Skip to content
2000
image of Restoring Gut-brain Function by Medicinal Herbs Offering Neuroprotection through Suppressing Inflammatory Pathways: A Systematic Review

Abstract

Introduction

Neurodegenerative diseases (NDDs) refer to a progressive degeneration of the nervous system and are on the rise. Researchers are trying to reveal the crucial mechanisms behind NDDs to find novel therapeutic candidates with higher efficacy and lower side effects. Increasing evidence highlights the auspicious role of inflammatory mechanisms in the pathogenesis of NDDs.

Methods

Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline, a systematic and comprehensive review was done to evaluate the effect of medicinal herbs in restoring gut-brain function and anti-inflammatory mechanisms in combating neuroprotection. The electronic databases, including Scopus, PubMed, and ScienceDirect, were searched for the literature review. The manual search of reference lists and citations was also employed falling within the authors’ expertise.

Results

As with other mechanisms, the bidirectional communication between the brain and gut, known as the gut-brain axis, has emerged as a potential target for therapeutic interventions. Since the gut-brain axis covers multiple mechanisms, especially inflammatory mechanisms in NDDs, it urges the need for finding novel multi-targeting agents. Medicinal herbs, with their rich repertoire of natural products, are multi-targeting candidates in combating several diseases. In this systematic and comprehensive review, we explore the potential of medicinal herbs in restoring gut-brain function and promoting neuroprotection by suppressing inflammatory pathways. Novel delivery systems and clinical applications of medicinal herbs are also highlighted to drawback the pharmacokinetic limitation in regulating the gut-brain axis-associated NDDs.

Conclusion

Medicinal herbs provide neuroprotective responses through the modulation of gut-brain function and related inflammatory mediators.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X353541250128101649
2025-06-02
2025-06-17
Loading full text...

Full text loading...

References

  1. Kooshki L. Zarneshan S.N. Fakhri S. Moradi S.Z. Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. Phytomedicine 2023 112 154686 10.1016/j.phymed.2023.154686 36804755
    [Google Scholar]
  2. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  3. Adamu A. Li S. Gao F. Xue G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024 16 1347987 10.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  4. Roy Sarkar S. Banerjee S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 2019 328 98 104 10.1016/j.jneuroim.2019.01.004 30658292
    [Google Scholar]
  5. Mou Y. Du Y. Zhou L. Yue J. Hu X. Liu Y. Chen S. Lin X. Zhang G. Xiao H. Dong B. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging. Front. Immunol. 2022 13 796288 10.3389/fimmu.2022.796288 35464431
    [Google Scholar]
  6. Fakhri S. Khodamorady M. Naseri M. Farzaei M.H. Khan H. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol. Res. 2020 159 104895 10.1016/j.phrs.2020.104895 32422342
    [Google Scholar]
  7. Pan M.H. Chiou Y.S. Tsai M.L. Ho C.T. Anti-inflammatory activity of traditional Chinese medicinal herbs. J. Tradit. Complement. Med. 2011 1 1 8 24 10.1016/S2225‑4110(16)30052‑9 24716101
    [Google Scholar]
  8. Radovanović K. Gavarić N. Aćimović M. Anti-inflammatory properties of plants from Serbian traditional medicine. Life (Basel) 2023 13 4 874 10.3390/life13040874 37109403
    [Google Scholar]
  9. Appleton J. The gut-brain axis: Influence of microbiota on mood and mental health. Integr. Med. (Encinitas) 2018 17 4 28 32 31043907
    [Google Scholar]
  10. Fakhri S. Yarmohammadi A. Yarmohammadi M. Farzaei M.H. Echeverria J. Marine natural products: Promising candidates in the modulation of gut-brain axis towards neuroprotection. Mar. Drugs 2021 19 3 165 10.3390/md19030165 33808737
    [Google Scholar]
  11. Carabotti M. Scirocco A. Maselli M.A. Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015 28 2 203 209 25830558
    [Google Scholar]
  12. Breit S. Kupferberg A. Rogler G. Hasler G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 2018 9 44 10.3389/fpsyt.2018.00044 29593576
    [Google Scholar]
  13. Han Y. Wang B. Gao H. He C. Hua R. Liang C. Zhang S. Wang Y. Xin S. Xu J. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 2022 15 6213 6230 10.2147/JIR.S384949 36386584
    [Google Scholar]
