 22213821
    [Google Scholar]
  91. GulyásB. PavlovaE. KásaP. GulyaK. BakotaL. VárszegiS. KellerÉ. HorváthM.C. NagS. HermeczI. MagyarK. HalldinC. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography.Neurochem. Int.2011581606810.1016/j.neuint.2010.10.013 21075154
    [Google Scholar]
  92. HongY. LiuY. ZhangG. WuH. HouY. Progesterone suppresses Aβ42-induced neuroinflammation by enhancing autophagy in astrocytes.Int. Immunopharmacol.20185433634310.1016/j.intimp.2017.11.044 29197800
    [Google Scholar]
  93. HerreraF. MartinV. CarreraP. García-SantosG. Rodriguez-BlancoJ. RodriguezC. AntolínI. Tryptamine induces cell death with ultrastructural features of autophagy in neurons and glia: Possible relevance for neurodegenerative disorders.Anat. Rec. A Discov. Mol. Cell. Evol. Biol.2006288A91026103010.1002/ar.a.20368 16892423
    [Google Scholar]
  94. MillerC.A. Expression of the human aryl hydrocarbon receptor complex in yeast. Activation of transcription by indole compounds.J. Biol. Chem.199727252328243282910.1074/jbc.272.52.32824 9407059
    [Google Scholar]
  95. Heath-PagliusoS. RogersW.J. TullisK. SeidelS.D. CenijnP.H. BrouwerA. DenisonM.S. Activation of the Ah receptor by tryptophan and tryptophan metabolites.Biochemistry19983733115081151510.1021/bi980087p 9708986
    [Google Scholar]
  96. VikströmB.L. CaiW. KlockeB. SeifertM. PongratzI. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases.Mol. Endocrinol.20122691542155110.1210/me.2011‑1351 22865928
    [Google Scholar]
  97. AgúndezJ.A. GallardoL. MartínezC. GervasiniG. BenítezJ. Modulation of CYP1A2 enzyme activity by indoleamines: Inhibition by serotonin and tryptamine.Pharmacogenetics199883251258 9682270
    [Google Scholar]
  98. VeldhoenM. HirotaK. WestendorfA.M. BuerJ. DumoutierL. RenauldJ.C. StockingerB. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins.Nature2008453719110610910.1038/nature06881 18362914
    [Google Scholar]
  99. RothhammerV. QuintanaF.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease.Nat. Rev. Immunol.201919318419710.1038/s41577‑019‑0125‑8 30718831
    [Google Scholar]
  100. LewB.J. CollinsL.L. O’ReillyM.A. LawrenceB.P. Activation of the aryl hydrocarbon receptor during different critical windows in pregnancy alters mammary epithelial cell proliferation and differentiation.Toxicol. Sci.2009111115116210.1093/toxsci/kfp125 19502548
    [Google Scholar]
  101. ChopraM. SchrenkD. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis - Persistent pollutants affect programmed cell death.Crit. Rev. Toxicol.201141429232010.3109/10408444.2010.524635 21323611
    [Google Scholar]
  102. WormkeM. StonerM. SavilleB. SafeS. Crosstalk between estrogen receptor α and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes.FEBS Lett.20004781-210911210.1016/S0014‑5793(00)01830‑5 10922479
    [Google Scholar]
  103. BeamerC.A. KreitingerJ.M. ColeS.L. ShepherdD.M. Targeted deletion of the aryl hydrocarbon receptor in dendritic cells prevents thymic atrophy in response to dioxin.Arch. Toxicol.201993235536810.1007/s00204‑018‑2366‑x 30499018
    [Google Scholar]
  104. KotM. Daujat-ChavanieuM. The impact of serotonergic system dysfunction on the regulation of P4501A isoforms during liver insufficiency and consequences for thyroid hormone homeostasis.Food Chem. Toxicol.201697708110.1016/j.fct.2016.08.027 27565560
    [Google Scholar]
  105. KotM. Daujat-ChavanieuM. Altered cytokine profile under control of the serotonergic system determines the regulation of CYP2C11 and CYP3A isoform.Food Chem. Toxicol.2018116Pt B36937810.1016/j.fct.2018.04.051 29698782
    [Google Scholar]
  106. KotM. Daujat-ChavanieuM. Erratum to “Altered cytokine profile under control of the serotonergic system determines the regulation of CYP2C11 and CYP3A isoforms”.Food Chem. Toxicol.201811847147210.1016/j.fct.2018.05.028 29859425
    [Google Scholar]
  107. BrunnbergS. PetterssonK. RydinE. MatthewsJ. HanbergA. PongratzI. The basic helix–loop–helix–PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription.Proc. Natl. Acad. Sci. USA2003100116517652210.1073/pnas.1136688100 12754377
    [Google Scholar]
