Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Neuroinflammation has emerged as a crucial factor in the pathogenesis of Alzheimer's disease (AD), paving the way for promising therapeutic interventions. Increasing evidence highlights the interplay between the peripheral immune system and the central nervous system (CNS) in driving neuroinflammation, with T lymphocytes playing a vital role in both regulatory and effector functions. Aberrant activation of T cells during the early stages of neuroinflammation perpetuates inflammatory responses by interacting with CNS glial cells and releasing pro-inflammatory mediators, such as IFN-γ, TNF-α, and IL-17. Studies have documented significant T cell activation and infiltration into the brain parenchyma in AD, contributing to disease progression. However, the specific mechanisms by which T cells mediate AD pathogenesis remain unclear. This comprehensive review synthesizes the current understanding of T cell involvement in AD pathology, emphasizing their aberrant activation, interactions with microglia, tau protein pathology, and the influence of gut microbiota. Finally, we propose potential treatment modalities for AD, highlighting the promise of T cell-based therapies currently under investigation in clinical trials. Understanding the critical role of T cells in intercellular communication and disease progression may enhance our comprehension of the pathophysiology of AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X350611250303044527
2025-03-21
2025-12-26
Loading full text...

Full text loading...

References

  1. PorsteinssonA.P. IsaacsonR.S. KnoxS. SabbaghM.N. RubinoI. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021.J. Prev. Alzheimers Dis.20218337138610.14283/jpad.2021.23 34101796
    [Google Scholar]
  2. BaruchK. RosenzweigN. KertserA. DeczkowskaA. SharifA.M. SpinradA. Tsitsou-KampeliA. SarelA. CahalonL. SchwartzM. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology.Nat. Commun.201561796710.1038/ncomms8967 26284939
    [Google Scholar]
  3. MonsonegoA. NemirovskyA. HarpazI. CD4 T-cells in immunity and immunotherapy of Alzheimer’s disease.Immunology2013139443844610.1111/imm.12103 23534386
    [Google Scholar]
  4. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  5. GonsalvesD. JovanovicK. Da Costa DiasB. WeissS.F.T. Global Alzheimer Research Summit: Basic and clinical research: Present and future Alzheimer research.Prion20126171010.4161/pri.6.1.18854 22453170
    [Google Scholar]
  6. PrinceM.J. An analysis of long-term care for dementia.Journey of Caring.LondonAlzheimer’s Disease International201388
    [Google Scholar]
  7. RosenmannH. GrigoriadisN. Eldar-LevyH. AvitalA. RozensteinL. TouloumiO. BeharL. Ben-HurT. AvrahamY. BerryE. SegalM. GinzburgI. AbramskyO. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics.Exp. Neurol.20082121718410.1016/j.expneurol.2008.03.007 18490011
    [Google Scholar]
  8. SelkoeD.J. Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA20019820110391104110.1073/pnas.211352598 11572965
    [Google Scholar]
  9. HaassC. SelkoeD.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide.Nat. Rev. Mol. Cell Biol.20078210111210.1038/nrm2101 17245412
    [Google Scholar]
  10. DaiL. ShenY. Insights into T‐cell dysfunction in Alzheimer’s disease.Aging Cell20212012e1351110.1111/acel.13511 34725916
    [Google Scholar]
  11. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  12. BorchersA. PielerT. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs.Genes (Basel)20101341342610.3390/genes1030413 24710095
    [Google Scholar]
  13. ChenX. FirulyovaM. ManisM. HerzJ. SmirnovI. AladyevaE. WangC. BaoX. FinnM.B. HuH. ShchukinaI. KimM.W. YuedeC.M. KipnisJ. ArtyomovM.N. UlrichJ.D. HoltzmanD.M. Microglia-MediatedT. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy.Nature2023615795366867710.1038/s41586‑023‑05788‑0 36890231
    [Google Scholar]
  14. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  15. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a006189 22229116
    [Google Scholar]
  16. ChenX. HoltzmanD.M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease.Immunity202255122236225410.1016/j.immuni.2022.10.016 36351425
    [Google Scholar]
  17. ForresterJ.V. McMenaminP.G. DandoS.J. CNS infection and immune privilege.Nat. Rev. Neurosci.2018191165567110.1038/s41583‑018‑0070‑8 30310148
    [Google Scholar]
  18. AydinS. ParejaJ. SchallenbergV.M. KlopsteinA. GruberT. PageN. BouilletE. BlanchardN. LiblauR. KörbelinJ. SchwaningerM. JohnsonA.J. SchenkM. DeutschU. MerklerD. EngelhardtB. Antigen recognition detains CD8+ T cells at the blood-brain barrier and contributes to its breakdown.Nat. Commun.2023141310610.1038/s41467‑023‑38703‑2 37253744
    [Google Scholar]
  19. FangP. LiX. LuoJ.J. WangH. YangX.F. A double-edged sword: Uric acid and neurological disorders.Brain Disord. Ther.201322109 24511458
    [Google Scholar]
  20. ObersteinT.J. TahaL. SpitzerP. HellsternJ. HerrmannM. KornhuberJ. MalerJ.M. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: A case control study.Front. Immunol.20189121310.3389/fimmu.2018.01213 29915582
    [Google Scholar]
  21. CunninghamC. HennessyE. Co-morbidity and systemic inflammation as drivers of cognitive decline: New experimental models adopting a broader paradigm in dementia research.Alzheimers Res. Ther.2015713310.1186/s13195‑015‑0117‑2 25802557
    [Google Scholar]
  22. WalkerK.A. HoogeveenR.C. FolsomA.R. BallantyneC.M. KnopmanD.S. WindhamB.G. JackC.R.Jr GottesmanR.F. Midlife systemic inflammatory markers are associated with late-life brain volume.Neurology201789222262227010.1212/WNL.0000000000004688 29093073
    [Google Scholar]
  23. ParachikovaA. AgadjanyanM.G. CribbsD.H. Blurton-JonesM. PerreauV. RogersJ. BeachT.G. CotmanC.W. Inflammatory changes parallel the early stages of Alzheimer disease.Neurobiol. Aging200728121821183310.1016/j.neurobiolaging.2006.08.014 17052803
    [Google Scholar]
  24. MerliniM. KirabaliT. KulicL. NitschR.M. FerrettiM.T. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: An immunohistochemical study.Neurodegener. Dis.2018181495610.1159/000486200 29402847
    [Google Scholar]
  25. MartinL. LatypovaX. WilsonC.M. MagnaudeixA. PerrinM.L. YardinC. TerroF. Tau protein kinases: Involvement in Alzheimer’s disease.Ageing Res. Rev.201312128930910.1016/j.arr.2012.06.003 22742992
    [Google Scholar]
