Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Introduction

Neurodegenerative diseases (NDDs) refer to a progressive degeneration of the nervous system and are on the rise. Researchers are trying to reveal the crucial mechanisms behind NDDs to find novel therapeutic candidates with higher efficacy and lower side effects. Increasing evidence highlights the auspicious role of inflammatory mechanisms in the pathogenesis of NDDs.

Methods

Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline, a systematic and comprehensive review was done to evaluate the effect of medicinal herbs in restoring gut-brain function and anti-inflammatory mechanisms in combating neuroprotection. The electronic databases, including Scopus, PubMed, and ScienceDirect, were searched for the literature review. The manual search of reference lists and citations was also employed falling within the authors’ expertise.

Results

As with other mechanisms, the bidirectional communication between the brain and gut, known as the gut-brain axis, has emerged as a potential target for therapeutic interventions. Since the gut-brain axis covers multiple mechanisms, especially inflammatory mechanisms in NDDs, it urges the need for finding novel multi-targeting agents. Medicinal herbs, with their rich repertoire of natural products, are multi-targeting candidates in combating several diseases. In this systematic and comprehensive review, we explore the potential of medicinal herbs in restoring gut-brain function and promoting neuroprotection by suppressing inflammatory pathways. Novel delivery systems and clinical applications of medicinal herbs are also highlighted to drawback the pharmacokinetic limitation in regulating the gut-brain axis-associated NDDs.

Conclusion

Medicinal herbs provide neuroprotective responses through the modulation of gut-brain function and related inflammatory mediators.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X353541250128101649
2025-06-02
2025-10-25
Loading full text...

Full text loading...

References

  1. KooshkiL. ZarneshanS.N. FakhriS. MoradiS.Z. EcheverriaJ. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids.Phytomedicine202311215468610.1016/j.phymed.2023.154686 36804755
    [Google Scholar]
  2. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  3. AdamuA. LiS. GaoF. XueG. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets.Front. Aging Neurosci.202416134798710.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  4. Roy SarkarS. BanerjeeS. Gut microbiota in neurodegenerative disorders.J. Neuroimmunol.20193289810410.1016/j.jneuroim.2019.01.004 30658292
    [Google Scholar]
  5. MouY. DuY. ZhouL. YueJ. HuX. LiuY. ChenS. LinX. ZhangG. XiaoH. DongB. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging.Front. Immunol.20221379628810.3389/fimmu.2022.796288 35464431
    [Google Scholar]
  6. FakhriS. KhodamoradyM. NaseriM. FarzaeiM.H. KhanH. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism.Pharmacol. Res.202015910489510.1016/j.phrs.2020.104895 32422342
    [Google Scholar]
  7. PanM.H. ChiouY.S. TsaiM.L. HoC.T. Anti-inflammatory activity of traditional Chinese medicinal herbs.J. Tradit. Complement. Med.20111182410.1016/S2225‑4110(16)30052‑9 24716101
    [Google Scholar]
  8. RadovanovićK. GavarićN. AćimovićM. Anti-inflammatory properties of plants from Serbian traditional medicine.Life (Basel)202313487410.3390/life13040874 37109403
