Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The nervous system, including the central nervous system and peripheral nervous system, has the most intricate structure and function among all systems in the human body. In studies of physiological and pathological functions, cell culture systems serve as an indispensable tool to simulate the nervous system . Two-dimensional (2D), three-dimensional (3D), and four-dimensional (4D) neural cell culture systems are used to assess the functional interconnectivity of neuronal tissues and have markedly advanced in recent years. Although 2D culture systems have predominated, they cannot accurately recapitulate the dynamic complexity of the environment, cell-cell communication, and nervous system structures. Consequently, studies have shifted to using 3D or 4D cell culture systems to achieve more realistic biochemical and biomechanical microenvironments. Nevertheless, many limitations persist in 3D or 4D culture systems, including difficulties in deciphering dynamic and reciprocal remodeling processes, as well as the spatiotemporal distributions of oxygen, nutrients, and metabolic waste. Here, we review 2D, 3D, and 4D culture systems, discuss the advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X360193250219082312
2025-03-12
2025-12-23
Loading full text...

Full text loading...

References

  1. SharmaM. ChoudhuryS. BabuA. GuptaV. SenguptaD. AliS.A. DhokneM.D. DatusaliaA.K. MandalD. PandaJ.J. Futuristic Alzheimer’s therapy: Acoustic-stimulated piezoelectric nanospheres for amyloid reduction.Biomater. Sci.20241271801182110.1039/D3BM01688A 38407241
    [Google Scholar]
  2. ParkJ.W. KimH.J. KangM.W. JeonN.L. Advances in microfluidics-based experimental methods for neuroscience research.Lab Chip201313450952110.1039/c2lc41081h 23306275
    [Google Scholar]
  3. BangS. LeeS. ChoiN. KimH.N. Emerging brain‐pathophysiology‐mimetic platforms for studying neurodegenerative diseases: Brain organoids and brains‐on‐a‐chip.Adv. Healthc. Mater.20211012200211910.1002/adhm.202002119 34028201
    [Google Scholar]
  4. BankerG. Culturing Nerve Cells.Boston, MAMassachusetts Institute of Technology1998936
    [Google Scholar]
  5. HuhD. HamiltonG.A. IngberD.E. From 3D cell culture to organs-on-chips.Trends Cell Biol.2011211274575410.1016/j.tcb.2011.09.005 22033488
    [Google Scholar]
  6. ChaubeyA. RossK.J. LeadbetterR.M. BurgK.J.L. Surface patterning: Tool to modulate stem cell differentiation in an adipose system.J. Biomed. Mater. Res. B Appl. Biomater.200884B1707810.1002/jbm.b.30846 17455278
    [Google Scholar]
  7. CrosnierC. StaudtN. WrightG.J. A rapid and scalable method for selecting recombinant mouse monoclonal antibodies.BMC Biol.2010817610.1186/1741‑7007‑8‑76 20525357
    [Google Scholar]
  8. Carrillo-CocomL.M. Genel-ReyT. Araíz-HernándezD. López-PachecoF. López-MezaJ. Rocha-PizañaM.R. Ramírez-MedranoA. AlvarezM.M. Amino acid consumption in naïve and recombinant CHO cell cultures: Producers of a monoclonal antibody.Cytotechnology201567580982010.1007/s10616‑014‑9720‑5 24798809
    [Google Scholar]
  9. Jung-KlawitterS. OpladenT. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism.J. Inherit. Metab. Dis.20184161103111610.1007/s10545‑018‑0225‑9 29980968
    [Google Scholar]
  10. LoganS. ArzuaT. CanfieldS.G. SeminaryE.R. SisonS.L. EbertA.D. BaiX. Studying human neurological disorders using induced pluripotent stem cells: From 2D monolayer to 3D organoid and blood brain barrier models.Compr. Physiol.20199256561110.1002/cphy.c180025 30873582
    [Google Scholar]
  11. CorròC. NovellasdemuntL. LiV.S.W. A brief history of organoids.Am. J. Physiol. Cell Physiol.20203191C151C16510.1152/ajpcell.00120.2020 32459504
    [Google Scholar]
  12. CleversH. Modeling development and disease with organoids.Cell201616571586159710.1016/j.cell.2016.05.082 27315476
    [Google Scholar]
  13. LiuC. OikonomopoulosA. SayedN. WuJ.C. Modeling human diseases with induced pluripotent stem cells: From 2D to 3D and beyond.Development20181455dev15616610.1242/dev.156166 29519889