  26. UngerM.S. LiE. ScharnaglL. PoupardinR. AltendorferB. MrowetzH. Hutter-PaierB. WeigerT.M. HenekaM.T. AttemsJ. AignerL. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice.Brain Behav. Immun.202089678610.1016/j.bbi.2020.05.070 32479993
    [Google Scholar]
  27. MonsonegoA. ZotaV. KarniA. KriegerJ.I. Bar-OrA. BitanG. BudsonA.E. SperlingR. SelkoeD.J. WeinerH.L. IncreasedT. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease.J. Clin. Invest.2003112341542210.1172/JCI200318104 12897209
    [Google Scholar]
  28. GateD. SaligramaN. LeventhalO. YangA.C. UngerM.S. MiddeldorpJ. ChenK. LehallierB. ChannappaD. De Los SantosM.B. McBrideA. PluvinageJ. ElahiF. TamG.K.Y. KimY. GreiciusM. WagnerA.D. AignerL. GalaskoD.R. DavisM.M. Wyss-CorayT. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease.Nature2020577779039940410.1038/s41586‑019‑1895‑7 31915375
    [Google Scholar]
  29. ItagakiS. McGeerP.L. AkiyamaH. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue.Neurosci. Lett.198891325926410.1016/0304‑3940(88)90690‑8 2972943
    [Google Scholar]
  30. RogersJ. Luber-NarodJ. StyrenS.D. CivinW.H. Expression of immune system-associated antigens by cells of the human central nervous system: Relationship to the pathology of Alzheimer’s disease.Neurobiol. Aging19889433934910.1016/S0197‑4580(88)80079‑4 3263583
    [Google Scholar]
  31. TogoT. AkiyamaH. IsekiE. KondoH. IkedaK. KatoM. OdaT. TsuchiyaK. KosakaK. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases.J. Neuroimmunol.20021241-2839210.1016/S0165‑5728(01)00496‑9 11958825
    [Google Scholar]
  32. OusmanS.S. KubesP. Immune surveillance in the central nervous system.Nat. Neurosci.20121581096110110.1038/nn.3161 22837040
    [Google Scholar]
  33. CiccocioppoF. LanutiP. PierdomenicoL. SimeoneP. BolognaG. ErcolinoE. ButtariF. FantozziR. ThomasA. OnofrjM. CentonzeD. MisciaS. MarchisioM. The characterization of regulatory T-cell profiles in Alzheimer’s disease and multiple sclerosis.Sci. Rep.201991878810.1038/s41598‑019‑45433‑3 31217537
    [Google Scholar]
  34. GovermanJ. Autoimmune T cell responses in the central nervous system.Nat. Rev. Immunol.20099639340710.1038/nri2550 19444307
    [Google Scholar]
  35. JorfiM. ParkJ. HallC.K. LinC.C.J. ChenM. von MaydellD. KruskopJ.M. KangB. ChoiY. ProkopenkoD. IrimiaD. KimD.Y. TanziR.E. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model.Nat. Neurosci.20232691489150410.1038/s41593‑023‑01415‑3 37620442
    [Google Scholar]
  36. DulkenB.W. BuckleyM.T. NavarroN.P. SaligramaN. CayrolR. LeemanD.S. GeorgeB.M. BoutetS.C. HebestreitK. PluvinageJ.V. Wyss-CorayT. WeissmanI.L. VogelH. DavisM.M. BrunetA. Single-cell analysis reveals T cell infiltration in old neurogenic niches.Nature2019571776420521010.1038/s41586‑019‑1362‑5 31270459
    [Google Scholar]
  37. LaurentC. DorothéeG. HunotS. MartinE. MonnetY. DuchampM. DongY. LégeronF.P. LeboucherA. BurnoufS. FaivreE. CarvalhoK. CaillierezR. ZommerN. DemeyerD. JouyN. SazdovitchV. Schraen-MaschkeS. DelarasseC. BuéeL. BlumD. HippocampalT. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy.Brain2017140118420010.1093/brain/aww270 27818384
    [Google Scholar]
  38. LoetscherM. GerberB. LoetscherP. JonesS.A. PialiL. Clark-LewisI. BaggioliniM. MoserB. Chemokine receptor specific for IP10 and mig: Structure, function, and expression in activated T-lymphocytes.J. Exp. Med.1996184396396910.1084/jem.184.3.963 9064356
    [Google Scholar]
  39. SamahaH. PignataA. FousekK. RenJ. LamF.W. StossiF. DubrulleJ. SalsmanV.S. KrishnanS. HongS.H. BakerM.L. ShreeA. GadA.Z. ShumT. FukumuraD. ByrdT.T. MukherjeeM. MarrelliS.P. OrangeJ.S. JosephS.K. SorensenP.H. TaylorM.D. HegdeM. MamonkinM. JainR.K. El-NaggarS. AhmedN. A homing system targets therapeutic T cells to brain cancer.Nature2018561772333133710.1038/s41586‑018‑0499‑y 30185905
    [Google Scholar]
  40. Le PageA. DupuisG. FrostE.H. LarbiA. PawelecG. WitkowskiJ.M. FulopT. Role of the peripheral innate immune system in the development of Alzheimer’s disease.Exp. Gerontol.2018107596610.1016/j.exger.2017.12.019 29275160
    [Google Scholar]
  41. SaresellaM. MarventanoI. CalabreseE. PianconeF. RainoneV. GattiA. AlberoniM. NemniR. ClericiM. A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease.J. Alzheimers Dis.201338240341310.3233/JAD‑131160 23979026
    [Google Scholar]
  42. MachhiJ. KevadiyaB.D. MuhammadI.K. HerskovitzJ. OlsonK.E. MosleyR.L. GendelmanH.E. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders.Mol. Neurodegener.20201513210.1186/s13024‑020‑00375‑7 32503641
    [Google Scholar]
  43. AndersonK.M. OlsonK.E. EstesK.A. FlanaganK. GendelmanH.E. MosleyR.L. Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders.Transl. Neurodegener.2014312510.1186/2047‑9158‑3‑25 25671101
    [Google Scholar]
  44. MosleyR.L. GendelmanH.E. T cells and Parkinson’s disease.Lancet Neurol.2017161076977110.1016/S1474‑4422(17)30276‑4 28807669
    [Google Scholar]
  45. SmoldersJ. RemmerswaalE.B.M. SchuurmanK.G. MeliefJ. van EdenC.G. van LierR.A.W. HuitingaI. HamannJ. Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain.Acta Neuropathol.2013126452553510.1007/s00401‑013‑1155‑0 23880787
    [Google Scholar]
  46. MaddurM.S. MiossecP. KaveriS.V. BayryJ. Th17 cells.Am. J. Pathol.2012181181810.1016/j.ajpath.2012.03.044 22640807
    [Google Scholar]
  47. MachhiJ. YeapuriP. LuY. FosterE. ChikhaleR. HerskovitzJ. NammingaK.L. OlsonK.E. AbdelmoatyM.M. GaoJ. QuadrosR.M. KiyotaT. JingjingL. KevadiyaB.D. WangX. LiuY. PoluektovaL.Y. GurumurthyC.B. MosleyR.L. GendelmanH.E. CD4+ effector T cells accelerate Alzheimer’s disease in mice.J. Neuroinflammation202118127210.1186/s12974‑021‑02308‑7 34798897
    [Google Scholar]
  48. van OlstL. CoenenL. NieuwlandJ.M. Rodriguez-MogedaC. de WitN.M. KamermansA. MiddeldorpJ. de VriesH.E. Crossing borders in Alzheimer’s disease: A T cell’s perspective.Adv. Drug Deliv. Rev.202218811439810.1016/j.addr.2022.114398 35780907
    [Google Scholar]
  49. LuY. LiK. HuY. WangX. Expression of immune related genes and possible regulatory mechanisms in Alzheimer’s disease.Front. Immunol.20211276896610.3389/fimmu.2021.768966 34804058
    [Google Scholar]
  50. MathysH. AdaikkanC. GaoF. YoungJ.Z. ManetE. HembergM. De JagerP.L. RansohoffR.M. RegevA. TsaiL.H. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution.Cell Rep.201721236638010.1016/j.celrep.2017.09.039 29020624
    [Google Scholar]
  51. ChiuI.M. MorimotoE.T.A. GoodarziH. LiaoJ.T. O’KeeffeS. PhatnaniH.P. MuratetM. CarrollM.C. LevyS. TavazoieS. MyersR.M. ManiatisT. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model.Cell Rep.20134238540110.1016/j.celrep.2013.06.018 23850290