    [Google Scholar]
  9. AppletonJ. The gut-brain axis: Influence of microbiota on mood and mental health.Integr. Med. (Encinitas)20181742832 31043907
    [Google Scholar]
  10. FakhriS. YarmohammadiA. YarmohammadiM. FarzaeiM.H. EcheverriaJ. Marine natural products: Promising candidates in the modulation of gut-brain axis towards neuroprotection.Mar. Drugs202119316510.3390/md19030165 33808737
    [Google Scholar]
  11. CarabottiM. SciroccoA. MaselliM.A. SeveriC. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems.Ann. Gastroenterol.2015282203209 25830558
    [Google Scholar]
  12. BreitS. KupferbergA. RoglerG. HaslerG. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders.Front. Psychiatry201894410.3389/fpsyt.2018.00044 29593576
    [Google Scholar]
  13. HanY. WangB. GaoH. HeC. HuaR. LiangC. ZhangS. WangY. XinS. XuJ. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases.J. Inflamm. Res.2022156213623010.2147/JIR.S384949 36386584
    [Google Scholar]
  14. LongoS. RizzaS. FedericiM. Microbiota-gut-brain axis: Relationships among the vagus nerve, gut microbiota, obesity, and diabetes.Acta Diabetol.20236081007101710.1007/s00592‑023‑02088‑x 37058160
    [Google Scholar]
  15. RuschJ.A. LaydenB.T. DugasL.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis.Front. Endocrinol. (Lausanne)202314113068910.3389/fendo.2023.1130689 37404311
    [Google Scholar]
  16. Di VincenzoF. Del GaudioA. PetitoV. LopetusoL.R. ScaldaferriF. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review.Intern. Emerg. Med.202419227529310.1007/s11739‑023‑03374‑w 37505311
    [Google Scholar]
  17. YooJ. GroerM. DutraS. SarkarA. McSkimmingD. Gut microbiota and immune system interactions.Microorganisms2020810158710.3390/microorganisms8101587 33076307
    [Google Scholar]
  18. SpahnT.W. KucharzikT. Modulating the intestinal immune system: The role of lymphotoxin and GALT organs.Gut200453345646510.1136/gut.2003.023671 14960534
    [Google Scholar]
  19. Abo-ShabanT. SharnaS.S. HosieS. LeeC.Y.Q. BalasuriyaG.K. McKeownS.J. FranksA.E. Hill-YardinE.L. Issues for patchy tissues: Defining roles for gut-associated lymphoid tissue in neurodevelopment and disease.J. Neural Transm. (Vienna)2023130326928010.1007/s00702‑022‑02561‑x 36309872
    [Google Scholar]
  20. MartinA.M. SunE.W. RogersG.B. KeatingD.J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release.Front. Physiol.20191042810.3389/fphys.2019.00428 31057420
    [Google Scholar]
  21. HeJ. ZhangP. ShenL. NiuL. TanY. ChenL. ZhaoY. BaiL. HaoX. LiX. ZhangS. ZhuL. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism.Int. J. Mol. Sci.20202117635610.3390/ijms21176356 32887215
    [Google Scholar]
  22. KrishnanS. AldenN. LeeK. Pathways and functions of gut microbiota metabolism impacting host physiology.Curr. Opin. Biotechnol.20153613714510.1016/j.copbio.2015.08.015 26340103
    [Google Scholar]
  23. RowlandI. GibsonG. HeinkenA. ScottK. SwannJ. ThieleI. TuohyK. Gut microbiota functions: Metabolism of nutrients and other food components.Eur. J. Nutr.201857112410.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  24. VernocchiP. Del ChiericoF. PutignaniL. Gut microbiota metabolism and interaction with food components.Int. J. Mol. Sci.20202110368810.3390/ijms21103688 32456257
    [Google Scholar]