    [Google Scholar]
  14. NassorF. JarrayR. BiardD.S.F. MaïzaA. Papy-GarciaD. PavoniS. DeslysJ.P. YatesF. Long term gene expression in human induced pluripotent stem cells and cerebral organoids to model a neurodegenerative disease.Front. Cell. Neurosci.2020141410.3389/fncel.2020.00014 32116560
    [Google Scholar]
  15. LanghansS.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning.Front. Pharmacol.20189610.3389/fphar.2018.00006 29410625
    [Google Scholar]
  16. ChoiS.H. KimY.H. HebischM. SliwinskiC. LeeS. D’AvanzoC. ChenH. HooliB. AsselinC. MuffatJ. KleeJ.B. ZhangC. WaingerB.J. PeitzM. KovacsD.M. WoolfC.J. WagnerS.L. TanziR.E. KimD.Y. A three-dimensional human neural cell culture model of Alzheimer’s disease.Nature2014515752627427810.1038/nature13800 25307057
    [Google Scholar]
  17. PapadimitriouC. CelikkayaH. CosacakM.I. MashkaryanV. BrayL. BhattaraiP. BrandtK. HollakH. ChenX. HeS. AntosC.L. LinW. ThomasA.K. DahlA. KurthT. FriedrichsJ. ZhangY. FreudenbergU. WernerC. KizilC. 3D culture method for Alzheimer’s disease modeling reveals interleukin-4 rescues Aβ42-induced loss of human neural stem cell plasticity.Dev. Cell201846185101.e810.1016/j.devcel.2018.06.005 29974866
    [Google Scholar]
  18. de LeeuwS.M. DavazS. WannerD. MilleretV. EhrbarM. GietlA. TackenbergC. Increased maturation of iPSC-derived neurons in a hydrogel-based 3D culture.J. Neurosci. Methods202136010925410.1016/j.jneumeth.2021.109254 34126141
    [Google Scholar]
  19. YanagiT. KajiyaH. FujisakiS. MaeshibaM. Yanagi-SA. Yamamoto-MN. KakuraK. KidoH. OhnoJ. Three-dimensional spheroids of dedifferentiated fat cells enhance bone regeneration.Regen. Ther.20211847247910.1016/j.reth.2021.10.004 34853808
    [Google Scholar]
  20. LancasterM.A. CorsiniN.S. WolfingerS. GustafsonE.H. PhillipsA.W. BurkardT.R. OtaniT. LiveseyF.J. KnoblichJ.A. Guided self-organization and cortical plate formation in human brain organoids.Nat. Biotechnol.201735765966610.1038/nbt.3906 28562594
    [Google Scholar]
  21. WuQ. LiuJ. WangX. FengL. WuJ. ZhuX. WenW. GongX. Organ-on-a-chip: Recent breakthroughs and future prospects.Biomed. Eng. Online2020191910.1186/s12938‑020‑0752‑0 32050989
    [Google Scholar]
  22. SharmaA.D. McCoyL. JacobsE. WilleyH. BehnJ.Q. NguyenH. BolonB. CurleyJ.L. MooreM.J. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform.Sci. Rep.201991892110.1038/s41598‑019‑45407‑5 31222141
    [Google Scholar]
  23. PadmalayamI. SutoM.J. 3D cell cultures.Annu. Rep. Med. Chem.20124736737810.1016/B978‑0‑12‑396492‑2.00024‑2
    [Google Scholar]
  24. ZengY. Win-ShweT.T. ItoT. SoneH.A. The three-dimensional neurosphere system using human stem cells for nanotoxicology studies.Organoids and Mini-Organs.Cambridge, MA, USAAcademic Press201821522610.1016/B978‑0‑12‑812636‑3.00011‑0
    [Google Scholar]
  25. JensenC. TengY. Is it time to start transitioning from 2D to 3D cell culture?Front. Mol. Biosci.202073310.3389/fmolb.2020.00033 32211418
    [Google Scholar]
  26. TongZ.B. HuangR. BraistedJ. ChuP.H. SimeonovA. GerholdD.L. 3D-Suspension culture platform for high throughput screening of neurotoxic chemicals using LUHMES dopaminergic neurons.SLAS Discov. Adv. Life Sci. R&D202429310014310.1016/j.slasd.2024.01.004
    [Google Scholar]
  27. TibbittM.W. AnsethK.S. Dynamic microenvironments: The fourth dimension.Sci. Transl. Med.20124160160ps2410.1126/scitranslmed.3004804 23152326
    [Google Scholar]
  28. WangJ. WeiQ. YangY. CheM. MaY. PengL. YuH. ShiH. HeG. WuR. ZengT. ZengX. MaW. Small extracellular vesicles derived from four dimensional-culture of mesenchymal stem cells induce alternatively activated macrophages by upregulating IGFBP2/EGFR to attenuate inflammation in the spinal cord injury of rats.Front. Bioeng. Biotechnol.202311114698110.3389/fbioe.2023.1146981 37187882
    [Google Scholar]
  29. FuchsE. BlauH.M. Tissue stem cells: Architects of their niches.Cell Stem Cell202027453255610.1016/j.stem.2020.09.011 33007238