    [Google Scholar]
  52. MadoreC. YinZ. LeibowitzJ. ButovskyO. Microglia, lifestyle stress, and neurodegeneration.Immunity202052222224010.1016/j.immuni.2019.12.003 31924476
    [Google Scholar]
  53. GratuzeM. LeynsC.E.G. SauerbeckA.D. St-PierreM.K. XiongM. KimN. SerranoJ.R. TremblayM.È. KummerT.T. ColonnaM. UlrichJ.D. HoltzmanD.M. Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration.J. Clin. Invest.202013094954496810.1172/JCI138179 32544086
    [Google Scholar]
  54. HuangY. HapponenK.E. BurrolaP.G. O’ConnorC. HahN. HuangL. NimmerjahnA. LemkeG. Microglia use TAM receptors to detect and engulf amyloid β plaques.Nat. Immunol.202122558659410.1038/s41590‑021‑00913‑5 33859405
    [Google Scholar]
  55. SongW.M. ColonnaM. The identity and function of microglia in neurodegeneration.Nat. Immunol.201819101048105810.1038/s41590‑018‑0212‑1 30250185
    [Google Scholar]
  56. BartelsT. De SchepperS. HongS. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases.Science20203706512666910.1126/science.abb8587 33004513
    [Google Scholar]
  57. ChenY. ColonnaM. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice?J. Exp. Med.20212189e2020271710.1084/jem.20202717 34292312
    [Google Scholar]
  58. BouvierD.S. JonesE.V. QuesseveurG. DavoliM.A. FerreiraA. QuirionT. MechawarR. MuraiN. High resolution dissection of reactive glial nets in Alzheimer’s disease.Sci. Rep.201662454410.1038/srep24544 27090093
    [Google Scholar]
  59. RawatP. SeharU. BishtJ. SelmanA. CulbersonJ. ReddyP.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies.Int. J. Mol. Sci.202223211284110.3390/ijms232112841 36361631
    [Google Scholar]
  60. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  61. SeifertG. SchillingK. SteinhäuserC. Astrocyte dysfunction in neurological disorders: A molecular perspective.Nat. Rev. Neurosci.20067319420610.1038/nrn1870 16495941
    [Google Scholar]
  62. LinnerbauerM. WheelerM.A. QuintanaF.J. Astrocyte crosstalk in CNS inflammation.Neuron2020108460862210.1016/j.neuron.2020.08.012 32898475
    [Google Scholar]
  63. Stym-PopperG. MattaK. ChaigneauT. RupraR. DemetriouA. FouquetS. DansokhoC. Toly-NdourC. DorothéeG. RegulatoryT. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology.J. Neuroinflammation20232016410.1186/s12974‑023‑02702‑3 36890536
    [Google Scholar]
  64. LaurentC. BuéeL. BlumD. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies?Biomed. J.2018411213310.1016/j.bj.2018.01.003 29673549
    [Google Scholar]
  65. Ben HaimL. Carrillo-de SauvageM.A. CeyzériatK. EscartinC. Elusive roles for reactive astrocytes in neurodegenerative diseases.Front. Cell. Neurosci.2015927810.3389/fncel.2015.00278 26283915
    [Google Scholar]
  66. SofroniewM.V. VintersH.V. Astrocytes: Biology and pathology.Acta Neuropathol.2010119173510.1007/s00401‑009‑0619‑8 20012068
    [Google Scholar]
  67. AndersonM.A. AoY. SofroniewM.V. Heterogeneity of reactive astrocytes.Neurosci. Lett.2014565232910.1016/j.neulet.2013.12.030 24361547
    [Google Scholar]
  68. KraftA.W. HuX. YoonH. YanP. XiaoQ. WangY. GilS.C. BrownJ. WilhelmssonU. RestivoJ.L. CirritoJ.R. HoltzmanD.M. KimJ. PeknyM. LeeJ.M. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice.FASEB J.201327118719810.1096/fj.12‑208660 23038755
    [Google Scholar]
  69. ShiQ. ChowdhuryS. MaR. LeK.X. HongS. CaldaroneB.J. StevensB. LemereC.A. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice.Sci. Transl. Med.20179392eaaf629510.1126/scitranslmed.aaf6295 28566429
    [Google Scholar]
  70. ZhangM. LiuC. LiY. LiH. ZhangW. LiuJ. WangL. SunC. Galectin-9 in cancer therapy: From immune checkpoint ligand to promising therapeutic target.Front. Cell Dev. Biol.202411133220510.3389/fcell.2023.1332205 38264357
    [Google Scholar]
  71. McQuillanK. LynchM.A. MillsK.H.G. Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells.Brain Behav. Immun.201024459860710.1016/j.bbi.2010.01.003 20060887
    [Google Scholar]
  72. JieZ. KoC.J. Microglia promote autoimmune inflammation via the noncanonical Nf-kB pathway.Sci. Adv.2021736eabh060910.1126/sciadv.abh0609 34516909
    [Google Scholar]
  73. BecherB. TuguesS. GreterM. GM-CSF: From growth factor to central mediator of tissue inflammation.Immunity201645596397310.1016/j.immuni.2016.10.026 27851925
    [Google Scholar]
  74. AchuthanA.A. LeeK.M.C. HamiltonJ.A. Targeting GM-CSF in inflammatory and autoimmune disorders.Semin. Immunol.20215410152310.1016/j.smim.2021.101523 34776300
    [Google Scholar]
  75. IngelfingerF. De FeoD. BecherB. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation.Semin. Immunol.20215410151810.1016/j.smim.2021.101518 34763973
    [Google Scholar]
  76. HamiltonJ.A. GM-CSF in inflammation and autoimmunity.Trends Immunol.200223840340810.1016/S1471‑4906(02)02260‑3 12133803
    [Google Scholar]
  77. HansenD.V. HansonJ.E. ShengM. Microglia in Alzheimer’s disease.J. Cell Biol.2018217245947210.1083/jcb.201709069 29196460
    [Google Scholar]
  78. WangH. ZhuX. QinL. QianH. WangY. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3).Cell. Immunol.20152931495810.1016/j.cellimm.2014.12.005 25557503
    [Google Scholar]
  79. TangD. LotzeM.T. Tumor immunity times out: TIM-3 and HMGB1.Nat. Immunol.201213980881010.1038/ni.2396 22910384
    [Google Scholar]
  80. AlvesS. ChurlaudG. AudrainM. Michaelsen-PreusseK. FolR. SouchetB. BraudeauJ. KorteM. KlatzmannD. CartierN. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice.Brain20171403826842 28003243
    [Google Scholar]
  81. SchachteleS.J. HuS. ShengW.S. MutnalM.B. LokensgardJ.R. Glial cells suppress postencephalitic CD8+ T lymphocytes through PD‐L1.Glia201462101582159410.1002/glia.22701 24890099
    [Google Scholar]
  82. GodderyE.N. FainC.E. LipovskyC.G. AyasoufiK. YokanovichL.T. MaloC.S. KhadkaR.H. TritzZ.P. JinF. HansenM.J. JohnsonA.J. Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T cell infiltration of the brain.Front. Immunol.20211272642110.3389/fimmu.2021.726421 34526998
    [Google Scholar]
  83. CheeranM.C.J. HuS. PalmquistJ.M. BakkenT. GekkerG. LokensgardJ.R. Dysregulated interferon-gamma responses during lethal cytomegalovirus brain infection of IL-10-deficient mice.Virus Res.20071301-29610210.1016/j.virusres.2007.05.022 17624463
    [Google Scholar]
  84. DuncanD.A.S. MillerS.D. CNS expression of B7-H1 regulates pro-inflammatory cytokine production and alters severity of Theiler’s virus-induced demyelinating disease.PLoS One201164e1854810.1371/journal.pone.0018548 21494618
    [Google Scholar]