  108. RüeggJ. SwedenborgE. WahlströmD. EscandeA. BalaguerP. PetterssonK. PongratzI. The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor β-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin.Mol. Endocrinol.200822230431610.1210/me.2007‑0128 17991765
    [Google Scholar]
  109. ImwalleD.B. GustafssonJ.Å. RissmanE.F. Lack of functional estrogen receptor β influences anxiety behavior and serotonin content in female mice.Physiol. Behav.200584115716310.1016/j.physbeh.2004.11.002 15642619
    [Google Scholar]
  110. JonesG. LipsonJ. NockM.K. Associations between classic psychedelics and nicotine dependence in a nationally representative sample.Sci. Rep.20221211057810.1038/s41598‑022‑14809‑3 35732796
    [Google Scholar]
  111. AmbatipudiS. CueninC. Hernandez-VargasH. GhantousA. Le Calvez-KelmF. KaaksR. BarrdahlM. BoeingH. AleksandrovaK. TrichopoulouA. LagiouP. NaskaA. PalliD. KroghV. PolidoroS. TuminoR. PanicoS. Bueno-de-MesquitaB. PeetersP.H.M. QuirósJ.R. NavarroC. ArdanazE. DorronsoroM. KeyT. VineisP. MurphyN. RiboliE. RomieuI. HercegZ. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study.Epigenomics20168559961810.2217/epi‑2016‑0001 26864933
    [Google Scholar]
  112. PhilibertR.A. BeachS.R.H. LeiM.K. BrodyG.H. Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking.Clin. Epigenetics2013511910.1186/1868‑7083‑5‑19 24120260
    [Google Scholar]
  113. ZhuP. YuH. ZhouK. BaiY. QiR. ZhangS. 3,3′-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway.J. Exp. Clin. Cancer Res.202039111310.1186/s13046‑020‑01618‑7 32546278
    [Google Scholar]
  114. CastañedaA.R. PinkertonK.E. BeinK.J. Magaña-MéndezA. YangH.T. AshwoodP. VogelC.F.A. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization.Toxicol. Lett.2018292859610.1016/j.toxlet.2018.04.020 29689377
    [Google Scholar]
  115. TeismannP. TieuK. ChoiD.K. WuD.C. NainiA. HunotS. VilaM. Jackson-LewisV. PrzedborskiS. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration.Proc. Natl. Acad. Sci. USA200310095473547810.1073/pnas.0837397100 12702778
    [Google Scholar]
  116. EltzschigH.K. CarmelietP. Hypoxia and inflammation.N. Engl. J. Med.2011364765666510.1056/NEJMra0910283 21323543
    [Google Scholar]
  117. MohapatraS.R. SadikA. SharmaS. PoschetG. GegnerH.M. LanzT.V. LucarelliP. KlingmüllerU. PlattenM. HeilandI. OpitzC.A. Hypoxia routes tryptophan homeostasis towards increased tryptamine production.Front. Immunol.20211259053210.3389/fimmu.2021.590532 33679737
    [Google Scholar]
  118. NizetV. JohnsonR.S. Interdependence of hypoxic and innate immune responses.Nat. Rev. Immunol.20099960961710.1038/nri2607 19704417
    [Google Scholar]
  119. ChuaY.L. DufourE. DassaE.P. RustinP. JacobsH.T. TaylorC.T. HagenT. Stabilization of hypoxia-inducible factor-1α protein in hypoxia occurs independently of mitochondrial reactive oxygen species production.J. Biol. Chem.201028541312773128410.1074/jbc.M110.158485 20675386
    [Google Scholar]
  120. AyabeH. AnadaT. KamoyaT. SatoT. KimuraM. YoshizawaE. KikuchiS. UenoY. SekineK. CampJ.G. TreutleinB. FergusonA. SuzukiO. TakebeT. TaniguchiH. Optimal hypoxia regulates human iPSC-derived liver bud differentiation through intercellular TGFB signaling.Stem Cell Reports201811230631610.1016/j.stemcr.2018.06.015 30033085
    [Google Scholar]
  121. MerelliA. RodríguezJ.C.G. FolchJ. RegueiroM.R. CaminsA. LazarowskiA. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities.Curr. Neuropharmacol.201816101484149810.2174/1570159X16666180110130253 29318974
    [Google Scholar]
  122. ZhangZ. YanJ. ChangY. ShiDu YanS. ShiH. Hypoxia inducible factor-1 as a target for neurodegenerative diseases.Curr. Med. Chem.201118284335434310.2174/092986711797200426 21861815
    [Google Scholar]
  123. CannitoS. NovoE. CompagnoneA. Valfrè di BonzoL. BuslettaC. ZamaraE. PaternostroC. PoveroD. BandinoA. BozzoF. CravanzolaC. BravocoV. ColombattoS. ParolaM. Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells.Carcinogenesis200829122267227810.1093/carcin/bgn216 18791199
    [Google Scholar]
  124. TsuchiyaY. NakajimaM. TakagiS. TaniyaT. YokoiT. MicroRNA regulates the expression of human cytochrome P450 1B1.Cancer Res.200666189090909810.1158/0008‑5472.CAN‑06‑1403 16982751
    [Google Scholar]