  14. Longo S. Rizza S. Federici M. Microbiota-gut-brain axis: Relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetol. 2023 60 8 1007 1017 10.1007/s00592‑023‑02088‑x 37058160
    [Google Scholar]
  15. Rusch J.A. Layden B.T. Dugas L.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. (Lausanne) 2023 14 1130689 10.3389/fendo.2023.1130689 37404311
    [Google Scholar]
  16. Di Vincenzo F. Del Gaudio A. Petito V. Lopetuso L.R. Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024 19 2 275 293 10.1007/s11739‑023‑03374‑w 37505311
    [Google Scholar]
  17. Yoo J. Groer M. Dutra S. Sarkar A. McSkimming D. Gut microbiota and immune system interactions. Microorganisms 2020 8 10 1587 10.3390/microorganisms8101587 33076307
    [Google Scholar]
  18. Spahn T.W. Kucharzik T. Modulating the intestinal immune system: The role of lymphotoxin and GALT organs. Gut 2004 53 3 456 465 10.1136/gut.2003.023671 14960534
    [Google Scholar]
  19. Abo-Shaban T. Sharna S.S. Hosie S. Lee C.Y.Q. Balasuriya G.K. McKeown S.J. Franks A.E. Hill-Yardin E.L. Issues for patchy tissues: Defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J. Neural Transm. (Vienna) 2023 130 3 269 280 10.1007/s00702‑022‑02561‑x 36309872
    [Google Scholar]
  20. Martin A.M. Sun E.W. Rogers G.B. Keating D.J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 2019 10 428 10.3389/fphys.2019.00428 31057420
    [Google Scholar]
  21. He J. Zhang P. Shen L. Niu L. Tan Y. Chen L. Zhao Y. Bai L. Hao X. Li X. Zhang S. Zhu L. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 2020 21 17 6356 10.3390/ijms21176356 32887215
    [Google Scholar]
  22. Krishnan S. Alden N. Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr. Opin. Biotechnol. 2015 36 137 145 10.1016/j.copbio.2015.08.015 26340103
    [Google Scholar]
  23. Rowland I. Gibson G. Heinken A. Scott K. Swann J. Thiele I. Tuohy K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018 57 1 1 24 10.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  24. Vernocchi P. Del Chierico F. Putignani L. Gut microbiota metabolism and interaction with food components. Int. J. Mol. Sci. 2020 21 10 3688 10.3390/ijms21103688 32456257
    [Google Scholar]
  25. Clarke G. Sandhu K.V. Griffin B.T. Dinan T.G. Cryan J.F. Hyland N.P. Gut reactions: Breaking down xenobiotic–microbiome interactions. Pharmacol. Rev. 2019 71 2 198 224 10.1124/pr.118.015768 30890566
    [Google Scholar]
  26. Belkaid Y. Hand T.W. Role of the microbiota in immunity and inflammation. Cell 2014 157 1 121 141 10.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  27. Pantazi A.C. Balasa A.L. Mihai C.M. Chisnoiu T. Lupu V.V. Kassim M.A.K. Mihai L. Frecus C.E. Chirila S.I. Lupu A. Andrusca A. Ionescu C. Cuzic V. Cambrea S.C. Development of gut microbiota in the first 1000 days after birth and potential interventions. Nutrients 2023 15 16 3647 10.3390/nu15163647 37630837
    [Google Scholar]
  28. Kosiewicz M.M. Zirnheld A.L. Alard P. Gut microbiota, immunity, and disease: A complex relationship. Front. Microbiol. 2011 2 180 10.3389/fmicb.2011.00180 21922015
    [Google Scholar]
  29. Iyer S. S. Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012 32 1 23 63
    [Google Scholar]
  30. Bach Knudsen K.E. Lærke H.N. Hedemann M.S. Nielsen T.S. Ingerslev A.K. Gundelund Nielsen D.S. Theil P.K. Purup S. Hald S. Schioldan A.G. Marco M.L. Gregersen S. Hermansen K. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018 10 10 1499 10.3390/nu10101499 30322146
    [Google Scholar]
  31. Jiao Y. Wu L. Huntington N.D. Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front. Immunol. 2020 11 282 10.3389/fimmu.2020.00282 32153586
    [Google Scholar]
  32. Oylumlu E. Uzel G. Durmus L. Tas M. Gunes D. Ciraci C. Pattern recognition receptor-mediated regulatory t cell functions in diseases. Regulatory T Cells-New Insights London InTechOpen 2022
    [Google Scholar]
  33. Martin-Gallausiaux C. Béguet-Crespel F. Marinelli L. Jamet A. Ledue F. Blottière H.M. Lapaque N. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 2018 8 1 9742 10.1038/s41598‑018‑28048‑y 29950699
    [Google Scholar]
  34. DeGruttola A.K. Low D. Mizoguchi A. Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016 22 5 1137 1150 10.1097/MIB.0000000000000750 27070911
    [Google Scholar]
  35. Michel L. Prat A. One more role for the gut: Microbiota and blood brain barrier. Ann. Transl. Med. 2016 4 1 15 26855951
    [Google Scholar]
  36. Wu Y. Xu H. Tu X. Gao Z. The role of short-chain fatty acids of gut microbiota origin in hypertension. Front. Microbiol. 2021 12 730809 10.3389/fmicb.2021.730809 34650536