  85. MagnusT. SchreinerB. KornT. JackC. GuoH. AntelJ. IferganI. ChenL. BischofF. Bar-OrA. WiendlH. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: Implications for immune responses and autoimmunity in the CNS.J. Neurosci.200525102537254610.1523/JNEUROSCI.4794‑04.2005 15758163
    [Google Scholar]
  86. PharesT.W. RamakrishnaC. ParraG.I. EpsteinA. ChenL. AtkinsonR. StohlmanS.A. BergmannC.C. Target-dependent B7-H1 regulation contributes to clearance of central nervous system infection and dampens morbidity.J. Immunol.200918295430543810.4049/jimmunol.0803557 19380790
    [Google Scholar]
  87. PharesT.W. StohlmanS.A. HintonD.R. BergmannC.C. Enhanced CD8 T-cell anti-viral function and clinical disease in B7-H1-deficient mice requires CD4 T cells during encephalomyelitis.J. Neuroinflammation20129126910.1186/1742‑2094‑9‑269 23237504
    [Google Scholar]
  88. BinderL.I. FrankfurterA. RebhunL.I. The distribution of tau in the mammalian central nervous system.J. Cell Biol.198510141371137810.1083/jcb.101.4.1371 3930508
    [Google Scholar]
  89. LiM.Z. LiuE.J. ZhouQ.Z. LiS.H. LiuS.J. YuH.T. PanQ.H. SunF. HeT. WangW.J. KeD. FengY.Q. LiJ. WangJ.Z. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling.Mil. Med. Res.2022913810.1186/s40779‑022‑00396‑x 35799293
    [Google Scholar]
  90. CaceresA. KosikK.S. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons.Nature1990343625746146310.1038/343461a0 2105469
    [Google Scholar]
  91. DrubinD.G. KirschnerM.W. Tau protein function in living cells.J. Cell Biol.198610362739274610.1083/jcb.103.6.2739 3098742
    [Google Scholar]
  92. EbnethA. GodemannR. StamerK. IllenbergerS. TrinczekB. MandelkowE.M. MandelkowE. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer’s disease.J. Cell Biol.1998143377779410.1083/jcb.143.3.777 9813097
    [Google Scholar]
  93. StamerK. VogelR. ThiesE. MandelkowE. MandelkowE.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress.J. Cell Biol.200215661051106310.1083/jcb.200108057 11901170
    [Google Scholar]
  94. TrinczekB. EbnethA. MandelkowE.M. MandelkowE. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles.J. Cell Sci.1999112142355236710.1242/jcs.112.14.2355 10381391
    [Google Scholar]
  95. KhatoonS. Grundke-IqbalI. IqbalK. Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: A radioimmuno-slot-blot assay for nanograms of the protein.J. Neurochem.199259275075310.1111/j.1471‑4159.1992.tb09432.x 1629745
    [Google Scholar]
  96. YamamoriH. KhatoonS. Grundke-IqbalI. BlennowK. EwersM. HampelH. IqbalK. Tau in cerebrospinal fluid: A sensitive sandwich enzyme-linked immunosorbent assay using tyramide signal amplification.Neurosci. Lett.2007418218618910.1016/j.neulet.2007.03.022 17400380
    [Google Scholar]
  97. WuD. GaoD. YuH. PiG. XiongR. LeiH. WangX. LiuE. YeJ. YuH. GaoY. HeT. JiangT. SunF. SuJ. SongG. PengW. YangY. WangJ.Z. Medial septum tau accumulation induces spatial memory deficit via disrupting medial septum–hippocampus cholinergic pathway.Clin. Transl. Med.2021116e42810.1002/ctm2.428 34185417
    [Google Scholar]
  98. YinY. GaoD. WangY. WangZ-H. WangX. YeJ. WuD. FangL. PiG. YangY. WangX-C. LuC. YeK. WangJ-Z. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear Camkiv/Creb signaling.Proc. Natl. Acad. Sci. U. S. A.201611326E3773E378110.1073/pnas.1604519113 27298345
    [Google Scholar]
  99. ZhengJ. TianN. LiuF. ZhangY. SuJ. GaoY. DengM. WeiL. YeJ. LiH. WangJ.Z. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies.Signal Transduct. Target. Ther.20216126910.1038/s41392‑021‑00669‑2 34262014
    [Google Scholar]
  100. WeingartenM.D. LockwoodA.H. HwoS.Y. KirschnerM.W. A protein factor essential for microtubule assembly.Proc. Natl. Acad. Sci. USA19757251858186210.1073/pnas.72.5.1858 1057175
    [Google Scholar]
  101. WegmannS. BiernatJ. MandelkowE. A current view on Tau protein phosphorylation in Alzheimer’s disease.Curr. Opin. Neurobiol.20216913113810.1016/j.conb.2021.03.003 33892381
    [Google Scholar]
  102. BraakH. BraakE. Staging of Alzheimer’s disease-related neurofibrillary changes.Neurobiol. Aging199516327127810.1016/0197‑4580(95)00021‑6 7566337
    [Google Scholar]
  103. ZotovaE. BharambeV. CheaveauM. MorganW. HolmesC. HarrisS. NealJ.W. LoveS. NicollJ.A.R. BocheD. Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization.Brain201313692677269610.1093/brain/awt210 23943781
    [Google Scholar]
  104. RakicS. HungY.M.A. SmithM. SoD. TaylerH.M. VarneyW. WildJ. HarrisS. HolmesC. LoveS. StewartW. NicollJ.A.R. BocheD. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease.Acta Neuropathol. Commun.2018618810.1186/s40478‑018‑0592‑3 30193587
    [Google Scholar]
  105. HartnellI.J. WoodhouseD. JasperW. MasonL. MarwahaP. GraffeuilM. LauL.C. NormanJ.L. ChateletD.S. BueeL. NicollJ.A.R. BlumD. DorotheeG. BocheD. Glial reactivity and T cell infiltration in frontotemporal lobar degeneration with tau pathology.Brain2023147259060610.1093/brain/awad309 37703311
    [Google Scholar]
  106. CryanJ.F. O’RiordanK.J. CowanC.S.M. SandhuK.V. BastiaanssenT.F.S. BoehmeM. CodagnoneM.G. CussottoS. FullingC. GolubevaA.V. GuzzettaK.E. JaggarM. Long-SmithC.M. LyteJ.M. MartinJ.A. Molinero-PerezA. MoloneyG. MorelliE. MorillasE. O’ConnorR. Cruz-PereiraJ.S. PetersonV.L. ReaK. RitzN.L. SherwinE. SpichakS. TeichmanE.M. van de WouwM. Ventura-SilvaA.P. Wallace-FitzsimonsS.E. HylandN. ClarkeG. DinanT.G. The microbiota-gut-brain axis.Physiol. Rev.20199941877201310.1152/physrev.00018.2018 31460832
    [Google Scholar]
  107. RheeS.H. PothoulakisC. MayerE.A. Principles and clinical implications of the brain-gut-enteric microbiota axis.Nat. Rev. Gastroenterol. Hepatol.20096530631410.1038/nrgastro.2009.35 19404271
    [Google Scholar]
  108. SonnenburgJ.L. SonnenburgE.D. Vulnerability of the industrialized microbiota.Science20193666464eaaw925510.1126/science.aaw9255 31649168
    [Google Scholar]
  109. PascaleA. MarchesiN. MarelliC. CoppolaA. LuziL. GovoniS. GiustinaA. GazzarusoC. Microbiota and metabolic diseases.Endocrine201861335737110.1007/s12020‑018‑1605‑5 29721802
    [Google Scholar]
  110. LeungK. ThuretS. Gut microbiota: A modulator of brain plasticity and cognitive function in ageing.Healthcare (Basel)20153489891610.3390/healthcare3040898 27417803
    [Google Scholar]
  111. KauA.L. AhernP.P. GriffinN.W. GoodmanA.L. GordonJ.I. Human nutrition, the gut microbiome and the immune system.Nature2011474735132733610.1038/nature10213 21677749
    [Google Scholar]