  125. ChangI. MitsuiY. FukuharaS. GillA. WongD.K. YamamuraS. ShahryariV. TabatabaiZ.L. DahiyaR. ShinD.M. TanakaY. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma.Oncotarget20156107774778710.18632/oncotarget.3484 25860934
    [Google Scholar]
  126. YeG. LiJ. YuW. XieZ. ZhengG. LiuW. WangS. CaoQ. LinJ. SuZ. LiD. CheY. FanS. WangP. WuY. ShenH. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression.Exp. Mol. Med.20235581743175610.1038/s12276‑023‑01059‑0 37524872
    [Google Scholar]
  127. NhoK. RisacherS.L. ApostolovaL. BiceP.J. BroschJ. DeardorffR. FaberK. FarlowM.R. ForoudT. GaoS. Novel CYP1B1-RMDN2 Alzheimer’s disease locus identified by genome-wide association analysis of cerebral tau deposition on PET.medRxiv20232023.02.27.2328604810.1101/2023.02.27.23286048
    [Google Scholar]
  128. YangZ. LiH. TangY. LiuX. LiaoQ. FanC. WangS. CYP1B1 deiciency ameliorates learning and memory deficits caused by high fat diet in mice.Am. J. Transl. Res.201911421942206 31105828
    [Google Scholar]
  129. CogswellJ.P. WardJ. TaylorI.A. WatersM. ShiY. CannonB. KelnarK. KemppainenJ. BrownD. ChenC. PrinjhaR.K. RichardsonJ.C. SaundersA.M. RosesA.D. RichardsC.A. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways.J. Alzheimers Dis.2008141274110.3233/JAD‑2008‑14103 18525125
    [Google Scholar]
  130. SørensenS.S. NygaardA.B. ChristensenT. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – An exploratory study.Transl. Neurodegener.201651610.1186/s40035‑016‑0053‑5 26981236
    [Google Scholar]
  131. ParkH. LeeY.B. ChangK.A. miR-200c suppression increases tau hyperphosphorylation by targeting 14-3-3γ in early stage of 5xFAD mouse model of Alzheimer’s disease.Int. J. Biol. Sci.20221852220223410.7150/ijbs.66604 35342350
    [Google Scholar]
  132. ChowdharyV. TengK. ThakralS. ZhangB. LinC. WaniN. Bruschweiler-LiL. ZhangX. JamesL. YangD. JungeN. BrüschweilerR. LeeW.M. GhoshalK. miRNA-122 protects mice and human hepatocytes from acetaminophen toxicity by regulating cytochrome P450 family 1 subfamily A member 2 and family 2 subfamily E member 1 expression.Am. J. Pathol.2017187122758277410.1016/j.ajpath.2017.08.026 28963035
    [Google Scholar]
  133. BoccardiV. PoliG. CecchettiR. BastianiP. ScamosciM. FeboM. MazzonE. BruscoliS. BrancorsiniS. MecocciP. miRNAs and Alzheimer’s disease: Exploring the role of inflammation and vitamin E in an old-age population.Nutrients202315363410.3390/nu15030634 36771341
    [Google Scholar]
  134. KotM. DanielW.A. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: The pathway and concentration dependence.Biochem. Pharmacol.20087571538154910.1016/j.bcp.2007.12.017 18279840
    [Google Scholar]
  135. KotM. DanielW.A. The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: An in vitro comparative study with cDNA-expressed P450s including CYP2C isoforms.Biochem. Pharmacol.200876454355110.1016/j.bcp.2008.05.025 18619574
    [Google Scholar]
  136. KotM. DanielW.A. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat.Pharmacol. Rep.2008606789797 19211970
    [Google Scholar]
  137. ArendashG.W. Cao, Caffeine and coffee as therapeutics against Alzheimer’s disease.J. Alzheimers Dis.201020Suppl. 1S117S12610.3233/JAD‑2010‑091249 20182037
    [Google Scholar]
  138. SalaminO. JaggiL. BaumeN. RobinsonN. SaugyM. LeuenbergerN. Circulating microRNA-122 as potential biomarker for detection of testosterone abuse.PLoS One2016115e015524810.1371/journal.pone.0155248 27171140
    [Google Scholar]
  139. MoffatS.D. ZondermanA.B. MetterE.J. KawasC. BlackmanM.R. HarmanS.M. ResnickS.M. Free testosterone and risk for Alzheimer disease in older men.Neurology200462218819310.1212/WNL.62.2.188 14745052
    [Google Scholar]
  140. PikeC.J. CarrollJ.C. RosarioE.R. BarronA.M. Protective actions of sex steroid hormones in Alzheimer’s disease.Front. Neuroendocrinol.200930223925810.1016/j.yfrne.2009.04.015 19427328
    [Google Scholar]
  141. VerdileG. LawsS.M. HenleyD. AmesD. BushA.I. EllisK.A. FauxN.G. GuptaV.B. LiQ-X. MastersC.L. PikeK.E. RoweC.C. SzoekeC. TaddeiK. VillemagneV.L. MartinsR.N. Associations between gonadotropins, testosterone and β amyloid in men at risk of Alzheimer’s disease.Mol. Psychiatry2014191697510.1038/mp.2012.147 23089633
    [Google Scholar]