    [Google Scholar]
  37. Fock E. Parnova R. Mechanisms of blood–brain barrier protection by microbiota-derived short-chain fatty acids. Cells 2023 12 4 657 10.3390/cells12040657 36831324
    [Google Scholar]
  38. Galea I. The blood–brain barrier in systemic infection and inflammation. Cell. Mol. Immunol. 2021 18 11 2489 2501 10.1038/s41423‑021‑00757‑x 34594000
    [Google Scholar]
  39. Blecharz-Lang K.G. Wagner J. Fries A. Nieminen-Kelhä M. Rösner J. Schneider U.C. Vajkoczy P. Interleukin 6-mediated endothelial barrier disturbances can be attenuated by blockade of the IL6 receptor expressed in brain microvascular endothelial cells. Transl. Stroke Res. 2018 9 6 631 642 10.1007/s12975‑018‑0614‑2 29429002
    [Google Scholar]
  40. Aslam M. Ahmad N. Srivastava R. Hemmer B. TNF-alpha induced NFκB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells. Cytokine 2012 57 2 269 275 10.1016/j.cyto.2011.10.016 22138107
    [Google Scholar]
  41. Bai B. Yang Y. Wang Q. Li M. Tian C. Liu Y. Aung L.H.H. Li P. Yu T. Chu X. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020 11 9 776 10.1038/s41419‑020‑02985‑x 32948742
    [Google Scholar]
  42. Yang C. Hawkins K.E. Doré S. Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol. 2019 316 2 C135 C153 10.1152/ajpcell.00136.2018 30379577
    [Google Scholar]
  43. Colonna M. Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017 35 1 441 468 10.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  44. Rutsch A. Kantsjö J.B. Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. 2020 11 604179 10.3389/fimmu.2020.604179 33362788
    [Google Scholar]
  45. Woodburn S.C. Bollinger J.L. Wohleb E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflammation 2021 18 1 258 10.1186/s12974‑021‑02309‑6 34742308
    [Google Scholar]
  46. Yang Z-Y. Jin W.L. Xu Y. Jin M.Z. Microglia in neurodegenerative diseases. Neural Regen. Res. 2021 16 2 270 280 10.4103/1673‑5374.290881 32859774
    [Google Scholar]
  47. Reynaud E. Protein misfolding and degenerative diseases. Nature Education 2010 3 9 28
    [Google Scholar]
  48. Solanki R. Karande A. Ranganathan P. Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration. Front. Neurol. 2023 14 1149618 10.3389/fneur.2023.1149618 37255721
    [Google Scholar]
  49. Lei Q. Wu T. Wu J. Hu X. Guan Y. Wang Y. Yan J. Shi G. Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson’s disease progression (Review). Mol. Med. Rep. 2021 24 4 734 10.3892/mmr.2021.12374 34414447
    [Google Scholar]
  50. Fitzgerald E. Murphy S. Martinson H.A. Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Front. Neurosci. 2019 13 369 10.3389/fnins.2019.00369 31068777
    [Google Scholar]
  51. Notting F. Pirovano W. Sybesma W. Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome (Camb.) 2023 4 e16 10.1017/gmb.2023.14 39295905
    [Google Scholar]
  52. Ochneva A. Zorkina Y. Abramova O. Pavlova O. Ushakova V. Morozova A. Zubkov E. Pavlov K. Gurina O. Chekhonin V. Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. Int. J. Mol. Sci. 2022 23 22 14498 10.3390/ijms232214498 36430976
    [Google Scholar]
  53. Wankhede N.L. Kale M.B. Upaganlawar A.B. Taksande B.G. Umekar M.J. Behl T. Abdellatif A.A.H. Bhaskaran P.M. Dachani S.R. Sehgal A. Singh S. Sharma N. Makeen H.A. Albratty M. Dailah H.G. Bhatia S. Al-Harrasi A. Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed. Pharmacother. 2022 147 112647 10.1016/j.biopha.2022.112647 35149361
    [Google Scholar]
  54. Gregersen N. Bross P. Protein misfolding and cellular stress: An overview. Methods Mol. Biol. 2010 648 3 23
    [Google Scholar]
  55. Kempuraj D. Thangavel R. Selvakumar G.P. Zaheer S. Ahmed M.E. Raikwar S.P. Zahoor H. Saeed D. Natteru P.A. Iyer S. Zaheer A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci. 2017 11 216 10.3389/fncel.2017.00216 28790893
    [Google Scholar]
  56. Sweeney P. Park H. Baumann M. Dunlop J. Frydman J. Kopito R. McCampbell A. Leblanc G. Venkateswaran A. Nurmi A. Hodgson R. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener. 2017 6 1 6 10.1186/s40035‑017‑0077‑5 28293421
    [Google Scholar]
  57. Wen L. Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J. Nutr. 2017 147 7 1468S 1475S 10.3945/jn.116.240754 28615382
    [Google Scholar]