  112. GuardB.C. MilaH. SteinerJ.M. MarianiC. SuchodolskiJ.S. Chastant-MaillardS. Chastant-MaillardS. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies.PLoS One2017124e017571810.1371/journal.pone.0175718 28448583
    [Google Scholar]
  113. McKenzieC. TanJ. MaciaL. MackayC.R. The nutrition‐gut microbiome‐physiology axis and allergic diseases.Immunol. Rev.2017278127729510.1111/imr.12556 28658542
    [Google Scholar]
  114. DinanT.G. CryanJ.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration.J. Physiol.2017595248950310.1113/JP273106 27641441
    [Google Scholar]
  115. QuigleyE.M.M. Microbiota-brain-gut axis and neurodegenerative diseases.Curr. Neurol. Neurosci. Rep.201717129410.1007/s11910‑017‑0802‑6 29039142
    [Google Scholar]
  116. GareauM.G. Microbiota-gut-brain axis and cognitive function.Adv. Exp. Med. Biol.201481735737110.1007/978‑1‑4939‑0897‑4_16 24997042
    [Google Scholar]
  117. FrostB. DiamondM.I. Prion-like mechanisms in neurodegenerative diseases.Nat. Rev. Neurosci.201011315515910.1038/nrn2786 20029438
    [Google Scholar]
  118. FeketeT. BenczeD. SzaboA. CsomaE. BiroT. BacsiA. PazmandiK. Regulatory NLRs control the RLR-mediated type I interferon and inflammatory responses in human dendritic cells.Front. Immunol.20189231410.3389/fimmu.2018.02314 30344524
    [Google Scholar]
  119. SharonG. SampsonT.R. GeschwindD.H. MazmanianS.K. The central nervous system and the gut microbiome.Cell2016167491593210.1016/j.cell.2016.10.027 27814521
    [Google Scholar]
  120. OjedaJ. ÁvilaA. VidalP.M. Gut microbiota interaction with the central nervous system throughout life.J. Clin. Med.2021106129910.3390/jcm10061299 33801153
    [Google Scholar]
  121. CattaneoA. CattaneN. GalluzziS. ProvasiS. LopizzoN. FestariC. FerrariC. GuerraU.P. PagheraB. MuscioC. BianchettiA. VoltaG.D. TurlaM. CotelliM.S. GennusoM. PrelleA. ZanettiO. LussignoliG. MirabileD. BellandiD. GentileS. BelottiG. VillaniD. HarachT. BolmontT. PadovaniA. BoccardiM. FrisoniG.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly.Neurobiol. Aging201749606810.1016/j.neurobiolaging.2016.08.019 27776263
    [Google Scholar]
  122. AğagündüzD. Kocaadam-BozkurtB. BozkurtO. SharmaH. EspositoR. ÖzoğulF. CapassoR. Microbiota alteration and modulation in Alzheimer’s disease by gerobiotics: The gut-health axis for a good mind.Biomed. Pharmacother.202215311343010.1016/j.biopha.2022.113430 36076486
    [Google Scholar]
  123. VaresiA. PierellaE. RomeoM. PicciniG.B. AlfanoC. BjørklundG. OppongA. RicevutiG. EspositoC. ChirumboloS. PascaleA. The potential role of gut microbiota in Alzheimer’s disease: From diagnosis to treatment.Nutrients202214366810.3390/nu14030668 35277027
    [Google Scholar]
  124. SzablewskiL. Human gut microbiota in health and Alzheimer’s disease.J. Alzheimers Dis.201862254956010.3233/JAD‑170908 29480188
    [Google Scholar]
  125. KowalskiK. MulakA. Brain-gut-microbiota axis in Alzheimer’s disease.J. Neurogastroenterol. Motil.2019251486010.5056/jnm18087 30646475
    [Google Scholar]
  126. ZengH. ChiH. mTOR and lymphocyte metabolism.Curr. Opin. Immunol.201325334735510.1016/j.coi.2013.05.002 23722114
    [Google Scholar]
  127. ZhaoY. JaberV. LukiwW.J. Gastrointestinal tract microbiomederived pro-inflammatory neurotoxins in Alzheimer’s disease.J. Aging Sci.20219Suppl. 5002 34671696
    [Google Scholar]
  128. ZhaoY. JaberV. LukiwW.J. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus.Front. Cell. Infect. Microbiol.2017731810.3389/fcimb.2017.00318 28744452
    [Google Scholar]
  129. KimH. KimS. ShinS.J. ParkY.H. NamY. KimC. LeeK. KimS.M. JungI.D. YangH.D. ParkY.M. MoonM. Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: Pathologic roles and therapeutic implications.Transl. Neurodegener.20211014910.1186/s40035‑021‑00273‑y 34876226
    [Google Scholar]
  130. ZhanX. StamovaB. SharpF.R. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: A review.Front. Aging Neurosci.2018104210.3389/fnagi.2018.00042 29520228
    [Google Scholar]
  131. ZhuangZ.Q. ShenL.L. LiW.W. FuX. ZengF. GuiL. LüY. CaiM. ZhuC. TanY.L. ZhengP. LiH.Y. ZhuJ. ZhouH.D. BuX.L. WangY.J. Gut microbiota is altered in patients with Alzheimer’s disease.J. Alzheimers Dis.20186341337134610.3233/JAD‑180176 29758946
    [Google Scholar]
  132. VogtN.M. KerbyR.L. Dill-McFarlandK.A. HardingS.J. MerluzziA.P. JohnsonS.C. CarlssonC.M. AsthanaS. ZetterbergH. BlennowK. BendlinB.B. ReyF.E. Gut microbiome alterations in Alzheimer’s disease.Sci. Rep.2017711353710.1038/s41598‑017‑13601‑y 29051531
    [Google Scholar]
  133. LiuP. WuL. PengG. HanY. TangR. GeJ. ZhangL. JiaL. YueS. ZhouK. LiL. LuoB. WangB. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort.Brain Behav. Immun.20198063364310.1016/j.bbi.2019.05.008 31063846
    [Google Scholar]
  134. CoxL.M. SchaferM.J. SohnJ. VincentiniJ. WeinerH.L. GinsbergS.D. BlaserM.J. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice.Sci. Rep.2019911790410.1038/s41598‑019‑54187‑x 31784610
    [Google Scholar]
  135. BäuerlC. ColladoM.C. Diaz CuevasA. ViñaJ. Pérez MartínezG. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan.Lett. Appl. Microbiol.201866646447110.1111/lam.12882 29575030
    [Google Scholar]
  136. HarachT. MarungruangN. DuthilleulN. CheathamV. Mc CoyK.D. FrisoniG. NeherJ.J. FåkF. JuckerM. LasserT. BolmontT. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota.Sci. Rep.2017714180210.1038/srep41802 28176819
    [Google Scholar]
  137. BonfiliL. CecariniV. BerardiS. ScarponaS. SuchodolskiJ.S. NasutiC. FioriniD. BoarelliM.C. RossiG. EleuteriA.M. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels.Sci. Rep.201771242610.1038/s41598‑017‑02587‑2 28546539
    [Google Scholar]
  138. ZhangY. ShenY. LiufuN. LiuL. LiW. ShiZ. ZhengH. MeiX. ChenC.Y. JiangZ. AbtahiS. DongY. LiangF. ShiY. ChengL.L. YangG. KangJ.X. WilkinsonJ.E. XieZ. Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: Evidence from mice and patients.Mol. Psychiatry202328104421443710.1038/s41380‑023‑02216‑7 37604976
    [Google Scholar]
  139. LiW. DengY. ChuQ. ZhangP. Gut microbiome and cancer immunotherapy.Cancer Lett.2019447414710.1016/j.canlet.2019.01.015 30684593
    [Google Scholar]
  140. AndrewsM.C. VasanthakumarA. Gut microbiota – a double-edged sword in cancer immunotherapy.Trends Cancer2023913510.1016/j.trecan.2022.08.003 36088249
    [Google Scholar]
  141. IvanovI.I. TuganbaevT. SkellyA.N. HondaK. T cell responses to the microbiota.Annu. Rev. Immunol.202240155958710.1146/annurev‑immunol‑101320‑011829 35113732
    [Google Scholar]