  25. ClarkeG. SandhuK.V. GriffinB.T. DinanT.G. CryanJ.F. HylandN.P. Gut reactions: Breaking down xenobiotic–microbiome interactions.Pharmacol. Rev.201971219822410.1124/pr.118.015768 30890566
    [Google Scholar]
  26. BelkaidY. HandT.W. Role of the microbiota in immunity and inflammation.Cell2014157112114110.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  27. PantaziA.C. BalasaA.L. MihaiC.M. ChisnoiuT. LupuV.V. KassimM.A.K. MihaiL. FrecusC.E. ChirilaS.I. LupuA. AndruscaA. IonescuC. CuzicV. CambreaS.C. Development of gut microbiota in the first 1000 days after birth and potential interventions.Nutrients20231516364710.3390/nu15163647 37630837
    [Google Scholar]
  28. KosiewiczM.M. ZirnheldA.L. AlardP. Gut microbiota, immunity, and disease: A complex relationship.Front. Microbiol.2011218010.3389/fmicb.2011.00180 21922015
    [Google Scholar]
  29. IyerS.S. ChengG. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease.Crit. Rev. Immunol.20123212363
    [Google Scholar]
  30. BachK.K.E. LærkeH.N. HedemannM.S. NielsenT.S. IngerslevA.K. GundelundN.D.S. TheilP.K. PurupS. HaldS. SchioldanA.G. MarcoM.L. GregersenS. HermansenK. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation.Nutrients20181010149910.3390/nu10101499 30322146
    [Google Scholar]
  31. JiaoY. WuL. HuntingtonN.D. ZhangX. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases.Front. Immunol.20201128210.3389/fimmu.2020.00282 32153586
    [Google Scholar]
  32. OylumluE. UzelG. DurmusL. TasM. GunesD. CiraciC. Pattern recognition receptor-mediated regulatory t cell functions in diseases.Regulatory T Cells-New InsightsInTechOpen: London2022
    [Google Scholar]
  33. Martin-GallausiauxC. Béguet-CrespelF. MarinelliL. JametA. LedueF. BlottièreH.M. LapaqueN. Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells.Sci. Rep.201881974210.1038/s41598‑018‑28048‑y 29950699
    [Google Scholar]
  34. DeGruttolaA.K. LowD. MizoguchiA. MizoguchiE. Current understanding of dysbiosis in disease in human and animal models.Inflamm. Bowel Dis.20162251137115010.1097/MIB.0000000000000750 27070911
    [Google Scholar]
  35. MichelL. PratA. One more role for the gut: Microbiota and blood brain barrier.Ann. Transl. Med.20164115 26855951
    [Google Scholar]
  36. WuY. XuH. TuX. GaoZ. The role of short-chain fatty acids of gut microbiota origin in hypertension.Front. Microbiol.20211273080910.3389/fmicb.2021.730809 34650536
    [Google Scholar]
  37. FockE. ParnovaR. Mechanisms of blood–brain barrier protection by microbiota-derived short-chain fatty acids.Cells202312465710.3390/cells12040657 36831324
    [Google Scholar]
  38. GaleaI. The blood–brain barrier in systemic infection and inflammation.Cell. Mol. Immunol.202118112489250110.1038/s41423‑021‑00757‑x 34594000
    [Google Scholar]
  39. Blecharz-LangK.G. WagnerJ. FriesA. Nieminen-KelhäM. RösnerJ. SchneiderU.C. VajkoczyP. Interleukin 6-mediated endothelial barrier disturbances can be attenuated by blockade of the IL6 receptor expressed in brain microvascular endothelial cells.Transl. Stroke Res.20189663164210.1007/s12975‑018‑0614‑2 29429002
    [Google Scholar]
  40. AslamM. AhmadN. SrivastavaR. HemmerB. TNF-alpha induced NFκB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells.Cytokine201257226927510.1016/j.cyto.2011.10.016 22138107
    [Google Scholar]
  41. BaiB. YangY. WangQ. LiM. TianC. LiuY. AungL.H.H. LiP. YuT. ChuX. NLRP3 inflammasome in endothelial dysfunction.Cell Death Dis.202011977610.1038/s41419‑020‑02985‑x 32948742