  58. Afzaal M. Saeed F. Shah Y.A. Hussain M. Rabail R. Socol C.T. Hassoun A. Pateiro M. Lorenzo J.M. Rusu A.V. Aadil R.M. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022 13 999001 10.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  59. Dominguez-Bello M.G. De Jesus-Laboy K.M. Shen N. Cox L.M. Amir A. Gonzalez A. Bokulich N.A. Song S.J. Hoashi M. Rivera-Vinas J.I. Mendez K. Knight R. Clemente J.C. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016 22 3 250 253 10.1038/nm.4039 26828196
    [Google Scholar]
  60. Tamburini S. Shen N. Wu H.C. Clemente J.C. The microbiome in early life: Implications for health outcomes. Nat. Med. 2016 22 7 713 722 10.1038/nm.4142 27387886
    [Google Scholar]
  61. Wegierska A.E. Charitos I.A. Topi S. Potenza M.A. Montagnani M. Santacroce L. The connection between physical exercise and gut microbiota: Implications for competitive sports athletes. Sports Med. 2022 52 10 2355 2369 10.1007/s40279‑022‑01696‑x 35596883
    [Google Scholar]
  62. Ramirez J. Guarner F. Bustos Fernandez L. Maruy A. Sdepanian V.L. Cohen H. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 2020 10 572912 10.3389/fcimb.2020.572912 33330122
    [Google Scholar]
  63. K M. S E. P P. N S. G S. M N. e H.J. A S. Urban and rural differences in gut microbial diversity: Implications for environmental health. Environ. Epidemiol. 2019 3 Suppl. 1 258 10.1097/01.EE9.0000608740.18605.e6
    [Google Scholar]
  64. Veiga P. Pons N. Agrawal A. Oozeer R. Guyonnet D. Brazeilles R. Faurie J.M. van Hylckama Vlieg J.E.T. Houghton L.A. Whorwell P.J. Ehrlich S.D. Kennedy S.P. Changes of the human gut microbiome induced by a fermented milk product. Sci. Rep. 2014 4 1 6328 10.1038/srep06328 25209713
    [Google Scholar]
  65. Hamamah S. Amin A. Al-Kassir A.L. Chuang J. Covasa M. Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 2023 15 15 3365 10.3390/nu15153365 37571301
    [Google Scholar]
  66. Wang H. Chen Y. Wang L. Liu Q. Yang S. Wang C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023 14 1265178 10.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  67. Calixto J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 2000 33 2 179 189 10.1590/S0100‑879X2000000200004 10657057
    [Google Scholar]
  68. Muyumba N.W. Mutombo S.C. Sheridan H. Nachtergael A. Duez P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open 2021 4 100070 10.1016/j.talo.2021.100070
    [Google Scholar]
  69. Plaskova A. Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr. 2023 10 1118761 10.3389/fnut.2023.1118761 37057062
    [Google Scholar]
  70. Kunle O.F. Egharevba H.O. Ahmadu P.O. Standardization of herbal medicines - A review. Int. J. Biodivers. Conserv. 2012 4 3 101 112 10.5897/IJBC11.163
    [Google Scholar]
  71. Wachtel-Galor S. Benzie I. F. Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs. Herbal Medicine: Biomolecular and Clinical Aspects Boca Raton (FL) CRC Press Taylor & Francis: Chp 1 2012
    [Google Scholar]
  72. da Silva Oliveira A.P. do Céu Costa M. Bicho M.P. Use of medicinal plants: Interindividual variability of their effects from a genetic and anthropological perspective. Medicinal Plants-Chemical, Biochemical, and Pharmacological Approaches London InTechOpen 2023
    [Google Scholar]
  73. Tassew W.C. Assefa G.W. Zeleke A.M. Ferede Y.A. Prevalence and associated factors of herbal medicine use among patients living with chronic disease in Ethiopia: A systematic review and meta-analysis. Metab. Open 2024 21 100280 10.1016/j.metop.2024.100280 38455230
    [Google Scholar]
  74. Lee B. Yang C. Yim M.H. Real-world evidence of characteristics and factors influencing herbal medicine use for weight loss in adults. Front. Pharmacol. 2024 15 1437032 10.3389/fphar.2024.1437032 39081960
    [Google Scholar]
  75. Jiang C. Li G. Huang P. Liu Z. Zhao B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis. 2017 58 1 1 15 10.3233/JAD‑161141 28372330
    [Google Scholar]
  76. Xie J. Van Hoecke L. Vandenbroucke R.E. The impact of systemic inflammation on Alzheimer’s disease pathology. Front. Immunol. 2022 12 796867 10.3389/fimmu.2021.796867 35069578
    [Google Scholar]
  77. Zhang S. Wei D. Lv S. Wang L. An H. Shao W. Wang Y. Huang Y. Peng D. Zhang Z. Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in APP/PS1 mice. J. Alzheimers Dis. 2022 89 3 955 975 10.3233/JAD‑220532 35964195
    [Google Scholar]
  78. Lee M. Lee S.H. Kim M.S. Ahn K.S. Kim M. Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer’s disease in mice. J. Ginseng Res. 2022 46 3 464 472 10.1016/j.jgr.2021.11.001 35600775
    [Google Scholar]
  79. Upadhyay P. Gupta S. Dual mode of Triphala in the reversal of cognition through gut restoration in antibiotic mediated prolonged dysbiosis condition in 5XFAD mice. Exp. Neurol. 2023 367 114473 10.1016/j.expneurol.2023.114473 37385519