  142. CunninghamR.L. SinghM. O’BryantS.E. HallJ.R. BarberR.C. Oxidative stress, testosterone, and cognition among Caucasian and Mexican-American men with and without Alzheimer’s disease.J. Alzheimers Dis.201440356357310.3233/JAD‑131994 24496073
    [Google Scholar]
  143. ChenY. ZengL. WangY. TollesonW.H. KnoxB. ChenS. RenZ. GuoL. MeiN. QianF. HuangK. LiuD. TongW. YuD. NingB. The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p.Biochem. Pharmacol.201714517819110.1016/j.bcp.2017.08.012 28822783
    [Google Scholar]
  144. LauP. BossersK. JankyR. SaltaE. FrigerioC.S. BarbashS. RothmanR. SierksmaA.S.R. ThathiahA. GreenbergD. PapadopoulouA.S. AchselT. AyoubiT. SoreqH. VerhaagenJ. SwaabD.F. AertsS. De StrooperB. Alteration of the micro RNA network during the progression of Alzheimer’s disease.EMBO Mol. Med.20135101613163410.1002/emmm.201201974 24014289
    [Google Scholar]
  145. AlievaA.K. FilatovaE.V. KarabanovA.V. IllarioshkinS.N. LimborskaS.A. ShadrinaM.I. SlominskyP.A. miRNA expression is highly sensitive to a drug therapy in Parkinson’s disease.Parkinsonism Relat. Disord.2015211727410.1016/j.parkreldis.2014.10.018 25465742
    [Google Scholar]
  146. SmithP.Y. Hernandez-RappJ. JolivetteF. LecoursC. BishtK. GoupilC. DorvalV. ParsiS. MorinF. PlanelE. BennettD.A. Fernandez-GomezF.J. SergeantN. BuéeL. TremblayM.È. CalonF. HébertS.S. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo.Hum. Mol. Genet.201524236721673510.1093/hmg/ddv377 26362250
    [Google Scholar]
  147. WangS. XuY. LiM. TuJ. LuZ. Dysregulation of miRNA isoform level at 5ʹ end in Alzheimer’s disease.Gene2016584216717210.1016/j.gene.2016.02.020 26899870
    [Google Scholar]
  148. ZhuQ.B. UnmehopaU. BossersK. HuY.T. VerwerR. BalesarR. ZhaoJ. BaoA.M. SwaabD. MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease.Brain2016139390892110.1093/brain/awv383 26792551
    [Google Scholar]
  149. SaltaE. De StrooperB. microRNA‐132: A key noncoding RNA operating in the cellular phase of Alzheimer’s disease.FASEB J.201731242443310.1096/fj.201601308 28148775
    [Google Scholar]
  150. ZhangM. BianZ. Alzheimer’s disease and microRNA-132: A widespread pathological factor and potential therapeutic target.Front. Neurosci.20211568797310.3389/fnins.2021.687973 34108863
    [Google Scholar]
  151. DuanZ. ZhangS. LiangH. XingZ. GuoL. ShiL. DuL. KuangC. TakikawaO. YangQ. Amyloid β neurotoxicity is IDO1–Kyn–AhR dependent and blocked by IDO1 inhibitor.Signal Transduct. Target. Ther.2020519610.1038/s41392‑020‑0188‑9 32532956
    [Google Scholar]
  152. IharaK. OguroA. ImaishiH. Diagnosis of Parkinson’s disease by investigating the inhibitory effect of serum components on P450 inhibition assay.Sci. Rep.2022121662210.1038/s41598‑022‑10528‑x 35459262
    [Google Scholar]
  153. Bahado-SinghR.O. VishweswaraiahS. TurkogluO. GrahamS.F. RadhakrishnaU. Alzheimer’s precision neurology: Epigenetics of cytochrome P450 genes in circulating cell-free DNA for disease prediction and mechanism.Int. J. Mol. Sci.2023243287610.3390/ijms24032876 36769199
    [Google Scholar]
  154. RiegerJ.K. KleinK. WinterS. ZangerU.M. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: Influence of nongenetic factors and association with gene expression.Drug Metab. Dispos.201341101752176210.1124/dmd.113.052126 23733276
    [Google Scholar]
  155. ChoiY.M. AnS. LeeE-M. KimK. ChoiS.J. KimJ.S. JangH.H. AnI.S. BaeS. CYP1A1 is a target of miR-892a-mediated post-transcriptional repression.Int. J. Oncol.2012411331336 22470100
    [Google Scholar]
  156. SchneiderR. McKeeverP. KimT. GraffC. van SwietenJ.C. KarydasA. BoxerA. RosenH. MillerB.L. LaforceR. GalimbertiD. MasellisM. BorroniB. ZhangZ. ZinmanL. RohrerJ.D. TartagliaM.C. RobertsonJ. Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: A GENFI study.J. Neurol. Neurosurg. Psychiatry201889885185810.1136/jnnp‑2017‑317492 29434051
    [Google Scholar]
  157. KumarP. DezsoZ. MacKenzieC. OestreicherJ. AgoulnikS. ByrneM. BernierF. YanagimachiM. AoshimaK. OdaY. Circulating miRNA biomarkers for Alzheimer’s disease.PLoS One201387e6980710.1371/journal.pone.0069807 23922807
    [Google Scholar]