    [Google Scholar]
  30. McKinleyK.L. Castillo-AzofeifaD. KleinO.D. Tools and concepts for interrogating and defining cellular identity.Cell Stem Cell202026563265610.1016/j.stem.2020.03.015 32386555
    [Google Scholar]
  31. MabryK.M. PayneS.Z. AnsethK.S. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.Biomaterials201674314110.1016/j.biomaterials.2015.09.035 26433490
    [Google Scholar]
  32. McGrathE. GaoJ. WuP. Proliferation and differentiation of human fetal brain neural stem cells in vitro.J. Neurorestoratol.201861192710.2147/JN.S148794
    [Google Scholar]
  33. HuangH. SharmaH.S. SanbergP.R. ChenL. OtomA. MovigliaG.A. SarnowskaA. Criticality of an identification standard for mesenchymal stromal cells in clinical investigations.J. Neurorestoratol.202412210011510.1016/j.jnrt.2024.100115
    [Google Scholar]
  34. WangP. LiJ. LiS. LiuY. GongJ. HeS. WuW. TanG. LiuS. Palladium–reduced graphene oxide nanocomposites enhance neurite outgrowth and protect neurons from ishemic stroke.Mater. Today Bio20242810118410.1016/j.mtbio.2024.101184 39221214
    [Google Scholar]
  35. ZhengW. ZhangP. CheH. ZhangY. YangX. ShenY. GsMTx4 ameliorates spinal cord injury by regulating microglial polarization through the Piezo1/NFκB/STAT6 pathway.J. Neurorestoratol.202412410014410.1016/j.jnrt.2024.100144
    [Google Scholar]
  36. HsiehC.F. YanZ. SchumannR.G. MilzS. PfeiferC.G. SchiekerM. DochevaD. In vitro comparison of 2D-cell culture and 3D-cell sheets of scleraxis-programmed bone marrow derived mesenchymal stem cells to primary tendon stem/progenitor cells for tendon repair.Int. J. Mol. Sci.2018198227210.3390/ijms19082272 30072668
    [Google Scholar]
  37. JinL. QuY. GomezL.J. ChungS. HanB. GaoB. YueY. GongY. LiuX. AmersiF. DangC. GiulianoA.E. CuiX. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.Oncotarget2018914115031151410.18632/oncotarget.23817 29545915
    [Google Scholar]
  38. RaviM. ParameshV. KaviyaS.R. AnuradhaE. SolomonF.D.P. 3D cell culture systems: Advantages and applications.J. Cell. Physiol.20152301162610.1002/jcp.24683 24912145
    [Google Scholar]
  39. Mueller-KlieserW. Multicellular spheroids.J. Cancer Res. Clin. Oncol.1987113210112210.1007/BF00391431 3549738
    [Google Scholar]
  40. GottfriedE. Kunz-SchughartL.A. AndreesenR. KreutzM. Brave little world: Spheroids as an in vitro model to study tumor-immune-cell interactions.Cell Cycle20065769169510.4161/cc.5.7.2624 16582627
    [Google Scholar]
  41. HirschhaeuserF. MenneH. DittfeldC. WestJ. Mueller-KlieserW. Kunz-SchughartL.A. Multicellular tumor spheroids: An underestimated tool is catching up again.J. Biotechnol.2010148131510.1016/j.jbiotec.2010.01.012 20097238
    [Google Scholar]
  42. LaBarberaD.V. ReidB.G. YooB.H. The multicellular tumor spheroid model for high-throughput cancer drug discovery.Expert Opin. Drug Discov.20127981983010.1517/17460441.2012.708334 22788761
    [Google Scholar]
  43. FennemaE. RivronN. RouwkemaJ. van BlitterswijkC. de BoerJ. Spheroid culture as a tool for creating 3D complex tissues.Trends Biotechnol.201331210811510.1016/j.tibtech.2012.12.003 23336996
    [Google Scholar]
  44. WhangviboonkijN. PengsartW. ChenZ. HanS. ParkS. KulkeawK. Phenotypic assay for cytotoxicity assessment of Balamuthia mandrillaris against human neurospheroids.Front. Microbiol.202314119053010.3389/fmicb.2023.1190530 37744897
    [Google Scholar]
  45. VoA.N. KunduS. StrongC. JungO. LeeE. SongM.J. BoutinM.E. RaghunathM. FerrerM. Enhancement of neuroglial extracellular matrix formation and physiological activity of dopaminergic neural cocultures by macromolecular crowding.Cells20221114213110.3390/cells11142131 35883574
    [Google Scholar]
  46. KattM.E. PlaconeA.L. WongA.D. XuZ.S. SearsonP.C. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform.Front. Bioeng. Biotechnol.201641210.3389/fbioe.2016.00012 26904541
    [Google Scholar]