    [Google Scholar]
  42. YangC. HawkinsK.E. DoréS. Candelario-JalilE. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke.Am. J. Physiol. Cell Physiol.20193162C135C15310.1152/ajpcell.00136.2018 30379577
    [Google Scholar]
  43. ColonnaM. ButovskyO. Microglia function in the central nervous system during health and neurodegeneration.Annu. Rev. Immunol.201735144146810.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  44. RutschA. KantsjöJ.B. RonchiF. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology.Front. Immunol.20201160417910.3389/fimmu.2020.604179 33362788
    [Google Scholar]
  45. WoodburnS.C. BollingerJ.L. WohlebE.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress.J. Neuroinflammation202118125810.1186/s12974‑021‑02309‑6 34742308
    [Google Scholar]
  46. YangZ-Y. JinW.L. XuY. JinM.Z. Microglia in neurodegenerative diseases.Neural Regen. Res.202116227028010.4103/1673‑5374.290881 32859774
    [Google Scholar]
  47. ReynaudE. Protein misfolding and degenerative diseases.Nature Education20103928
    [Google Scholar]
  48. SolankiR. KarandeA. RanganathanP. Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration.Front. Neurol.202314114961810.3389/fneur.2023.1149618 37255721
    [Google Scholar]
  49. LeiQ. WuT. WuJ. HuX. GuanY. WangY. YanJ. ShiG. Roles of α synuclein in gastrointestinal microbiome dysbiosis related Parkinson’s disease progression (Review).Mol. Med. Rep.202124473410.3892/mmr.2021.12374 34414447
    [Google Scholar]
  50. FitzgeraldE. MurphyS. MartinsonH.A. Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease.Front. Neurosci.20191336910.3389/fnins.2019.00369 31068777
    [Google Scholar]
  51. NottingF. PirovanoW. SybesmaW. KortR. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders.Gut Microbiome (Camb.)20234e1610.1017/gmb.2023.14 39295905
    [Google Scholar]
  52. OchnevaA. ZorkinaY. AbramovaO. PavlovaO. UshakovaV. MorozovaA. ZubkovE. PavlovK. GurinaO. ChekhoninV. Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders.Int. J. Mol. Sci.202223221449810.3390/ijms232214498 36430976
    [Google Scholar]
  53. WankhedeN.L. KaleM.B. UpaganlawarA.B. TaksandeB.G. UmekarM.J. BehlT. AbdellatifA.A.H. BhaskaranP.M. DachaniS.R. SehgalA. SinghS. SharmaN. MakeenH.A. AlbrattyM. DailahH.G. BhatiaS. Al-HarrasiA. BungauS. Involvement of molecular chaperone in protein-misfolding brain diseases.Biomed. Pharmacother.202214711264710.1016/j.biopha.2022.112647 35149361
    [Google Scholar]
  54. GregersenN. BrossP. Protein misfolding and cellular stress: An overview.Methods Mol. Biol.2010648323
    [Google Scholar]
  55. KempurajD. ThangavelR. SelvakumarG.P. ZaheerS. AhmedM.E. RaikwarS.P. ZahoorH. SaeedD. NatteruP.A. IyerS. ZaheerA. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration.Front. Cell. Neurosci.20171121610.3389/fncel.2017.00216 28790893
    [Google Scholar]
  56. SweeneyP. ParkH. BaumannM. DunlopJ. FrydmanJ. KopitoR. McCampbellA. LeblancG. VenkateswaranA. NurmiA. HodgsonR. Protein misfolding in neurodegenerative diseases: Implications and strategies.Transl. Neurodegener.201761610.1186/s40035‑017‑0077‑5 28293421
    [Google Scholar]
  57. WenL. DuffyA. Factors influencing the gut microbiota, inflammation, and type 2 diabetes.J. Nutr.201714771468S1475S10.3945/jn.116.240754 28615382
    [Google Scholar]