  158. WangX. LiuP. ZhuH. XuY. MaC. DaiX. HuangL. LiuY. ZhangL. QinC. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation.Brain Res. Bull.2009804-526827310.1016/j.brainresbull.2009.08.006 19683563
    [Google Scholar]
  159. WangL. LiuJ. WangQ. JiangH. ZengL. LiZ. LiuR. MicroRNA-200a-3p mediates neuroprotection in alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via coregulating BACE1 and PRKACB.Front. Pharmacol.20191080610.3389/fphar.2019.00806 31379578
    [Google Scholar]
  160. CacabelosR. HashimotoR. TakedaM. Pharmacogenomics of antipsychotics efficacy for schizophrenia.Psychiatry Clin. Neurosci.201165131910.1111/j.1440‑1819.2010.02168.x 21265934
    [Google Scholar]
  161. CacabelosR. Martínez-BouzaR. Genomics and pharmacogenomics of schizophrenia.CNS Neurosci. Ther.201117554156510.1111/j.1755‑5949.2010.00187.x 20718829
    [Google Scholar]
  162. DingJ.B. HuK. Cigarette smoking and schizophrenia: Etiology, clinical, pharmacological, and treatment implications.Schizophr. Res. Treatment202120211810.1155/2021/7698030 34938579
    [Google Scholar]
  163. WintererG. Why do patients with schizophrenia smoke?Curr. Opin. Psychiatry201023211211910.1097/YCO.0b013e3283366643 20051860
    [Google Scholar]
  164. LoweE.J. AckmanM.L. Impact of tobacco smoking cessation on stable clozapine or olanzapine treatment.Ann. Pharmacother.201044472773210.1345/aph.1M398 20233914
    [Google Scholar]
  165. SunX. LuJ. ZhangL. SongH. ZhaoL. FanH. ZhongA.F. NiuW. GuoZ-M. DaiY-H. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients.J. Clin. Neurosci.201522357057410.1016/j.jocn.2014.08.018 25487174
    [Google Scholar]
  166. YuH. WuJ. ZhangH. ZhangG. SuiJ. TongW. ZhangX.Y. NieL. DuanJ. ZhangL. LvL. Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients.Prog. Neuropsychopharmacol. Biol. Psychiatry201563232910.1016/j.pnpbp.2015.05.007 25985888
    [Google Scholar]
  167. SunX. ZhangJ. NiuW. GuoW. SongH. LiH. FanH-M. ZhaoL. ZhongA-F. DaiY-H. A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2015168B317017810.1002/ajmg.b.32292 25656957
    [Google Scholar]
  168. BelzeauxR. BergonA. JeanjeanV. LoriodB. Formisano-TrézinyC. VerrierL. LoundouA. Baumstarck-BarrauK. BoyerL. GallV. GabertJ. NguyenC. AzorinJ-M. NaudinJ. IbrahimE.C. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode.Transl. Psychiatry2012211e18510.1038/tp.2012.112 23149449
    [Google Scholar]
  169. GardinerE. BeveridgeN.J. WuJ.Q. CarrV. ScottR.J. TooneyP.A. CairnsM.J. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells.Mol. Psychiatry201217882784010.1038/mp.2011.78 21727898
    [Google Scholar]
  170. WeiH. YuanY. LiuS. WangC. YangF. LuZ. WangC. DengH. ZhaoJ. ShenY. ZhangC. YuX. XuQ. Detection of circulating miRNA levels in schizophrenia.Am. J. Psychiatry2015172111141114710.1176/appi.ajp.2015.14030273 26183697
    [Google Scholar]
  171. KimA.H. ReimersM. MaherB. WilliamsonV. McMichaelO. McClayJ.L. van den OordE.J.C.G. RileyB.P. KendlerK.S. VladimirovV.I. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders.Schizophr. Res.20101241-318319110.1016/j.schres.2010.07.002 20675101
    [Google Scholar]
  172. MoreauM.P. BruseS.E. David-RusR. BuyskeS. BrzustowiczL.M. Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder.Biol. Psychiatry201169218819310.1016/j.biopsych.2010.09.039 21183010
    [Google Scholar]
  173. ArtıkA. Çengel KültürS.E. PortakalO. KaraboncukA.Y. The association between autistic traits and serum testosterone, oxytocin, and androstenedione levels in prepubertal male drug naive children with attention‐deficit/hyperactivity disorder.Int. J. Dev. Neurosci.20238319810710.1002/jdn.10241 36398591
    [Google Scholar]
  174. MaX. IdleJ.R. KrauszK.W. GonzalezF.J. Metabolism of melatonin by human cytochromes p450.Drug Metab. Dispos.200533448949410.1124/dmd.104.002410 15616152
    [Google Scholar]
  175. MelkeJ. Goubran BotrosH. ChasteP. BetancurC. NygrenG. AnckarsäterH. RastamM. StåhlbergO. GillbergI.C. DelormeR. ChabaneN. Mouren-SimeoniM-C. FauchereauF. DurandC.M. ChevalierF. DrouotX. ColletC. LaunayJ-M. LeboyerM. GillbergC. BourgeronT. Abnormal melatonin synthesis in autism spectrum disorders.Mol. Psychiatry2008131909810.1038/sj.mp.4002016 17505466
    [Google Scholar]