  47. ShabalinaE.Y. SkorovaE.Y. ChudakovaD.A. AnikinV.B. ReshetovI.V. MynbaevO.A. PetersenE.V. The matrix-dependent 3D spheroid model of the migration of non-small cell lung cancer: A step towards a rapid automated screening.Front. Mol. Biosci.2021861040710.3389/fmolb.2021.610407 34422897
    [Google Scholar]
  48. NathS. DeviG.R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model.Pharmacol. Ther.20161639410810.1016/j.pharmthera.2016.03.013 27063403
    [Google Scholar]
  49. Filipiak-DulibanA. BrodaczewskaK. KajdaszA. KiedaC. Spheroid culture differentially affects cancer cell sensitivity to drugs in melanoma and RCC models.Int. J. Mol. Sci.2022233116610.3390/ijms23031166 35163092
    [Google Scholar]
  50. LiaoW. WangJ. XuJ. YouF. PanM. XuX. WengJ. HanX. LiS. LiY. LiangK. PengQ. GaoY. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool.J. Tissue Eng.201910204173141988918410.1177/2041731419889184 31827757
    [Google Scholar]
  51. CaiH. AoZ. HuL. MoonY. WuZ. LuH.C. KimJ. GuoF. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease.Analyst2020145196243625310.1039/D0AN01373K 32840509
    [Google Scholar]
  52. TanH. DeFailA.J. RubinJ.P. ChuC.R. MarraK.G. Novel multiarm PEG‐based hydrogels for tissue engineering.J. Biomed. Mater. Res. A201092A397998710.1002/jbm.a.32438 19291691
    [Google Scholar]
  53. EgawaE.Y. KatoK. HiraokaM. Nakaji-HirabayashiT. IwataH. Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor.Biomaterials201132214737474310.1016/j.biomaterials.2011.03.033 21481452
    [Google Scholar]
  54. LiH. ZhengJ. WangH. BeckerM.L. LeipzigN.D. Neural stem cell encapsulation and differentiation in strain promoted crosslinked polyethylene glycol-based hydrogels.J. Biomater. Appl.20183291222123010.1177/0885328218755711 29392959
    [Google Scholar]
  55. SullivanM.A. LaneS. VolkerlingA. EngelM. WerryE.L. KassiouM. Three‐dimensional bioprinting of stem cell‐derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function.Biotechnol. Bioeng.2023120103079309110.1002/bit.28470 37395340
    [Google Scholar]
  56. SalmanvandiM. HaramshahiS.M.A. MansouriE. AlizadehA. The effect of rosmarinic acid on neural differentiation of wartons jelly-derived mesenchymal stem cells in two-dimensional and three-dimensional cultures using chitosan-based hydrogel.Basic Clin. Neurosci.202314111712810.32598/bcn.2021.2596.1 37346869
    [Google Scholar]
  57. LiuL. GaoQ. LuX. ZhouH. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration.Asian J. Pharm. Sci.201611667368310.1016/j.ajps.2016.07.001
    [Google Scholar]
  58. ShenX. ShamshinaJ.L. BertonP. GurauG. RogersR.D. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications.Green Chem.2016181537510.1039/C5GC02396C
    [Google Scholar]
  59. SupperS. AntonN. SeidelN. RiemenschnitterM. CurdyC. VandammeT. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications.Expert Opin. Drug Deliv.201411224926710.1517/17425247.2014.867326 24304097
    [Google Scholar]
  60. ZhangZ.N. FreitasB.C. QianH. LuxJ. AcabA. TrujilloC.A. HeraiR.H. NguyenH.V.A. WenJ.H. Joshi-BarrS. KarpiakJ.V. EnglerA.J. FuX.D. MuotriA.R. AlmutairiA. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction.Proc. Natl. Acad. Sci. USA2016113123185319010.1073/pnas.1521255113 26944080
    [Google Scholar]
  61. McGrathA.M. NovikovaL.N. NovikovL.N. WibergM. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration.Brain Res. Bull.201083520721310.1016/j.brainresbull.2010.07.001 20633614
    [Google Scholar]
  62. MoayeriA. AlizadehR. GhasemiH.H. NazmB.M. NiapourA. HedayatpourA. DarvishiM. HeidariF. SoleimaniM. Elyasi, L. Transdifferentiation of human umbilical cord-derived mesenchymal stem cells in dopaminergic neurons in a three-dimensional culture.Basic Clin. Neurosci.202213562563610.32598/bcn.2021.973.3 37313021
    [Google Scholar]
  63. ZhuY. KangE. WilsonM. BassoT. ChenE. YuY. LiY.R. 3D tumor spheroid and organoid to model tumor microenvironment for cancer immunotherapy.Organoids20221214916710.3390/organoids1020012
    [Google Scholar]
  64. TuvesonD. CleversH. Cancer modeling meets human organoid technology.Science2019364644495295510.1126/science.aaw6985 31171691