    [Google Scholar]
  80. Upadhyay P. Tyagi A. Agrawal S. Kumar A. Gupta S. Bidirectional effect of triphala on modulating gut‐brain axis to improve cognition in the murine model of alzheimer’s disease. Mol. Nutr. Food Res. 2023 2023 2300104 37767948
    [Google Scholar]
  81. Kim D.S. Zhang T. Park S. Protective effects of Forsythiae fructus and Cassiae semen water extract against memory deficits through the gut-microbiome-brain axis in an Alzheimer’s disease model. Pharm. Biol. 2022 60 1 212 224 10.1080/13880209.2022.2025860 35076339
    [Google Scholar]
  82. Xie M. Gu S. Hong Y. Liu Y. Rong X. Lu W. Liu H. Algradi A.M. Naseem A. Shu Z. Wang Q. Study on the mechanism of Coptis chinensis Franch. And its main active components in treating Alzheimer’s disease based on SCFAs using Orbitrap Fusion Lumos Tribrid MS. J. Ethnopharmacol. 2023 311 116392 10.1016/j.jep.2023.116392 37028611
    [Google Scholar]
  83. Kim T.Y. Kim J.M. Lee H.L. Go M.J. Joo S.G. Kim J.H. Lee H.S. Lee D.Y. Kim H.J. Heo H.J. Codium fragile Suppresses PM2.5-Induced Cognitive Dysfunction by Regulating Gut–Brain Axis via TLR-4/MyD88 Pathway. Int. J. Mol. Sci. 2023 24 16 12898 10.3390/ijms241612898 37629080
    [Google Scholar]
  84. Liu P. Zhou X. Zhang H. Wang R. Wu X. Jian W. Li W. Yuan D. Wang Q. Zhao W. Danggui-Shaoyao-San Attenuates Cognitive Impairment via the Microbiota–Gut–Brain Axis With Regulation of Lipid Metabolism in Scopolamine-Induced Amnesia. Front. Immunol. 2022 13 796542 10.3389/fimmu.2022.796542 35664001
    [Google Scholar]
  85. He J. Jin Y. He C. Li Z. Yu W. Zhou J. Luo R. Chen Q. Wu Y. Wang S. Song Z. Cheng S. Danggui Shaoyao San: Comprehensive modulation of the microbiota-gut-brain axis for attenuating Alzheimer’s disease-related pathology. Front. Pharmacol. 2024 14 1338804 10.3389/fphar.2023.1338804 38283834
    [Google Scholar]
  86. Zhao W. Wang J. Latta M. Wang C. Liu Y. Ma W. Zhou Z. Hu S. Chen P. Liu Y. Rhizoma gastrodiae water extract modulates the gut microbiota and pathological changes of P-TauThr231 to protect against cognitive impairment in mice. Front. Pharmacol. 2022 13 903659 10.3389/fphar.2022.903659 35910384
    [Google Scholar]
  87. Lee H.S. Kim J.M. Lee H.L. Go M.J. Lee D.Y. Kim C.W. Kim H.J. Heo H.J. Eucommia ulmoides Leaves Alleviate Cognitive Dysfunction in Dextran Sulfate Sodium (DSS)-Induced Colitis Mice through Regulating JNK/TLR4 Signaling Pathway. Int. J. Mol. Sci. 2024 25 7 4063 10.3390/ijms25074063 38612870
    [Google Scholar]
  88. Song C. Yin Y. Qin Y. Li T. Zeng D. Ju T. Duan F. Zhang Y. Lu W. Acanthopanax senticosus extract alleviates radiation-induced learning and memory impairment based on neurotransmitter-gut microbiota communication. CNS Neurosci. Ther. 2023 Suppl 1 Suppl 1 129 145 10.1111/cns.14134
    [Google Scholar]
  89. Su H. Zhang C. Zou X. Lu F. Zeng Y. Guan H. Ren Y. Yuan F. Xu L. Zhang M. Dong H. Jiao-tai-wan inhibits inflammation of the gut-brain-axis and attenuates cognitive impairment in insomnic rats. J. Ethnopharmacol. 2020 250 112478 10.1016/j.jep.2019.112478 31843572
    [Google Scholar]
  90. Guan Y. Tang G. Li L. Shu J. Zhao Y. Huang L. Tang J. Herbal medicine and gut microbiota: Exploring untapped therapeutic potential in neurodegenerative disease management. Arch. Pharm. Res. 2024 47 2 146 164 10.1007/s12272‑023‑01484‑9 38225532
    [Google Scholar]
  91. Li X. Zhao T. Gu J. Wang Z. Lin J. Wang R. Duan T. Li Z. Dong R. Wang W. Hong K.F. Liu Z. Huang W. Gui D. Zhou H. Xu Y. Intake of flavonoids from Astragalus membranaceus ameliorated brain impairment in diabetic mice via modulating brain-gut axis. Chin. Med. 2022 17 1 22 10.1186/s13020‑022‑00578‑8 35151348
    [Google Scholar]
  92. Zhao Y.M. Li Y.N. Ma R. Ji C.L. Mu Y.H. Xu R. Sun L.W. Liu F.B. Matrix-assisted laser desorption ionization mass spectrometry imaging reveals the spatial distribution of compounds that may exacerbate inflammation in garden ginseng and ginseng under forest. Talanta 2024 279 126594 10.1016/j.talanta.2024.126594 39053359
    [Google Scholar]
  93. Hao M. Ding C. Peng X. Chen H. Dong L. Zhang Y. Chen X. Liu W. Luo Y. Ginseng under forest exerts stronger anti-aging effects compared to garden ginseng probably via regulating PI3K/AKT/mTOR pathway, SIRT1/NF-κB pathway and intestinal flora. Phytomedicine 2022 105 154365 10.1016/j.phymed.2022.154365 35930860
    [Google Scholar]