  58. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  59. Dominguez-BelloM.G. De Jesus-LaboyK.M. ShenN. CoxL.M. AmirA. GonzalezA. BokulichN.A. SongS.J. HoashiM. Rivera-VinasJ.I. MendezK. KnightR. ClementeJ.C. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer.Nat. Med.201622325025310.1038/nm.4039 26828196
    [Google Scholar]
  60. TamburiniS. ShenN. WuH.C. ClementeJ.C. The microbiome in early life: Implications for health outcomes.Nat. Med.201622771372210.1038/nm.4142 27387886
    [Google Scholar]
  61. WegierskaA.E. CharitosI.A. TopiS. PotenzaM.A. MontagnaniM. SantacroceL. The connection between physical exercise and gut microbiota: Implications for competitive sports athletes.Sports Med.202252102355236910.1007/s40279‑022‑01696‑x 35596883
    [Google Scholar]
  62. RamirezJ. GuarnerF. BustosF.L. MaruyA. SdepanianV.L. CohenH. Antibiotics as major disruptors of gut microbiota.Front. Cell. Infect. Microbiol.20201057291210.3389/fcimb.2020.572912 33330122
    [Google Scholar]
  63. MaleckiK. EggersS. PeppardP. SafdarN. SuenG. NikodemovaM. SethiA. Urban and rural differences in gut microbial diversity: Implications for environmental health.Environ. Epidemiol.20193Suppl. 125810.1097/01.EE9.0000608740.18605.e6
    [Google Scholar]
  64. VeigaP. PonsN. AgrawalA. OozeerR. GuyonnetD. BrazeillesR. FaurieJ.M. van HylckamaV.J.E.T. HoughtonL.A. WhorwellP.J. EhrlichS.D. KennedyS.P. Changes of the human gut microbiome induced by a fermented milk product.Sci. Rep.201441632810.1038/srep06328 25209713
    [Google Scholar]
  65. HamamahS. AminA. Al-KassirA.L. ChuangJ. CovasaM. Dietary fat modulation of gut microbiota and impact on regulatory pathways controlling food intake.Nutrients20231515336510.3390/nu15153365 37571301
    [Google Scholar]
  66. WangH. ChenY. WangL. LiuQ. YangS. WangC. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices.Front. Pharmacol.202314126517810.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  67. CalixtoJ.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents).Braz. J. Med. Biol. Res.200033217918910.1590/S0100‑879X2000000200004 10657057
    [Google Scholar]
  68. MuyumbaN.W. MutomboS.C. SheridanH. NachtergaelA. DuezP. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications.Talanta Open2021410007010.1016/j.talo.2021.100070
    [Google Scholar]
  69. PlaskovaA. MlcekJ. New insights of the application of water or ethanol-water plant extract rich in active compounds in food.Front. Nutr.202310111876110.3389/fnut.2023.1118761 37057062
    [Google Scholar]
  70. KunleO.F. EgharevbaH.O. AhmaduP.O. Standardization of herbal medicines - A review.Int. J. Biodivers. Conserv.20124310111210.5897/IJBC11.163
    [Google Scholar]
  71. Wachtel-GalorS. BenzieI.F. Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs.Herbal Medicine: Biomolecular and Clinical Aspects, 2nd edition. Boca Raton (FL): CRC Press⎥Taylor & Francis: Chp 12012
    [Google Scholar]
  72. da Silva OliveiraA.P. do Céu CostaM. BichoM.P. Use of medicinal plants: Interindividual variability of their effects from a genetic and anthropological perspective.Medicinal Plants-Chemical, Biochemical, and Pharmacological ApproachesInTechOpen: London2023
    [Google Scholar]
  73. TassewW.C. AssefaG.W. ZelekeA.M. FeredeY.A. Prevalence and associated factors of herbal medicine use among patients living with chronic disease in Ethiopia: A systematic review and meta-analysis.Metab. Open20242110028010.1016/j.metop.2024.100280 38455230
    [Google Scholar]