    [Google Scholar]
  65. HoferM. LutolfM.P. Engineering organoids.Nat. Rev. Mater.20216540242010.1038/s41578‑021‑00279‑y 33623712
    [Google Scholar]
  66. PariharA. PanditaV. KhanR. 3D printed human organoids: High throughput system for drug screening and testing in current COVID‐19 pandemic.Biotechnol. Bioeng.2022119102669268810.1002/bit.28166 35765706
    [Google Scholar]
  67. EglenR.M. ReisineT. Human iPS cell-derived patient tissues and 3D cell culture part 2: Spheroids, organoids, and disease modeling.SLAS Technol.2019241182710.1177/2472630318803275 30798678
    [Google Scholar]
  68. QianX. SongH. MingG. Brain organoids: Advances, applications and challenges.Development20191468dev16607410.1242/dev.166074 30992274
    [Google Scholar]
  69. LiuR. MengX. YuX. WangG. DongZ. ZhouZ. QiM. YuX. JiT. WangF. From 2D to 3D co-culture systems: A review of co-culture models to study the neural cells interaction.Int. J. Mol. Sci.202223211311610.3390/ijms232113116 36361902
    [Google Scholar]
  70. CaoY. The uses of 3D human brain organoids for neurotoxicity evaluations: A review.Neurotoxicology202291849310.1016/j.neuro.2022.05.004 35561940
    [Google Scholar]
  71. ZhengX. HanD. LiuW. WangX. PanN. WangY. ChenZ. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson’s disease.Theranostics20231382673269210.7150/thno.80271 37215566
    [Google Scholar]
  72. Silva-PedrosaR. SalgadoA.J. FerreiraP.E. Revolutionizing disease modeling: The emergence of organoids in cellular systems.Cells202312693010.3390/cells12060930 36980271
    [Google Scholar]
  73. FangY. EglenR.M. Three-dimensional cell cultures in drug discovery and development.SLAS Discov. Adv. Life Sci. R&D201722545647210.1177/1087057117696795
    [Google Scholar]
  74. GuntiS. HokeA.T.K. VuK.P. LondonN.R.Jr Organoid and spheroid tumor models: Techniques and applications.Cancers202113487410.3390/cancers13040874 33669619
    [Google Scholar]
  75. FatehullahA. TanS.H. BarkerN. Organoids as an in vitro model of human development and disease.Nat. Cell Biol.201618324625410.1038/ncb3312 26911908
    [Google Scholar]
  76. ArjmandB. KokabiH.S. RabbaniZ. Tayanloo-BeikA. RahimF. AghayanH.R. LarijaniB. Organ on a chip: A novel in vitro biomimetic strategy in amyotrophic lateral sclerosis (ALS) modeling.Front. Neurol.20221278846210.3389/fneur.2021.788462 35111126
    [Google Scholar]
  77. SouthamK.A. KingA.E. BlizzardC.A. McCormackG.H. DicksonT.C. Microfluidic primary culture model of the lower motor neuron–neuromuscular junction circuit.J. Neurosci. Methods2013218216416910.1016/j.jneumeth.2013.06.002 23774648
    [Google Scholar]
  78. LengY. LiX. ZhengF. LiuH. WangC. WangX. LiaoY. LiuJ. MengK. YuJ. ZhangJ. WangB. TanY. LiuM. JiaX. LiD. LiY. GuZ. FanY. Advances in in vitro models of neuromuscular junction: Focusing on organ‐on‐a‐chip, organoids, and biohybrid robotics.Adv. Mater.20233541221105910.1002/adma.202211059 36934404
    [Google Scholar]
  79. de JonghR. SpijkersX.M. Pasteuning-VuhmanS. VultoP. PasterkampR.J. Neuromuscular junction‐on‐a‐chip: ALS disease modeling and read‐out development in microfluidic devices.J. Neurochem.2021157339341210.1111/jnc.15289 33382092
    [Google Scholar]
  80. NatarajanA. SethumadhavanA. KrishnanU.M. Toward building the neuromuscular junction: In vitro models to study synaptogenesis and neurodegeneration.ACS Omega201947129691297710.1021/acsomega.9b00973 31460423
    [Google Scholar]
  81. HabibeyR. RojoA.J.E. StriebelJ. BusskampV. Microfluidics for neuronal cell and circuit engineering.Chem. Rev.202212218148421488010.1021/acs.chemrev.2c00212 36070858
    [Google Scholar]
  82. ChoH. HashimotoT. WongE. HoriY. WoodL.B. ZhaoL. HaigisK.M. HymanB.T. IrimiaD. Microfluidic chemotaxis platform for differentiating the roles of soluble and bound amyloid-β on microglial accumulation.Sci. Rep.201331182310.1038/srep01823 23665843
    [Google Scholar]
  83. AmadioS. De NinnoA. MontilliC. BusinaroL. GerardinoA. VolontéC. Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels.BMC Neurosci.201314112110.1186/1471‑2202‑14‑121 24119251