  142. TuboN.J. JenkinsM.K. TCR signal quantity and quality in CD4+ T cell differentiation.Trends Immunol.2014351259159610.1016/j.it.2014.09.008 25457838
    [Google Scholar]
  143. IvanovI.I. AtarashiK. ManelN. BrodieE.L. ShimaT. KaraozU. WeiD. GoldfarbK.C. SanteeC.A. LynchS.V. TanoueT. ImaokaA. ItohK. TakedaK. UmesakiY. HondaK. LittmanD.R. Induction of intestinal Th17 cells by segmented filamentous bacteria.Cell2009139348549810.1016/j.cell.2009.09.033 19836068
    [Google Scholar]
  144. MaynardC.L. ElsonC.O. HattonR.D. WeaverC.T. Reciprocal interactions of the intestinal microbiota and immune system.Nature2012489741523124110.1038/nature11551 22972296
    [Google Scholar]
  145. Zegarra-RuizD.F. KimD.V. NorwoodK. KimM. WuW.J.H. Saldana-MoralesF.B. HillA.A. MajumdarS. OrozcoS. BellR. RoundJ.L. LongmanR.S. EgawaT. BettiniM.L. DiehlG.E. Thymic development of gut-microbiota-specific T cells.Nature2021594786341341710.1038/s41586‑021‑03531‑1 33981034
    [Google Scholar]
  146. ZuoK. FangC. LiuZ. FuY. LiuY. LiuL. WangY. YinX. LiuX. LiJ. ZhongJ. ChenM. XuL. YangX. Commensal microbe-derived SCFA alleviates atrial fibrillation via GPR43/NLRP3 signaling.Int. J. Biol. Sci.202218104219423210.7150/ijbs.70644 35844801
    [Google Scholar]
  147. TrompetteA. GollwitzerE.S. PattaroniC. Lopez-MejiaI.C. RivaE. PernotJ. UbagsN. FajasL. NicodL.P. MarslandB.J. Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism.Immunity20184859921005.e810.1016/j.immuni.2018.04.022 29768180
    [Google Scholar]
  148. ArpaiaN. CampbellC. FanX. DikiyS. van der VeekenJ. deRoosP. LiuH. CrossJ.R. PfefferK. CofferP.J. RudenskyA.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013504748045145510.1038/nature12726 24226773
    [Google Scholar]
  149. TremlettH. BauerK.C. Appel-CresswellS. FinlayB.B. WaubantE. The gut microbiome in human neurological disease: A review.Ann. Neurol.201781336938210.1002/ana.24901 28220542
    [Google Scholar]
  150. SmithP.M. HowittM.R. PanikovN. MichaudM. GalliniC.A. Bohlooly-YM. GlickmanJ.N. GarrettW.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.Science2013341614556957310.1126/science.1241165 23828891
    [Google Scholar]
  151. PereiraM. DursoD.F. BryantC.E. Kurt-JonesE.A. SilvermanN. GolenbockD.T. GazzinelliR.T. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways.Cell Rep.202240711122510.1016/j.celrep.2022.111225 35977521
    [Google Scholar]
  152. OwenA.M. LuanL. BurelbachK.R. McBrideM.A. StothersC.L. BoykinO.A. SivanesamK. SchaedelJ.F. PatilT.K. WangJ. HernandezA. PatilN.K. SherwoodE.R. BohannonJ.K. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages.Front. Immunol.202213104466210.3389/fimmu.2022.1044662 36439136
    [Google Scholar]
  153. ZhuG. ChengZ. HuangY. ZhengW. YangS. LinC. YeJ. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF κB/AP 1 signaling pathway.Int. J. Mol. Med.2020451131140 31746347
    [Google Scholar]
  154. YanX. ZhaoX. HuoR. XuT. IRF3 and IRF8 regulate NF-κB signaling by targeting MyD88 in teleost fish.Front. Immunol.20201160610.3389/fimmu.2020.00606 32373114
    [Google Scholar]
  155. BlanderJ.M. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity.Semin. Immunol.20236610171310.1016/j.smim.2023.101713 36706521
    [Google Scholar]
  156. KawaiT. AkiraS. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors.Nat. Immunol.201011537338410.1038/ni.1863 20404851
    [Google Scholar]
  157. DolasiaK. BishtM.K. PradhanG. UdgataA. MukhopadhyayS. TLRs/NLRs: Shaping the landscape of host immunity.Int. Rev. Immunol.201837131910.1080/08830185.2017.1397656 29193992
    [Google Scholar]
  158. HuangS. JiaA. MaS. SunY. ChangX. HanZ. ChaiJ. NLR signaling in plants: From resistosomes to second messengers.Trends Biochem. Sci.202348977678710.1016/j.tibs.2023.06.002 37394345
    [Google Scholar]
  159. ZelanteT. IannittiR.G. CunhaC. De LucaA. GiovanniniG. PieracciniG. ZecchiR. D’AngeloC. Massi-BenedettiC. FallarinoF. CarvalhoA. PuccettiP. RomaniL. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.Immunity201339237238510.1016/j.immuni.2013.08.003 23973224
    [Google Scholar]
  160. HeY. FuL. LiY. WangW. GongM. ZhangJ. DongX. HuangJ. WangQ. MackayC.R. FuY.X. ChenY. GuoX. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity.Cell Metab.20213359881000.e710.1016/j.cmet.2021.03.002 33761313
    [Google Scholar]
  161. WangC. YuJ.T. MiaoD. WuZ.C. TanM.S. TanL. Targeting the mTOR signaling network for Alzheimer’s disease therapy.Mol. Neurobiol.201449112013510.1007/s12035‑013‑8505‑8 23853042
    [Google Scholar]
  162. DavoodyS. Asgari TaeiA. KhodabakhshP. DargahiL. mTOR signaling and Alzheimer’s disease: What we know and where we are?CNS Neurosci. Ther.2024304e1446310.1111/cns.14463 37721413
    [Google Scholar]
  163. ShiQ. ChangC. SalibaA. Microglial mTOR activation upregulates Trem2 and enhances β-amyloid plaque clearance in the 5xfad Alzheimer’s disease model.J. Neurosci.2022425294531310.1523/JNEUROSCI.2427‑21.2022 35672148
    [Google Scholar]
  164. WangB. FuC. WeiY. XuB. YangR. LiC. QiuM. YinY. QinD. Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus.Front. Cell. Neurosci.202216102394710.3389/fncel.2022.1023947 36467613
    [Google Scholar]
  165. WangX. JiaJ. Magnolol improves Alzheimer’s disease-like pathologies and cognitive decline by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway.Biomed. Pharmacother.202316111447310.1016/j.biopha.2023.114473 36889111
    [Google Scholar]
  166. TanJ. McKenzieC. PotamitisM. ThorburnA.N. MackayC.R. MaciaL. The role of short-chain fatty acids in health and disease.Adv. Immunol.20141219111910.1016/B978‑0‑12‑800100‑4.00003‑9 24388214
    [Google Scholar]
  167. TangG. DuY. GuanH. JiaJ. ZhuN. ShiY. RongS. YuanW. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2‐mediated PI3K/Akt/mTOR signals.Br. J. Pharmacol.2022179115917810.1111/bph.15693 34638162
    [Google Scholar]
  168. KummerM.P. IsingC. KummerC. SarlusH. GriepA. Vieira-SaeckerA. SchwartzS. HalleA. BrücknerM. HändlerK. SchultzeJ.L. BeyerM. LatzE. HenekaM.T. Microglial PD‐1 stimulation by astrocytic PD‐L1 suppresses neuroinflammation and Alzheimer’s disease pathology.EMBO J.20214024e10866210.15252/embj.2021108662 34825707
    [Google Scholar]
  169. JiangY. ChenM. NieH. YuanY. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations.Hum. Vaccin. Immunother.20191551111112210.1080/21645515.2019.1571892 30888929
    [Google Scholar]