  74. LeeB. YangC. YimM.H. Real-world evidence of characteristics and factors influencing herbal medicine use for weight loss in adults.Front. Pharmacol.202415143703210.3389/fphar.2024.1437032 39081960
    [Google Scholar]
  75. JiangC. LiG. HuangP. LiuZ. ZhaoB. The gut microbiota and Alzheimer’s disease.J. Alzheimers Dis.201758111510.3233/JAD‑161141 28372330
    [Google Scholar]
  76. XieJ. Van HoeckeL. VandenbrouckeR.E. The impact of systemic inflammation on Alzheimer’s disease pathology.Front. Immunol.20221279686710.3389/fimmu.2021.796867 35069578
    [Google Scholar]
  77. ZhangS. WeiD. LvS. WangL. AnH. ShaoW. WangY. HuangY. PengD. ZhangZ. Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in APP/PS1 mice.J. Alzheimers Dis.202289395597510.3233/JAD‑220532 35964195
    [Google Scholar]
  78. LeeM. LeeS.H. KimM.S. AhnK.S. KimM. Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer’s disease in mice.J. Ginseng Res.202246346447210.1016/j.jgr.2021.11.001 35600775
    [Google Scholar]
  79. UpadhyayP. GuptaS. Dual mode of Triphala in the reversal of cognition through gut restoration in antibiotic mediated prolonged dysbiosis condition in 5XFAD mice.Exp. Neurol.202336711447310.1016/j.expneurol.2023.114473 37385519
    [Google Scholar]
  80. UpadhyayP. TyagiA. AgrawalS. KumarA. GuptaS. Bidirectional effect of triphala on modulating gut‐brain axis to improve cognition in the murine model of alzheimer’s disease.Mol. Nutr. Food Res.202320232300104 37767948
    [Google Scholar]
  81. KimD.S. ZhangT. ParkS. Protective effects of Forsythiae fructus and Cassiae semen water extract against memory deficits through the gut-microbiome-brain axis in an Alzheimer’s disease model.Pharm. Biol.202260121222410.1080/13880209.2022.2025860 35076339
    [Google Scholar]
  82. XieM. GuS. HongY. LiuY. RongX. LuW. LiuH. AlgradiA.M. NaseemA. ShuZ. WangQ. Study on the mechanism of Coptis chinensis Franch. And its main active components in treating Alzheimer’s disease based on SCFAs using Orbitrap Fusion Lumos Tribrid MS.J. Ethnopharmacol.202331111639210.1016/j.jep.2023.116392 37028611
    [Google Scholar]
  83. KimT.Y. KimJ.M. LeeH.L. GoM.J. JooS.G. KimJ.H. LeeH.S. LeeD.Y. KimH.J. HeoH.J. Codium fragile suppresses PM2.5-induced cognitive dysfunction by regulating gut-brain axis via TLR-4/MyD88 pathway.Int. J. Mol. Sci.202324161289810.3390/ijms241612898 37629080
    [Google Scholar]
  84. LiuP. ZhouX. ZhangH. WangR. WuX. JianW. LiW. YuanD. WangQ. ZhaoW. Danggui-Shaoyao-San attenuates cognitive impairment via the microbiota-gut-brain axis with regulation of lipid metabolism in scopolamine-induced amnesia.Front. Immunol.20221379654210.3389/fimmu.2022.796542 35664001
    [Google Scholar]
  85. HeJ. JinY. HeC. LiZ. YuW. ZhouJ. LuoR. ChenQ. WuY. WangS. SongZ. ChengS. Danggui Shaoyao San: Comprehensive modulation of the microbiota-gut-brain axis for attenuating Alzheimer’s disease-related pathology.Front. Pharmacol.202414133880410.3389/fphar.2023.1338804 38283834
    [Google Scholar]
  86. ZhaoW. WangJ. LattaM. WangC. LiuY. MaW. ZhouZ. HuS. ChenP. LiuY. Rhizoma gastrodiae water extract modulates the gut microbiota and pathological changes of P-TauThr231 to protect against cognitive impairment in mice.Front. Pharmacol.20221390365910.3389/fphar.2022.903659 35910384
    [Google Scholar]