    [Google Scholar]
  84. AchyutaA.K.H. ConwayA.J. CrouseR.B. BannisterE.C. LeeR.N. KatnikC.P. BehenskyA.A. CuevasJ. SundaramS.S. A modular approach to create a neurovascular unit-on-a-chip.Lab Chip201313454255310.1039/C2LC41033H 23108480
    [Google Scholar]
  85. HosmaneS. TegengeM.A. RajbhandariL. UapinyoyingP. KumarN.G. ThakorN. VenkatesanA. Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons.J. Neurosci.201232227745775710.1523/JNEUROSCI.0203‑12.2012 22649252
    [Google Scholar]
  86. ParkJ. WetzelI. MarriottI. DréauD. D’AvanzoC. KimD.Y. TanziR.E. ChoH. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease.Nat. Neurosci.201821794195110.1038/s41593‑018‑0175‑4 29950669
    [Google Scholar]
  87. PöttlerM. ZierlerS. KerschbaumH.H. An artificial three-dimensional matrix promotes ramification in the microglial cell-line, BV-2.Neurosci. Lett.2006410213714010.1016/j.neulet.2006.09.082 17084531
    [Google Scholar]
  88. HawR.T.Y. TongC.K. YewA. LeeH.C. PhillipsJ.B. VidyadaranS. A three-dimensional collagen construct to model lipopolysaccharide-induced activation of BV2 microglia.J. Neuroinflammation201411113410.1186/1742‑2094‑11‑134 25074682
    [Google Scholar]
  89. MachadoC.B. PluchonP. HarleyP. RigbyM. SabaterV.G. StevensonD.C. HynesS. LoweA. BurroneJ. ViasnoffV. LieberamI. In vitro modeling of nerve–muscle connectivity in a compartmentalized tissue culture device.Adv. Biosyst.201937180030710.1002/adbi.201800307 31428672
    [Google Scholar]
  90. AndersonW.A. BosakA. HogbergH.T. HartungT. MooreM.J. Advances in 3D neuronal microphysiological systems: Towards a functional nervous system on a chip.In Vitro Cell. Dev. Biol. Anim.202157219120610.1007/s11626‑020‑00532‑8 33438114
    [Google Scholar]
  91. BastiaensA. Sabahi-KavianiR. LuttgeR. Nanogrooves for 2D and 3D microenvironments of SH-SY5Y cultures in brain-on-chip technology.Front. Neurosci.20201466610.3389/fnins.2020.00666 32670014
    [Google Scholar]
  92. DavidS. KronerA. Repertoire of microglial and macrophage responses after spinal cord injury.Nat. Rev. Neurosci.201112738839910.1038/nrn3053 21673720
    [Google Scholar]
  93. YinY. ZhouD. Organoid and enteroid modeling of salmonella infection.Front. Cell. Infect. Microbiol.2018810210.3389/fcimb.2018.00102 29670862
    [Google Scholar]
  94. PoonA. ZhangY. ChandrasekaranA. PhanthongP. SchmidB. NielsenT.T. FreudeK.K. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges.New Biotech.201739Pt B19019810.1016/j.nbt.2017.05.009
    [Google Scholar]
  95. TownsleyK.G. BrennandK.J. HuckinsL.M. Massively parallel techniques for cataloguing the regulome of the human brain.Nat. Neurosci.202023121509152110.1038/s41593‑020‑00740‑1 33199899
    [Google Scholar]
  96. BaxterM. WitheyS. HarrisonS. SegeritzC.P. ZhangF. Atkinson-DellR. RoweC. GerrardD.T. Sison-YoungR. JenkinsR. HenryJ. BerryA.A. MohametL. BestM. FenwickS.W. MalikH. KitteringhamN.R. GoldringC.E. Piper HanleyK. VallierL. HanleyN.A. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes.J. Hepatol.201562358158910.1016/j.jhep.2014.10.016 25457200
    [Google Scholar]
  97. ArberC. LovejoyC. WrayS. Stem cell models of Alzheimer’s disease: Progress and challenges.Alzheimers Res. Ther.2017914210.1186/s13195‑017‑0268‑4 28610595
    [Google Scholar]
  98. FontouraJ.C. ViezzerC. dos SantosF.G. LigabueR.A. WeinlichR. PugaR.D. AntonowD. SeverinoP. BonorinoC. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance.Mater. Sci. Eng. C202010711026410.1016/j.msec.2019.110264 31761183
    [Google Scholar]
  99. LiD.W. HeF.L. HeJ. DengX. LiuY.L. LiuY.Y. YeY.J. YinD.C. From 2D to 3D: The morphology, proliferation and differentiation of MC3T3-E1 on silk fibroin/chitosan matrices.Carbohydr. Polym.2017178697710.1016/j.carbpol.2017.09.035 29050616
    [Google Scholar]
  100. YangH. ShaoN. HolmströmA. ZhaoX. ChourT. ChenH. ItzhakiI. WuH. AmeenM. CunninghamN.J. TuC. ZhaoM.T. TarantalA.F. AbilezO.J. WuJ.C. Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue.Cardiovasc. Res.202111792125213610.1093/cvr/cvaa281 33002105