  170. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  171. FaridarA. VasquezM. ThomeA.D. YinZ. XuanH. WangJ.H. WenS. LiX. ThonhoffJ.R. ZhaoW. ZhaoH. BeersD.R. WongS.T.C. MasdeuJ.C. AppelS.H. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer’s disease.Acta Neuropathol. Commun.202210114410.1186/s40478‑022‑01447‑z 36180898
    [Google Scholar]
  172. DansokhoC. Ait AhmedD. AidS. Toly-NdourC. ChaigneauT. CalleV. CagnardN. HolzenbergerM. PiaggioE. AucouturierP. DorothéeG. RegulatoryT. Regulatory T cells delay disease progression in Alzheimer-like pathology.Brain201613941237125110.1093/brain/awv408 26912648
    [Google Scholar]
  173. FaridarA. EidA.M. ThomeA.D. ZhaoW. BeersD.R. PascualM.B. NakawahM.O. RomanG.C. DavisC.S. GrundmanM. MasdeuJ.C. AppelS.H. A phase 1 open-label pilot study of low-dose interleukine-2 immunotherapy in patients with Alzheimer’s disease.Transl. Neurodegener.20231215410.1186/s40035‑023‑00387‑5 37968718
    [Google Scholar]
  174. WangW. LiY. MaF. ShengX. ChenK. ZhuoR. WangC. ZhengH. ZhangY. BuG. ChenX.F. ZhongL. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer’s disease model by restoring BDNF signaling.Brain Behav. Immun.202311327528810.1016/j.bbi.2023.07.011 37482204
    [Google Scholar]
  175. MartinezF.O. GordonS. The M1 and M2 paradigm of macrophage activation: Time for reassessment.F1000Prime Rep.201461310.12703/P6‑13 24669294
    [Google Scholar]
  176. ElmoreM.R.P. NajafiA.R. KoikeM.A. DagherN.N. SpangenbergE.E. RiceR.A. KitazawaM. MatusowB. NguyenH. WestB.L. GreenK.N. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain.Neuron201482238039710.1016/j.neuron.2014.02.040 24742461
    [Google Scholar]
  177. DeNardoD.G. BrennanD.J. RexhepajE. RuffellB. ShiaoS.L. MaddenS.F. GallagherW.M. WadhwaniN. KeilS.D. JunaidS.A. RugoH.S. HwangE.S. JirströmK. WestB.L. CoussensL.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy.Cancer Discov.201111546710.1158/2159‑8274.CD‑10‑0028 22039576
    [Google Scholar]
  178. KuseY. OhuchiK. NakamuraS. HaraH. ShimazawaM. Microglia increases the proliferation of retinal precursor cells during postnatal development.Mol. Vis.201824536545 30090016
    [Google Scholar]
  179. MerryT.L. BrooksA.E.S. MassonS.W. AdamsS.E. JaiswalJ.K. JamiesonS.M.F. The Csf1 receptor inhibitor pexidartinib (Plx3397) reduces tissue macrophage levels without affecting glucose homeostasis in mice.Int. J. Obes.202044124525310.1038/s41366‑019‑0355‑7 30926949
    [Google Scholar]
  180. LuoL. LiuM. FanY. ZhangJ. LiuL. LiY. ZhangQ. XieH. JiangC. WuJ. XiaoX. WuY. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via Tlr4/Nfκb/Nlrp3 signaling pathway in cerebral ischemic mice.J. Neuroinflammation202219114110.1186/s12974‑022‑02501‑2 35690810
    [Google Scholar]
  181. ChadarevianJ.P. LombrosoS.I. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement.J. Exp. Med.20232203e2022085710.1084/jem.20220857 36584406
    [Google Scholar]
  182. BennerB. GoodL. QuirogaD. SchultzT.E. KassemM. CarsonW.E. CherianM.A. SardesaiS. WesolowskiR. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: A systematic review of pre-clinical and clinical development.Drug Des. Devel. Ther.2020141693170410.2147/DDDT.S253232 32440095
    [Google Scholar]
  183. TapW.D. WainbergZ.A. AnthonyS.P. IbrahimP.N. ZhangC. HealeyJ.H. ChmielowskiB. StaddonA.P. CohnA.L. ShapiroG.I. KeedyV.L. SinghA.S. PuzanovI. KwakE.L. WagnerA.J. Von HoffD.D. WeissG.J. RamanathanR.K. ZhangJ. HabetsG. ZhangY. BurtonE.A. VisorG. SanftnerL. SeversonP. NguyenH. KimM.J. MarimuthuA. TsangG. ShellooeR. GeeC. WestB.L. HirthP. NolopK. van de RijnM. HsuH.H. PeterfyC. LinP.S. Tong-StarksenS. BollagG. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor.N. Engl. J. Med.2015373542843710.1056/NEJMoa1411366 26222558
    [Google Scholar]
  184. HealeyJ. H. BernthalN. M. van de SandeM. Management of tenosynovial giant cell tumor: A neoplastic and inflammatory disease.J. Am. Acad. Orthop. Surg. Glob. Res. Rev.2020411e20.0002810.5435/JAAOSGlobal‑D‑20‑00028 33156160
    [Google Scholar]
  185. DavidsonR. KriderR.I. BorsellinoP. NoordaK. AlhwayekG. VidaT.A. Untangling Tau.Curr. Issues Mol. Biol.202345118816883910.3390/cimb45110553 37998730
    [Google Scholar]
  186. LauS.F. WuW. The Vcam1-Apoe pathway directs microglial chemotaxis and alleviates Alzheimer’s disease pathology.Nat. Aging20233101219123610.1038/s43587‑023‑00491‑1 37735240
    [Google Scholar]
  187. HuangY. XuZ. XiongS. SunF. QinG. HuG. WangJ. ZhaoL. LiangY.X. WuT. LuZ. HumayunM.S. SoK.F. PanY. LiN. YuanT.F. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion.Nat. Neurosci.20182153054010.1038/s41593‑018‑0090‑8
    [Google Scholar]
  188. ZhaoP. XuY. A tetravalent Trem2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer’s disease.Sci. Transl. Med.202214661eabq009510.1126/scitranslmed.abq0095 36070367
    [Google Scholar]
  189. GratuzeM. ChenY. Activated microglia mitigate Aβ-associated Tau seeding and spreading.J. Exp. Med.20212188e2021054210.1084/jem.20210542 34100905
    [Google Scholar]
  190. ColonnaM. WangY. TREM2 variants: New keys to decipher Alzheimer disease pathogenesis.Nat. Rev. Neurosci.201617420120710.1038/nrn.2016.7 26911435
    [Google Scholar]
  191. UlrichJ.D. HoltzmanD.M. TREM2 function in Alzheimer’s disease and neurodegeneration.ACS Chem. Neurosci.20167442042710.1021/acschemneuro.5b00313 26854967
    [Google Scholar]
  192. JacksonS. PaulR. JoshiA. LiaoY. MorrisonG. CastroA. YehF. WardM. INVOKE-2 - A phase 2 randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of AL002 in participants with early Alzheimer’s disease (P17-3.005).Neurology20229818_supplement242310.1212/WNL.98.18_supplement.2423
    [Google Scholar]
  193. RankinC.A. SunQ. GamblinT.C. Tau phosphorylation by GSK-3β promotes tangle-like filament morphology.Mol. Neurodegener.2007211210.1186/1750‑1326‑2‑12 17598919
    [Google Scholar]
  194. AtkinsonJ.M. RankK.B. ZengY. CapenA. YadavV. ManroJ.R. EnglerT.A. ChedidM. Activating the Wnt/β-catenin pathway for the treatment of melanoma – application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3.PLoS One2015104e012502810.1371/journal.pone.0125028 25915038
    [Google Scholar]
  195. AvilaJ. WandosellF. HernándezF. Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors.Expert Rev. Neurother.201010570371010.1586/ern.10.40 20420491
    [Google Scholar]
  196. MartinezA. PerezD.I. GSK-3 inhibitors: A ray of hope for the treatment of Alzheimer’s disease?J. Alzheimers Dis.200815218119110.3233/JAD‑2008‑15204 18953107
    [Google Scholar]
  197. SalminenA. OjalaJ. KaarnirantaK. HiltunenM. SoininenH. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease.Prog. Neurobiol.20119319911010.1016/j.pneurobio.2010.10.006 21056617