  87. LeeH.S. KimJ.M. LeeH.L. GoM.J. LeeD.Y. KimC.W. KimH.J. HeoH.J. Eucommia ulmoides Leaves Alleviate Cognitive dysfunction in dextran sulfate sodium (DSS)-induced colitis mice through regulating JNK/TLR4 signaling pathway.Int. J. Mol. Sci.2024257406310.3390/ijms25074063 38612870
    [Google Scholar]
  88. SongC. YinY. QinY. LiT. ZengD. JuT. DuanF. ZhangY. LuW. Acanthopanax senticosus extract alleviates radiation-induced learning and memory impairment based on neurotransmitter-gut microbiota communication.CNS Neurosci. Ther.2023Suppl 1Suppl 112914510.1111/cns.14134
    [Google Scholar]
  89. SuH. ZhangC. ZouX. LuF. ZengY. GuanH. RenY. YuanF. XuL. ZhangM. DongH. Jiao-tai-wan inhibits inflammation of the gut-brain-axis and attenuates cognitive impairment in insomnic rats.J. Ethnopharmacol.202025011247810.1016/j.jep.2019.112478 31843572
    [Google Scholar]
  90. GuanY. TangG. LiL. ShuJ. ZhaoY. HuangL. TangJ. Herbal medicine and gut microbiota: Exploring untapped therapeutic potential in neurodegenerative disease management.Arch. Pharm. Res.202447214616410.1007/s12272‑023‑01484‑9 38225532
    [Google Scholar]
  91. LiX. ZhaoT. GuJ. WangZ. LinJ. WangR. DuanT. LiZ. DongR. WangW. HongK.F. LiuZ. HuangW. GuiD. ZhouH. XuY. Intake of flavonoids from Astragalus membranaceus ameliorated brain impairment in diabetic mice via modulating brain-gut axis.Chin. Med.20221712210.1186/s13020‑022‑00578‑8 35151348
    [Google Scholar]
  92. ZhaoY.M. LiY.N. MaR. JiC.L. MuY.H. XuR. SunL.W. LiuF.B. Matrix-assisted laser desorption ionization mass spectrometry imaging reveals the spatial distribution of compounds that may exacerbate inflammation in garden ginseng and ginseng under forest.Talanta202427912659410.1016/j.talanta.2024.126594 39053359
    [Google Scholar]
  93. HaoM. DingC. PengX. ChenH. DongL. ZhangY. ChenX. LiuW. LuoY. Ginseng under forest exerts stronger anti-aging effects compared to garden ginseng probably via regulating PI3K/AKT/mTOR pathway, SIRT1/NF-κB pathway and intestinal flora.Phytomedicine202210515436510.1016/j.phymed.2022.154365 35930860
    [Google Scholar]
  94. XieZ. LuH. YangS. ZengY. LiW. WangL. LuoG. FangF. ZengT. ChengW. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis.Front. Pharmacol.20201156842310.3389/fphar.2020.568423 33362539
    [Google Scholar]
  95. ZhouH. TaiJ. XuH. LuX. MengD. Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels.Front. Pharmacol.201910103510.3389/fphar.2019.01035 31572201
    [Google Scholar]
  96. WangH. ZhouL. ZhengQ. SongY. HuangW. YangL. XiongY. CaiZ. ChenY. YuanJ. Kai-xin-san improves cognitive impairment in D-gal and Aβ25-35 induced ad rats by regulating gut microbiota and reducing neuronal damage.J. Ethnopharmacol.202432911816110.1016/j.jep.2024.118161 38599474
    [Google Scholar]
  97. RenH. GaoS. WangS. WangJ. ChengY. WangY. WangY. Effects of Dangshen Yuanzhi Powder on learning ability and gut microflora in rats with memory disorder.J. Ethnopharmacol.202229611541010.1016/j.jep.2022.115410 35640741
    [Google Scholar]
  98. LiZ. ZengQ. HuS. LiuZ. WangS. JinY. LiL. OuH. WuZ. Chaihu Shugan San ameliorated cognitive deficits through regulating gut microbiota in senescence-accelerated mouse prone 8.Front. Pharmacol.202314118122610.3389/fphar.2023.1181226 37256236
    [Google Scholar]
  99. KadyanS. ParkG. HochuliN. MillerK. WangB. NagpalR. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice.Front. Nutr.202411132220110.3389/fnut.2024.1322201 38352704
    [Google Scholar]