  176. RossignolD.A. FryeR. Melatonin in autism spectrum disorders: A systematic review and meta‐analysis.Dev. Med. Child Neurol.201153978379210.1111/j.1469‑8749.2011.03980.x 21518346
    [Google Scholar]
  177. ParkH-Y. Hertz-PicciottoI. SovcikovaE. KocanA. DrobnaB. TrnovecT. Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: A birth cohort study.Environ. Health201095110.1186/1476‑069X‑9‑51 20731829
    [Google Scholar]
  178. LeijsM.M. EsserA. AmannP.M. SchettgenT. HeiseR. FietkauK. GubeM. MerkH.F. KrausT. BaronJ.M. Expression of CYP1A1, CYP1B1 and IL-1β in PBMCs and skin samples of PCB exposed individuals.Sci. Total Environ.20186421429143810.1016/j.scitotenv.2018.06.136 30045523
    [Google Scholar]
  179. DhulkifleH. AgouniA. ZeidanA. Al-KuwariM.S. ParrayA. TolefatM. KorashyH.M. Influence of the aryl hydrocarbon receptor activating environmental pollutants on autism spectrum disorder.Int. J. Mol. Sci.20212217925810.3390/ijms22179258 34502168
    [Google Scholar]
  180. VorrinkS. HudachekD. DomannF. Epigenetic determinants of CYP1A1 induction by the aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126).Int. J. Mol. Sci.2014158139161393110.3390/ijms150813916 25116688
    [Google Scholar]
  181. El-AnsaryA. CannellJ.J. BjørklundG. BhatR.S. Al DbassA.M. AlfawazH.A. ChirumboloS. Al-AyadhiL. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: The role of vitamin D.Metab. Brain Dis.201833391793110.1007/s11011‑018‑0199‑1 29497932
    [Google Scholar]
  182. KrugA. WöhrM. SefferD. RippbergerH. SungurA.Ö. DietscheB. SteinF. SivalingamS. ForstnerA.J. WittS.H. DukalH. StreitF. MaaserA. Heilmann-HeimbachS. AndlauerT.F.M. HermsS. HoffmannP. RietschelM. NöthenM.M. LackingerM. SchrattG. KochM. SchwartingR.K.W. KircherT. Advanced paternal age as a risk factor for neurodevelopmental disorders: A translational study.Mol. Autism20201115410.1186/s13229‑020‑00345‑2 32576230
    [Google Scholar]
  183. MorM. NardoneS. SamsD.S. ElliottE. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex.Mol. Autism2015614610.1186/s13229‑015‑0040‑1 26273428
    [Google Scholar]
  184. WuY.E. ParikshakN.N. BelgardT.G. GeschwindD.H. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder.Nat. Neurosci.201619111463147610.1038/nn.4373 27571009
    [Google Scholar]
  185. Araghi-NiknamM. FatemiS.H. Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects.Cell. Mol. Neurobiol.200323694595210.1023/B:CEMN.0000005322.27203.73 14964781
    [Google Scholar]
  186. DaiX. YinY. QinL. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat.Neurosci. Lett.201765715916510.1016/j.neulet.2017.08.018 28803955
    [Google Scholar]
  187. JyonouchiH. GengL. StreckD.L. DermodyJ.J. TorunerG.A. MicroRNA expression changes in association with changes in interleukin-1ß/interleukin10 ratios produced by monocytes in autism spectrum disorders: Their association with neuropsychiatric symptoms and comorbid conditions (observational study).J. Neuroinflammation201714122910.1186/s12974‑017‑1003‑6 29178897
    [Google Scholar]
  188. RamockiM.B. PetersS.U. TavyevY.J. ZhangF. CarvalhoC.M.B. SchaafC.P. RichmanR. FangP. GlazeD.G. LupskiJ.R. ZoghbiH.Y. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome.Ann. Neurol.200966677178210.1002/ana.21715 20035514
    [Google Scholar]
  189. ZhangR. HuangM. CaoZ. QiJ. QiuZ. ChiangL.Y. MeCP2 plays an analgesic role in pain transmission through regulating CREB/miR-132 pathway.Mol. Pain2015111s12990-015-0015.10.1186/s12990‑015‑0015‑4 25885346
    [Google Scholar]
  190. MurphyD.L. WyattR.J. Reduced monoamine oxidase activity in blood platelets from schizophrenic patients.Nature1972238536122522610.1038/238225a0 4558353
    [Google Scholar]
  191. SimpsonG.M. ShihJ.C. ChenK. FlowersC. KumazawaT. SpringB. Schizophrenia, monoamine oxidase activity, and cigarette smoking.Neuropsychopharmacology199920439239410.1016/S0893‑133X(98)00119‑5 10088141
    [Google Scholar]
  192. de LeonJ. DadvandM. CanusoC. WhiteA.O. StanillaJ.K. SimpsonG.M. Schizophrenia and smoking: An epidemiological survey in a state hospital.Am. J. Psychiatry1995152345345510.1176/ajp.152.3.453 7864277
    [Google Scholar]