    [Google Scholar]
  101. KimB.C. KwackK.H. ChunJ. LeeJ.H. Comparative transcriptome analysis of human adipose-derived stem cells undergoing osteogenesis in 2D and 3D Culture conditions.Int. J. Mol. Sci.20212215793910.3390/ijms22157939 34360705
    [Google Scholar]
  102. BankerG.A. CowanW.M. Rat hippocampal neurons in dispersed cell culture.Brain Res.1977126339742510.1016/0006‑8993(77)90594‑7 861729
    [Google Scholar]
  103. Vallejo-GiraldoC. GentaM. CauviO. GodingJ. GreenR. Hydrogels for 3D neural tissue models: Understanding cell-material interactions at a molecular level.Front. Bioeng. Biotechnol.2020860170410.3389/fbioe.2020.601704 33240868
    [Google Scholar]
  104. DameK. RibeiroA.J.S. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects.Exp. Biol. Med.2021246331733110.1177/1535370220959598 32938227
    [Google Scholar]
  105. BreslinS. O’DriscollL. Three-dimensional cell culture: The missing link in drug discovery.Drug Discov. Today2013185-624024910.1016/j.drudis.2012.10.003 23073387
    [Google Scholar]
  106. MittalR. WooF.W. CastroC.S. CohenM.A. KaranxhaJ. MittalJ. ChhibberT. JhaveriV.M. Organ‐on‐chip models: Implications in drug discovery and clinical applications.J. Cell. Physiol.201923468352838010.1002/jcp.27729 30443904
    [Google Scholar]
  107. ChoiD.H. YooC.J. KimM.J. KimY.J. YooY.M. Morphological and molecular expression patterns of neural precursor cells derived from human fetal spinal cord in two-, three-dimensional, and organoid culture environments.Tissue Cell20238210206810.1016/j.tice.2023.102068 36948082
    [Google Scholar]
  108. ChenH.J. MillerP. ShulerM.L. A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells.Lab Chip201818142036204610.1039/C8LC00111A 29881844
    [Google Scholar]
  109. LvD. HuZ. LuL. LuH. XuX. Three dimensional cell culture: A powerful tool in tumor research and drug discovery (Review).Oncol. Lett.20171466999701010.3892/ol.2017.7134 29344128
    [Google Scholar]
  110. WittrahmR. TakaloM. KuulasmaaT. MäkinenP.M. MäkinenP. KončarevićS. FartzdinovV. SelzerS. KokkolaT. AntikainenL. MartiskainenH. KemppainenS. MarttinenM. JeskanenH. RostalskiH. RahunenE. KivipeltoM. NganduT. NatunenT. LambertJ.C. TanziR.E. KimD.Y. RauramaaT. HerukkaS.K. SoininenH. LaaksoM. PikeI. LeinonenV. HaapasaloA. HiltunenM. Protective Alzheimer’s disease-associated APP A673T variant predominantly decreases sAPPβ levels in cerebrospinal fluid and 2D/3D cell culture models.Neurobiol. Dis.202318210614010.1016/j.nbd.2023.106140 37120095
    [Google Scholar]
  111. LouitA. GalbraithT. BerthodF. In vitro 3D modeling of neurodegenerative diseases.Bioengineering20231019310.3390/bioengineering10010093 36671665
    [Google Scholar]
  112. KarrasF. KunzM. Patient-derived melanoma models.Pathol. Res. Pract.202425915523110.1016/j.prp.2024.155231 38508996
    [Google Scholar]
  113. MugurumaM. TeraokaS. MiyaharaK. UedaA. AsaokaM. OkazakiM. KawateT. KurodaM. MiyagiY. IshikawaT. Differences in drug sensitivity between two-dimensional and three-dimensional culture systems in triple-negative breast cancer cell lines.Biochem. Biophys. Res. Commun.2020533326827410.1016/j.bbrc.2020.08.075 32958246
    [Google Scholar]
  114. EdmondsonR. BroglieJ.J. AdcockA.F. YangL. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors.Assay Drug Dev. Technol.201412420721810.1089/adt.2014.573 24831787
    [Google Scholar]
  115. SunT. JacksonS. HaycockJ.W. MacNeilS. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents.J. Biotechnol.2006122337238110.1016/j.jbiotec.2005.12.021 16446003
    [Google Scholar]
  116. VernazzaS. TirendiS. ScarfìS. PassalacquaM. OddoneF. TraversoC.E. RizzatoI. BassiA.M. SaccàS.C. 2D- and 3D-cultures of human trabecular meshwork cells: A preliminary assessment of an in vitro model for glaucoma study.PLoS One2019149e022194210.1371/journal.pone.0221942 31490976
    [Google Scholar]