  94. Xie Z. Lu H. Yang S. Zeng Y. Li W. Wang L. Luo G. Fang F. Zeng T. Cheng W. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis. Front. Pharmacol. 2020 11 568423 10.3389/fphar.2020.568423 33362539
    [Google Scholar]
  95. Zhou H. Tai J. Xu H. Lu X. Meng D. Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Front. Pharmacol. 2019 10 1035 10.3389/fphar.2019.01035 31572201
    [Google Scholar]
  96. Wang H. Zhou L. Zheng Q. Song Y. Huang W. Yang L. Xiong Y. Cai Z. Chen Y. Yuan J. Kai-xin-san improves cognitive impairment in D-gal and Aβ25-35 induced ad rats by regulating gut microbiota and reducing neuronal damage. J. Ethnopharmacol. 2024 329 118161 10.1016/j.jep.2024.118161 38599474
    [Google Scholar]
  97. Ren H. Gao S. Wang S. Wang J. Cheng Y. Wang Y. Wang Y. Effects of Dangshen Yuanzhi Powder on learning ability and gut microflora in rats with memory disorder. J. Ethnopharmacol. 2022 296 115410 10.1016/j.jep.2022.115410 35640741
    [Google Scholar]
  98. Li Z. Zeng Q. Hu S. Liu Z. Wang S. Jin Y. Li L. Ou H. Wu Z. Chaihu Shugan San ameliorated cognitive deficits through regulating gut microbiota in senescence-accelerated mouse prone 8. Front. Pharmacol. 2023 14 1181226 10.3389/fphar.2023.1181226 37256236
    [Google Scholar]
  99. Kadyan S. Park G. Hochuli N. Miller K. Wang B. Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front. Nutr. 2024 11 1322201 10.3389/fnut.2024.1322201 38352704
    [Google Scholar]
  100. Gu C. Zhou W. Wang W. Xiang H. Xu H. Liang L. Sui H. Zhan L. Lu X. ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats. Oncotarget 2017 8 17 27693 27703 10.18632/oncotarget.14611 28099913
    [Google Scholar]
  101. Nie S. Wang J. Deng Y. Ye Z. Ge Y. Inflammatory microbes and genes as potential biomarkers of Parkinson’s disease. NPJ Biofilms Microbiomes 2022 8 1 101
    [Google Scholar]
  102. Romano S. Savva G.M. Bedarf J.R. Charles I.G. Hildebrand F. Narbad A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021 7 1 27 10.1038/s41531‑021‑00156‑z 33692356
    [Google Scholar]
  103. Isaacson S.H. Hauser R.A. Review: Improving symptom control in early Parkinson’s disease. Ther. Adv. Neurol. Disord. 2009 2 6 393 400 10.1177/1756285609339383 21180628
    [Google Scholar]
  104. Adebayo O.G. Asiwe J.N. Ben-Azu B. Aduema W. Onyeleonu I. Akpotu A.E. Wopara I. Kolawole T.A. Umoren E.B. Igbokwe V. Buduburisi B.R. Onwuka F.C. Brown P.I. Ginkgo biloba protects striatal neurodegeneration and gut phagoinflammatory damage in rotenone‐induced mice model of Parkinson’s disease: Role of executioner caspase‐3/Nrf2/ ARE signaling. J. Food Biochem. 2022 46 9 e14253 10.1111/jfbc.14253 35608987
    [Google Scholar]
  105. Liu Z. Zhao J. Yang S. Zhang Y. Song L. Wu N. Liu Z. Network pharmacology and absolute bacterial quantification-combined approach to explore the mechanism of Tianqi pingchan granule against 6-OHDA-induced Parkinson’s disease in rats. Front. Nutr. 2022 9 836500 10.3389/fnut.2022.836500 35600818
    [Google Scholar]
  106. Wu Y.Y. Zheng B-R. Chen W-Z. Guo M-S. Huang Y-H. Zhang Y. Expression and role of autophagy related protein p62 and LC3 in the retina in a rat model of acute ocular hypertension. Int. J. Ophthalmol. 2020 13 1 21 28 10.18240/ijo.2020.01.04 31956566
    [Google Scholar]
  107. Yu L. Hu X. Xu R. Zhao Y. Xiong L. Ai J. Wang X. Chen X. Ba Y. Xing Z. Guo C. Mi S. Wu X. Piperine promotes PI3K/AKT/mTOR-mediated gut-brain autophagy to degrade α-Synuclein in Parkinson’s disease rats. J. Ethnopharmacol. 2024 322 117628 10.1016/j.jep.2023.117628 38158101
    [Google Scholar]
  108. Puri V. Kanojia N. Sharma A. Huanbutta K. Dheer D. Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front. Pharmacol. 2022 13 1011740 10.3389/fphar.2022.1011740 36419628
    [Google Scholar]
  109. Wang N. Feng B.N. Hu B. Cheng Y.L. Guo Y.H. Qian H. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway. Food Funct. 2022 13 4 2019 2032 10.1039/D1FO02216D 35103734
    [Google Scholar]
  110. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  111. Li D. You H. Hu G. Yao R. Xie A. Li X. Mechanisms of the Ping-wei-san plus herbal decoction against Parkinson’s disease: Multiomics analyses. Front. Nutr. 2023 9 945356 10.3389/fnut.2022.945356 36687704
    [Google Scholar]
  112. Hassan A. Gulzar Ahmad S. Ullah Munir E. Ali Khan I. Ramzan N. Predictive modelling and identification of key risk factors for stroke using machine learning. Sci. Rep. 2024 14 1 11498 10.1038/s41598‑024‑61665‑4 38769427
    [Google Scholar]
  113. Zhang S. Jin M. Ren J. Sun X. Zhang Z. Luo Y. Sun X. New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomed. Pharmacother. 2023 162 114559 10.1016/j.biopha.2023.114559 36989717