  193. De AngelisM. PiccoloM. VanniniL. SiragusaS. De GiacomoA. SerrazzanettiD.I. CristoforiF. GuerzoniM.E. GobbettiM. FrancavillaR. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified.PLoS One2013810e7699310.1371/journal.pone.0076993 24130822
    [Google Scholar]
  194. MangiolaF. IaniroG. FranceschiF. FagiuoliS. GasbarriniG. GasbarriniA. Gut microbiota in autism and mood disorders.World J. Gastroenterol.201622136136810.3748/wjg.v22.i1.361 26755882
    [Google Scholar]
  195. SonJ.S. ZhengL.J. RowehlL.M. TianX. ZhangY. ZhuW. Litcher-KellyL. GadowK.D. GathunguG. RobertsonC.E. IrD. FrankD.N. LiE. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection.PLoS One20151010e013772510.1371/journal.pone.0137725 26427004
    [Google Scholar]
  196. SchaafsmaS.M. PfaffD.W. Etiologies underlying sex differences in autism spectrum disorders.Front. Neuroendocrinol.201435325527110.1016/j.yfrne.2014.03.006 24705124
    [Google Scholar]
  197. OgbonnayaE.S. ClarkeG. ShanahanF. DinanT.G. CryanJ.F. O’LearyO.F. Adult hippocampal neurogenesis is regulated by the microbiome.Biol. Psychiatry2015784e7e910.1016/j.biopsych.2014.12.023 25700599
    [Google Scholar]
  198. LuczynskiP. WhelanS.O. O’SullivanC. ClarkeG. ShanahanF. DinanT.G. Adult microbiota-deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus.Eur. J. Neurosci.20164492654266610.1111/ejn.13291 27256072
    [Google Scholar]
  199. MarcobalA. KashyapP.C. NelsonT.A. AronovP.A. DoniaM.S. SpormannA. FischbachM.A. SonnenburgJ.L. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice.ISME J.20137101933194310.1038/ismej.2013.89 23739052
    [Google Scholar]
  200. GubertC. ChooJ.M. LoveC.J. KodikaraS. MassonB.A. LiewJ.J.M. WangY. KongG. NarayanaV.K. RenoirT. Lê CaoK.A. RogersG.B. HannanA.J. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice.Brain Commun.202244fcac20510.1093/braincomms/fcac205 36035436
    [Google Scholar]
  201. Crumeyrolle-AriasM. JaglinM. BruneauA. VancasselS. CardonaA. DaugéV. NaudonL. RabotS. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats.Psychoneuroendocrinology20144220721710.1016/j.psyneuen.2014.01.014 24636517
    [Google Scholar]
  202. MalletN. PogosyanA. SharottA. CsicsvariJ. BolamJ.P. BrownP. MagillP.J. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex.J. Neurosci.200828184795480610.1523/JNEUROSCI.0123‑08.2008 18448656
    [Google Scholar]
  203. BédardC. WallmanM.J. PourcherE. GouldP.V. ParentA. ParentM. Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea.Parkinsonism Relat. Disord.201117859359810.1016/j.parkreldis.2011.05.012 21664855
    [Google Scholar]
  204. de JongL.W. FerrariniL. van der GrondJ. MillesJ.R. ReiberJ.H.C. WestendorpR.G.J. BollenE.L.E.M. MiddelkoopH.A.M. van BuchemM.A. Shape abnormalities of the striatum in Alzheimer’s disease.J. Alzheimers Dis.2011231495910.3233/JAD‑2010‑101026 20930298
    [Google Scholar]
  205. PaleyE.L. Tryptamine-mediated stabilization of tryptophanyl-tRNA synthetase in human cervical carcinoma cell line.Cancer Lett.199913711710.1016/S0304‑3835(98)00342‑5 10376788
    [Google Scholar]
  206. ArakakiA.K. MezencevR. BowenN.J. HuangY. McDonaldJ.F. SkolnickJ. Identification of metabolites with anticancer properties by computational metabolomics.Mol. Cancer2008715710.1186/1476‑4598‑7‑57 18559081
    [Google Scholar]
  207. AngladeP. VyasS. Javoy-AgidF. HerreroM.T. MichelP.P. MarquezJ. Mouatt-PrigentA. RubergM. HirschE.C. AgidY. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease.Histol. Histopathol.19971212531 9046040
    [Google Scholar]
  208. PetersenA. LarsenK.E. BehrG.G. RomeroN. PrzedborskiS. BrundinP. SulzerD. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration.Hum. Mol. Genet.200110121243125410.1093/hmg/10.12.1243 11406606
    [Google Scholar]
  209. NixonR.A. WegielJ. KumarA. YuW.H. PeterhoffC. CataldoA. CuervoA.M. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study.J. Neuropathol. Exp. Neurol.200564211312210.1093/jnen/64.2.113 15751225
    [Google Scholar]
  210. RadulovackiP. Djuricic-NedelsonM. ChenE.H. RadulovackiM. Human tryptamine metabolism decreases during night sleep.Brain Res. Bull.1983101434510.1016/0361‑9230(83)90072‑2 6186344
    [Google Scholar]
  211. HamppG. RippergerJ.A. HoubenT. SchmutzI. BlexC. Perreau-LenzS. BrunkI. SpanagelR. Ahnert-HilgerG. MeijerJ.H. AlbrechtU. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.Curr. Biol.200818967868310.1016/j.cub.2008.04.012 18439826