  117. Rueda-GensiniL. SernaJ.A. RubioD. OrozcoJ.C. BolañosN.I. CruzJ.C. Muñoz-CamargoC. Three-dimensional neuroimmune co-culture system for modeling Parkinson’s disease microenvironments in vitro.Biofabrication202315404500110.1088/1758‑5090/ace21b
    [Google Scholar]
  118. BrüllM. SprengA.S. GutbierS. LoserD. KrebsA. ReichM. KraushaarU. BritschgiM. PatschC. LeistM. Incorporation of stem cell-derived astrocytes into neuronal organoids to allow neuro-glial interactions in toxicological studies.Altern. Anim. Exp.202037340942810.14573/altex.1911111 32150624
    [Google Scholar]
  119. KoK.R. TamN.W. TeixeiraA.G. FramptonJ.P. SH‐SY5Y and LUHMES cells display differential sensitivity to MPP+, tunicamycin, and epoxomicin in 2D and 3D cell culture.Biotechnol. Prog.2020362e294210.1002/btpr.2942 31756288
    [Google Scholar]
  120. SerraM. SimolaN. PollackA.E. CostaG. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: An overview of recent findings.Neural Regen. Res.20241991908191810.4103/1673‑5374.390971 38227515
    [Google Scholar]
  121. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. GiuffridaS.A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  122. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  123. Di RosaG. BrunettiG. ScutoM. Trovato SalinaroA. CalabreseE.J. CreaR. Schmitz-LinneweberC. CalabreseV. SaulN. Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models.Int. J. Mol. Sci.20202111389310.3390/ijms21113893 32486023
    [Google Scholar]
  124. BhaduriA. AndrewsM.G. ManciaL.W. JungD. ShinD. AllenD. JungD. SchmunkG. HaeusslerM. SalmaJ. PollenA.A. NowakowskiT.J. KriegsteinA.R. Cell stress in cortical organoids impairs molecular subtype specification.Nature2020578779314214810.1038/s41586‑020‑1962‑0 31996853
    [Google Scholar]
  125. DeloulmeJ.C. RaponiE. GentilB.J. BertacchiN. MarksA. LabourdetteG. BaudierJ. Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation.Mol. Cell. Neurosci.200427445346510.1016/j.mcn.2004.07.008 15555923
    [Google Scholar]
  126. MiddeldorpJ. HolE.M. GFAP in health and disease.Prog. Neurobiol.201193342144310.1016/j.pneurobio.2011.01.005 21219963
    [Google Scholar]
  127. JessenK.R. MirskyR. LloydA.C. Schwann cells: Development and role in nerve repair.Cold Spring Harb. Perspect. Biol.201577a02048710.1101/cshperspect.a020487 25957303
    [Google Scholar]
  128. LanjewarS.N. SloanS.A. Growing glia: Cultivating human stem cell models of gliogenesis in health and disease.Front. Cell Dev. Biol.2021964953810.3389/fcell.2021.649538 33842475
    [Google Scholar]
  129. GarcezP.P. LoiolaE.C. Madeiro da CostaR. HigaL.M. TrindadeP. DelvecchioR. NascimentoJ.M. BrindeiroR. TanuriA. RehenS.K. Zika virus impairs growth in human neurospheres and brain organoids.Science2016352628781681810.1126/science.aaf6116 27064148
    [Google Scholar]
  130. Bullard-FeibelmanK.M. GoveroJ. ZhuZ. SalazarV. VeselinovicM. DiamondM.S. GeissB.J. The FDA-approved drug sofosbuvir inhibits Zika virus infection.Antiviral Res.201713713414010.1016/j.antiviral.2016.11.023 27902933
    [Google Scholar]
  131. JacobF. PatherS.R. HuangW.K. ZhangF. WongS.Z.H. ZhouH. CubittB. FanW. ChenC.Z. XuM. PradhanM. ZhangD.Y. ZhengW. BangA.G. SongH. Carlos de la TorreJ. MingG. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium.Cell Stem Cell2020276937950.e910.1016/j.stem.2020.09.016 33010822
    [Google Scholar]
  132. NgJ.H. SunA. JeH.S. TanE.K. Unravelling pathophysiology of neurological and psychiatric complications of COVID-19 using brain organoids.Neuroscientist2023291304010.1177/10738584211015136 34036855
    [Google Scholar]
  133. MuangsanitP. ChailangkarnT. TanwattanaN. WongwanakulR. LekcharoensukP. KaewborisuthC. Hydrogel-based 3D human iPSC-derived neuronal culture for the study of rabies virus infection.Front. Cell. Infect. Microbiol.202313121520510.3389/fcimb.2023.1215205 37692167
    [Google Scholar]
/content/journals/cn/10.2174/011570159X360193250219082312
Loading
/content/journals/cn/10.2174/011570159X360193250219082312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test