    [Google Scholar]
  114. Zhang J. Ling L. Xiang L. Li W. Bao P. Yue W. Role of the gut microbiota in complications after ischemic stroke. Front. Cell. Infect. Microbiol. 2024 14 1334581 10.3389/fcimb.2024.1334581 38644963
    [Google Scholar]
  115. Gouveia-Nhanca M. Rolim Bezerra M.L. Batista K.S. Pinheiro R.O. Soares N.L. de Paiva Sousa M.C. Alves A.F. Ribeiro M.D. Silva A.S. Magnani M. dos Santos Lima M. de Souza Aquino J. The non-conventional edible plant foroba (Parkia biglobosa) has anti-obesity effect, improves lipid peroxidation and reverses colon and hippocampal lesions in healthy and obese rats. J. Funct. Foods 2023 108 105745 10.1016/j.jff.2023.105745
    [Google Scholar]
  116. Choi D.J. Kim S.L. Choi J.W. Park Y.I. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sci. 2014 109 1 57 64 10.1016/j.lfs.2014.05.020 24928367
    [Google Scholar]
  117. Ryuk J.A. Ko B.S. Moon N.R. Park S. Protection against neurological symptoms by consuming corn silk water extract in artery-occluded gerbils with reducing oxidative stress, inflammation, and post-stroke hyperglycemia through the gut-brain axis. Antioxidants 2022 11 1 168 10.3390/antiox11010168 35052672
    [Google Scholar]
  118. Guo Y. Li Q. Yu X. Liang Y. Rhubarb anthraquinone glycosides protect against cerebral ischemia‐reperfusion injury in rats by regulating brain–gut neurotransmitters. Biomed. Chromatogr. 2021 35 5 e5058 10.1002/bmc.5058 33373060
    [Google Scholar]
  119. Nie H. Ge J. Yang K. Peng Z. Wu H. Yang T. Mei Z. Naotaifang III Protects Against Cerebral Ischemia Injury Through LPS/TLR4 Signaling Pathway in the Microbiota–Gut–Brain Axis. Drug Des. Devel. Ther. 2023 17 3571 3588 10.2147/DDDT.S421658 38058793
    [Google Scholar]
  120. Xian M. Ma Z. Zhan S. Shen L. Li T. Lin H. Huang M. Cai J. Hu T. Liang J. Liang S. Wang S. Network analysis of microbiome and metabolome to explore the mechanism of raw rhubarb in the protection against ischemic stroke viamicrobiota-gut-brain axis. Fitoterapia 2024 175 105969 10.1016/j.fitote.2024.105969 38643860
    [Google Scholar]
  121. Yamauchi Y. Ge Y.W. Yoshimatsu K. Komatsu K. Kuboyama T. Yang X. Tohda C. Memory Enhancement by Oral Administration of Extract of Eleutherococcus senticosus Leaves and Active Compounds Transferred in the Brain. Nutrients 2019 11 5 1142 10.3390/nu11051142 31121888
    [Google Scholar]
  122. Wang R. Sun Y. Wang M. Li H. Liu S. Liu Z. Therapeutic effect of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves on ischemic stroke via the microbiota–gut–brain axis. Phytother. Res. 2023 37 10 4801 4818 10.1002/ptr.7947 37518502
    [Google Scholar]
  123. den Besten G. van Eunen K. Groen A.K. Venema K. Reijngoud D.J. Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013 54 9 2325 2340 10.1194/jlr.R036012 23821742
    [Google Scholar]
  124. Guo H.H. Shen H.R. Tang M.Z. Sheng N. Ding X. Lin Y. Zhang J.L. Jiang J.D. Gao T.L. Wang L.L. Han Y.X. Microbiota-derived short-chain fatty acids mediate the effects of dengzhan shengmai in ameliorating cerebral ischemia via the gut–brain axis. J. Ethnopharmacol. 2023 306 116158 10.1016/j.jep.2023.116158 36638854
    [Google Scholar]
  125. Pang S. Q. Luo Z. T. Wang C. C. Hong X. P. Zhou J. Chen F. Ge L. Li X. Dai Y. Wu Y. Effects of Dioscorea polystachya'yam gruel'on the cognitive function of diabetic rats with focal cerebral ischemia-reperfusion injury via the gut-brain axis. J. Integr. Neurosci. 2020 19 2 273 283
    [Google Scholar]
  126. Magliocca G. Mone P. Di Iorio B.R. Heidland A. Marzocco S. Short-chain fatty acids in chronic kidney disease: Focus on inflammation and oxidative stress regulation. Int. J. Mol. Sci. 2022 23 10 5354 10.3390/ijms23105354 35628164
    [Google Scholar]
  127. David L.A. Maurice C.F. Carmody R.N. Gootenberg D.B. Button J.E. Wolfe B.E. Ling A.V. Devlin A.S. Varma Y. Fischbach M.A. Biddinger S.B. Dutton R.J. Turnbaugh P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014 505 7484 559 563 10.1038/nature12820 24336217
    [Google Scholar]
  128. Wu Z. Yin B. Wang Z. Song E. You F. Clinical evidence and potential mechanisms in treating radiation enteritis with modified baitouweng decoction. Evid. Based Complement. Alternat. Med. 2023 2023 1 9731315 10.1155/2023/9731315 36756038
    [Google Scholar]
  129. Kasindi A. Fuchs D.T. Koronyo Y. Rentsendorj A. Black K. Koronyo-Hamaoui M. Glatiramer acetate immunomodulation: Evidence of neuroprotection and cognitive preservation. Cells 2022 11 9 1578 10.3390/cells11091578 35563884