    [Google Scholar]
  212. JonesM.K. WeisenburgerW.P. Glenn SipesI. RussellD.H. Circadian alterations in prolactin, corticosterone, and thyroid hormone levels and down-regulation of prolactin receptor activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin.Toxicol. Appl. Pharmacol.198787233735010.1016/0041‑008X(87)90295‑X 3824389
    [Google Scholar]
  213. HorrobinD.F. Cellular basis of prolactin action: Involvement of cyclic nucleotides, polyamines, prostaglandins, steroids, thyroid hormones, ATPases and calcium: Relevance to breast cancer and the menstrual cycle.Med. Hypotheses19795559962010.1016/0306‑9877(79)90159‑2 232899
    [Google Scholar]
  214. MaurerR.A. Thyroid hormone specifically inhibits prolactin synthesis and decreases prolactin messenger ribonucleic acid levels in cultured pituitary cells.Endocrinology198211051507151410.1210/endo‑110‑5‑1507 6280965
    [Google Scholar]
  215. KatovichM.J. BakerS.P. NelsonC. Effects of elevated prolactin and its normalization on thyroid hormone, cardiac β-adrenoreceptor number and β-adrenergic responsiveness.Life Sci.198434988989810.1016/0024‑3205(84)90206‑6 6321874
    [Google Scholar]
  216. De LéanA. FerlandL. DrouinJ. KellyP.A. LabrieF. Modulation of pituitary thyrotropin releasing hormone receptor levels by estrogens and thyroid hormones.Endocrinology197710061496150410.1210/endo‑100‑6‑1496 192537
    [Google Scholar]
  217. WormkeM. StonerM. SavilleB. WalkerK. AbdelrahimM. BurghardtR. SafeS. The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes.Mol. Cell. Biol.20032361843185510.1128/MCB.23.6.1843‑1855.2003 12612060
    [Google Scholar]
  218. ShullJ.D. GorskiJ. Estrogen regulates the transcription of the rat prolactin gene in vivo through at least two independent mechanisms.Endocrinology198511662456246210.1210/endo‑116‑6‑2456 3996322
    [Google Scholar]
  219. MatthewsJ. GustafssonJ-Å. Estrogen receptor and aryl hydrocarbon receptor signaling pathways.Nucl. Recept. Signal.20064e01610.1621/nrs.04016 16862222
    [Google Scholar]
  220. LeeA.J. CaiM.X. ThomasP.E. ConneyA.H. ZhuB.T. Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms.Endocrinology200314483382339810.1210/en.2003‑0192 12865317
    [Google Scholar]
  221. AymerichC. PedruzoB. PachoM. LabordaM. HerreroJ. PillingerT. McCutcheonR.A. Alonso-AlconadaD. BordenaveM. Martínez-QuerolM. ArnaizA. LabadJ. Fusar-PoliP. González-TorresM.Á. CatalanA. Prolactin and morning cortisol concentrations in antipsychotic naïve first episode psychosis: A systematic review and meta-analysis.Psychoneuroendocrinology202315010604910.1016/j.psyneuen.2023.106049 36758330
    [Google Scholar]
  222. HerkertE.E. KeupW. Excretion patterns of tryptamine, indoleacetic acid, and 5-hydroxyindoleacetic acid, and their correlation with mental changes in schizophrenic patients under medication with alpha-methyldopa.Psychopharmacology (Berl.)1969151485910.1007/BF00410800 5367444
    [Google Scholar]
  223. BruneG.G. Metabolism of biogenic amines and psychotropic drug effects in schizophrenic patients.Prog. Brain Res.196516819610.1016/S0079‑6123(08)61394‑1 5319089
    [Google Scholar]
  224. StypułaG. Kunert-RadekJ. StępieńH. ŻylińskaK. PawlikowskiM. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson’s disease.Neuroimmunomodulation199632-313113410.1159/000097237 8945728
    [Google Scholar]
  225. Duc NguyenH. Pal YuB. HoangN.H.M. JoW.H. Young ChungH. KimM.S. Prolactin and its altered action in Alzheimer’s disease and Parkinson’s disease.Neuroendocrinology2022112542744510.1159/000517798 34126620
    [Google Scholar]
  226. NitkowskaM. TomasiukR. CzyżykM. FriedmanA. Prolactin and sex hormones levels in males with Parkinson’s disease.Acta Neurol. Scand.2015131641141610.1111/ane.12334 25399742
    [Google Scholar]
  227. SmithI. KellowA.H. Aromatic amines and Parkinson’s disease.Nature19692215187126110.1038/2211261a0 5773846
    [Google Scholar]
/content/journals/cn/10.2174/011570159X340635241022113450
Loading
/content/journals/cn/10.2174/011570159X340635241022113450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test