    [Google Scholar]
  198. TalaeiS. MellatyarH. AsadiA. AkbarzadehA. SheervalilouR. ZarghamiN. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment.Chem. Biol. Drug Des.201993576078610.1111/cbdd.13486 30697932
    [Google Scholar]
  199. EnomotoA. FukasawaT. TakamatsuN. ItoM. MoritaA. HosoiY. MiyagawaK. The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin modulates radiosensitivity by downregulating serine/threonine kinase 38 via Sp1 inhibition.Eur. J. Cancer201349163547355810.1016/j.ejca.2013.06.034 23886587
    [Google Scholar]
  200. KamalA. ThaoL. SensintaffarJ. ZhangL. BoehmM.F. FritzL.C. BurrowsF.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors.Nature2003425695640741010.1038/nature01913 14508491
    [Google Scholar]
  201. DickeyC.A. KamalA. LundgrenK. KlosakN. BaileyR.M. DunmoreJ. AshP. ShorakaS. ZlatkovicJ. EckmanC.B. PattersonC. DicksonD.W. NahmanN.S.Jr HuttonM. BurrowsF. PetrucelliL. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins.J. Clin. Invest.2007117364865810.1172/JCI29715 17304350
    [Google Scholar]
  202. SugaharaH. OdamakiT. FukudaS. KatoT. XiaoJ. AbeF. KikuchiJ. OhnoH. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community.Sci. Rep.2015511354810.1038/srep13548 26315217
    [Google Scholar]
  203. RooksM.G. GarrettW.S. Gut microbiota, metabolites and host immunity.Nat. Rev. Immunol.201616634135210.1038/nri.2016.42 27231050
    [Google Scholar]
  204. MaslowskiK.M. MackayC.R. Diet, gut microbiota and immune responses.Nat. Immunol.20111215910.1038/ni0111‑5 21169997
    [Google Scholar]
  205. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  206. OnoY. MaejimaY. SaitoM. SakamotoK. HoritaS. ShimomuraK. InoueS. KotaniJ. TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice.Sci. Rep.202010169410.1038/s41598‑020‑57714‑3 31959927
    [Google Scholar]
  207. ZhangX. MaW. LiuH. LiuY. ZhangY. HeS. DingX. LiB. YanY. Daphnetin protects neurons in an Alzheimer disease mouse model and normal rat neurons by inhibiting BACE1 activity and activating the Nrf2/HO-1 pathway.J. Neuropathol. Exp. Neurol.202483867068310.1093/jnen/nlae043 38819094
    [Google Scholar]
  208. SongM. ZhangS. YuW. FanX. GomisinN. Rescues cognitive impairment of Alzheimer’s disease by targeting GSK3β and activating Nrf2 signaling pathway.Phytomedicine202413215581110.1016/j.phymed.2024.155811 38924927
    [Google Scholar]
  209. ZengY. XiongL. TangH. ChenL. YuQ. LiL. ChenF. LiL. ZhengY. SunJ. SheL. WangW. LiangG. ZhaoX. Norboldine improves cognitive impairment and pathological features in Alzheimer’s disease by activating AMPK/GSK3β/Nrf2 signaling pathway.J. Ethnopharmacol.202433311849810.1016/j.jep.2024.118498 38944357
    [Google Scholar]
  210. BhardwajS. GrewalA.K. SinghS. DhankarV. JindalA. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer’s disease: Targeting molecular approach Nrf2, NF-κB, and CREB.Inflammopharmacology20243252943296010.1007/s10787‑024‑01502‑2 38951436
    [Google Scholar]
  211. UrunoA. Kadoguchi-IgarashiS. SaitoR. KoisoS. SaigusaD. ChuC.T. SuzukiT. SaitoT. The Nrf2 inducer Cddo-2p-Im provokes a reduction in amyloid β levels in Alzheimer’s disease model mice.J. Biochem.2024176540541410.1093/jb/mvae060 39259503
    [Google Scholar]
  212. TangS. ZhangY. BotchwayB.O.A. WangX. HuangM. LiuX. Epigallocatechin-3-gallate inhibits oxidative stress through the Keap1/Nrf2 signaling pathway to improve Alzheimer disease.Mol. Neurobiol.202460449810.1007/s12035‑024‑04498‑6 39299981
    [Google Scholar]
  213. CummingsJ. LeeG. RitterA. ZhongK. Alzheimer’s disease drug development pipeline.Alzheimers Dement. (N. Y.)20184119521410.1016/j.trci.2018.03.009 29955663
    [Google Scholar]
  214. EspositoE. CuzzocreaS. Anti-inflammatory activity of melatonin in central nervous system.Curr. Neuropharmacol.20108322824210.2174/157015910792246155 21358973
    [Google Scholar]
  215. XuY. LiuY. WuY. SunJ. LuX. DaiK. ZhangY. LuoC. ZhangJ. Curcumin alleviates microglia-mediated neuroinflammation and neuronal ferroptosis following experimental subarachnoid hemorrhage by modulating the Nrf2/HO-1 signaling pathway.Mol. Neurobiol.202470444310.1007/s12035‑024‑04443‑7 39207623
    [Google Scholar]
  216. LiM.J. XuJ.Y. ZhangH.Y. GuoM. LanM.N. KongJ. LiuS.W. ZhengH.J. A medicine and food homology formula prevents cognitive deficits by inhibiting neuroinflammation and oxidative stress via activating Aea-Trpv1-Nrf2 pathway.Inflammopharmacol.20243263745375910.1007/s10787‑024‑01570‑4 39305407
    [Google Scholar]
  217. LvR. ZhaoY. WangX. HeY. DongN. MinX. LiuX. YuQ. YuanK. YueH. YinQ. GLP-1 analogue liraglutide attenuates CIH-induced cognitive deficits by inhibiting oxidative stress, neuroinflammation, and apoptosis via the Nrf2/HO-1 and MAPK/NF-κB signaling pathways.Int. Immunopharmacol.2024142Pt B11322210.1016/j.intimp.2024.113222 39321702
    [Google Scholar]
  218. ZhangB. YuJ. BaoL. FengD. QinY. FanD. HongX. ChenY. Cynarin inhibits microglia-induced pyroptosis and neuroinflammation via Nrf2/ROS/NLRP3 axis after spinal cord injury.Inflamm. Res.202473111981199410.1007/s00011‑024‑01945‑x 39340662
    [Google Scholar]
  219. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipeline.Alzheimers Dement. (N. Y.)20195127229310.1016/j.trci.2019.05.008 31334330
    [Google Scholar]
  220. MullaneK. WilliamsM. Alzheimer’s disease (AD) therapeutics – 2: Beyond amyloid – Re-defining AD and its causality to discover effective therapeutics.Biochem. Pharmacol.201815837640110.1016/j.bcp.2018.09.027 30273552
    [Google Scholar]
  221. BlennowK. HampelH. ZetterbergH. Biomarkers in amyloid-β immunotherapy trials in Alzheimer’s disease.Neuropsychopharmacology201439118920110.1038/npp.2013.154 23799530
    [Google Scholar]
  222. StanimirovicD.B. SandhuJ.K. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier.BioDrugs201832654755910.1007/s40259‑018‑0309‑y 30306341
    [Google Scholar]
  223. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  224. AğagündüzD. Gençer BingölF. ÇelikE. CemaliÖ. ÖzenirÇ. ÖzoğulF. CapassoR. Recent developments in the probiotics as live biotherapeutic products (LBPs) as modulators of gut brain axis related neurological conditions.J. Transl. Med.202220146010.1186/s12967‑022‑03609‑y 36209124
    [Google Scholar]
/content/journals/cn/10.2174/011570159X350611250303044527
Loading
/content/journals/cn/10.2174/011570159X350611250303044527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test