    [Google Scholar]
  130. Unchiti K. Leurcharusmee P. Samerchua A. Pipanmekaporn T. Chattipakorn N. Chattipakorn S.C. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur. J. Neurosci. 2021 54 9 7006 7047 10.1111/ejn.15474 34561931
    [Google Scholar]
  131. Jackson P.P.J. Wijeyesekera A. Williams C.M. Theis S. van Harsselaar J. Rastall R.A. Inulin-type fructans and 2’fucosyllactose alter both microbial composition and appear to alleviate stress-induced mood state in a working population compared to placebo (maltodextrin): The EFFICAD Trial, a randomized, controlled trial. Am. J. Clin. Nutr. 2023 118 5 938 955 10.1016/j.ajcnut.2023.08.016 37657523
    [Google Scholar]
  132. Azuma N. Mawatari T. Saito Y. Tsukamoto M. Sampei M. Iwama Y. Effect of continuous ingestion of bifidobacteria and dietary fiber on improvement in cognitive function: A randomized, double-blind, placebo-controlled trial. Nutrients 2023 15 19 4175 10.3390/nu15194175 37836458
    [Google Scholar]
  133. Manderino L. Carroll I. Azcarate-Peril M.A. Rochette A. Heinberg L. Peat C. Steffen K. Mitchell J. Gunstad J. Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults. J. Int. Neuropsychol. Soc. 2017 23 8 700 705 10.1017/S1355617717000492 28641593
    [Google Scholar]
  134. Shin J.H. Kim C.S. Cha J. Kim S. Lee S. Chae S. Chun W.Y. Shin D.M. Consumption of 85% cocoa dark chocolate improves mood in association with gut microbial changes in healthy adults: A randomized controlled trial. J. Nutr. Biochem. 2022 99 108854 10.1016/j.jnutbio.2021.108854 34530112
    [Google Scholar]
  135. Berding K. Long-Smith C.M. Carbia C. Bastiaanssen T.F.S. van de Wouw M. Wiley N. Strain C.R. Fouhy F. Stanton C. Cryan J.F. Dinan T.G. A specific dietary fibre supplementation improves cognitive performance—an exploratory randomised, placebo-controlled, crossover study. Psychopharmacology (Berl.) 2021 238 1 149 163 10.1007/s00213‑020‑05665‑y 32951067
    [Google Scholar]
  136. Alexoudi A. Kesidou L. Gatzonis S. Charalampopoulos C. Tsoga A. Effectiveness of the Combination of Probiotic Supplementation on Motor Symptoms and Constipation in Parkinson’s Disease. Cureus 2023 15 11 e49320 10.7759/cureus.49320 38146566
    [Google Scholar]
  137. Wood E. Hein S. Mesnage R. Fernandes F. Abhayaratne N. Xu Y. Zhang Z. Bell L. Williams C. Rodriguez-Mateos A. Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2023 117 6 1306 1319 10.1016/j.ajcnut.2023.03.017 36972800
    [Google Scholar]
  138. Bell L. Whyte A. Duysburgh C. Marzorati M. Van den Abbeele P. Le Cozannet R. Fança-Berthon P. Fromentin E. Williams C. A randomized, placebo-controlled trial investigating the acute and chronic benefits of American Ginseng (Cereboost®) on mood and cognition in healthy young adults, including in vitro investigation of gut microbiota changes as a possible mechanism of action. Eur. J. Nutr. 2022 61 1 413 428 10.1007/s00394‑021‑02654‑5 34396468
    [Google Scholar]
  139. Del Bo’ C. Bernardi S. Cherubini A. Porrini M. Gargari G. Hidalgo-Liberona N. González-Domínguez R. Zamora-Ros R. Peron G. Marino M. Gigliotti L. Winterbone M.S. Kirkup B. Kroon P.A. Andres-Lacueva C. Guglielmetti S. Riso P. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin. Nutr. 2021 40 5 3006 3018 10.1016/j.clnu.2020.12.014 33388204
    [Google Scholar]
  140. Anderson G. Why are aging and stress associated with dementia, cancer, and other diverse medical conditions? Role of pineal melatonin interactions with the HPA axis in mitochondrial regulation via BAG-1. Melatonin Res. 2023 6 3 345 371 10.32794/mr112500158
    [Google Scholar]
  141. Anderson G. Maes M. Gut dysbiosis dysregulates central and systemic homeostasis viaa suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr. Top. Med. Chem. 2020 20 7 524 539 10.2174/1568026620666200131094445 32003689
    [Google Scholar]
  142. Bjørklund G. Dadar M. Anderson G. Chirumbolo S. Maes M. Preventive treatments to slow substantia nigra damage and Parkinson’s disease progression: A critical perspective review. Pharmacol. Res. 2020 161 105065 10.1016/j.phrs.2020.105065 32652199
    [Google Scholar]
  143. Du F. Yu Q. Swerdlow R.H. Waites C.L. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology. Brain 2023 146 10 4378 4394 10.1093/brain/awad127 37070763
    [Google Scholar]
/content/journals/cn/10.2174/011570159X353541250128101649
Loading
/content/journals/cn/10.2174/011570159X353541250128101649
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test