  100. GuC. ZhouW. WangW. XiangH. XuH. LiangL. SuiH. ZhanL. LuX. ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats.Oncotarget2017817276932770310.18632/oncotarget.14611 28099913
    [Google Scholar]
  101. NieS. WangJ. DengY. YeZ. GeY. Inflammatory microbes and genes as potential biomarkers of Parkinson’s disease.NPJ Biofilms Microbiomes202281101
    [Google Scholar]
  102. RomanoS. SavvaG.M. BedarfJ.R. CharlesI.G. HildebrandF. NarbadA. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation.NPJ Parkinsons Dis.2021712710.1038/s41531‑021‑00156‑z 33692356
    [Google Scholar]
  103. IsaacsonS.H. HauserR.A. Review: Improving symptom control in early Parkinson’s disease.Ther. Adv. Neurol. Disord.20092639340010.1177/1756285609339383 21180628
    [Google Scholar]
  104. AdebayoO.G. AsiweJ.N. Ben-AzuB. AduemaW. OnyeleonuI. AkpotuA.E. WoparaI. KolawoleT.A. UmorenE.B. IgbokweV. BuduburisiB.R. OnwukaF.C. BrownP.I. Ginkgo biloba protects striatal neurodegeneration and gut phagoinflammatory damage in rotenone‐induced mice model of Parkinson’s disease: Role of executioner caspase‐3/Nrf2/ARE signaling.J. Food Biochem.2022469e1425310.1111/jfbc.14253 35608987
    [Google Scholar]
  105. LiuZ. ZhaoJ. YangS. ZhangY. SongL. WuN. LiuZ. Network pharmacology and absolute bacterial quantification-combined approach to explore the mechanism of Tianqi pingchan granule against 6-OHDA-induced Parkinson’s disease in rats.Front. Nutr.2022983650010.3389/fnut.2022.836500 35600818
    [Google Scholar]
  106. WuY.Y. ZhengB-R. ChenW-Z. GuoM-S. HuangY-H. ZhangY. Expression and role of autophagy related protein p62 and LC3 in the retina in a rat model of acute ocular hypertension.Int. J. Ophthalmol.2020131212810.18240/ijo.2020.01.04 31956566
    [Google Scholar]
  107. YuL. HuX. XuR. ZhaoY. XiongL. AiJ. WangX. ChenX. BaY. XingZ. GuoC. MiS. WuX. Piperine promotes PI3K/AKT/mTOR-mediated gut-brain autophagy to degrade α-Synuclein in Parkinson’s disease rats.J. Ethnopharmacol.202432211762810.1016/j.jep.2023.117628 38158101
    [Google Scholar]
  108. PuriV. KanojiaN. SharmaA. HuanbuttaK. DheerD. SangnimT. Natural product-based pharmacological studies for neurological disorders.Front. Pharmacol.202213101174010.3389/fphar.2022.1011740 36419628
    [Google Scholar]
  109. WangN. FengB.N. HuB. ChengY.L. GuoY.H. QianH. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway.Food Funct.20221342019203210.1039/D1FO02216D 35103734
    [Google Scholar]
  110. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.27 10592173
    [Google Scholar]
  111. LiD. YouH. HuG. YaoR. XieA. LiX. Mechanisms of the Ping-wei-san plus herbal decoction against Parkinson’s disease: Multiomics analyses.Front. Nutr.2023994535610.3389/fnut.2022.945356 36687704
    [Google Scholar]
  112. HassanA. GulzarA.S. Ullah MunirE. AliK.I. RamzanN. Predictive modelling and identification of key risk factors for stroke using machine learning.Sci. Rep.20241411149810.1038/s41598‑024‑61665‑4 38769427
    [Google Scholar]
  113. ZhangS. JinM. RenJ. SunX. ZhangZ. LuoY. SunX. New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target.Biomed. Pharmacother.202316211455910.1016/j.biopha.2023.114559 36989717
    [Google Scholar]
  114. ZhangJ. LingL. XiangL. LiW. BaoP. YueW. Role of the gut microbiota in complications after ischemic stroke.Front. Cell. Infect. Microbiol.202414133458110.3389/fcimb.2024.1334581 38644963
    [Google Scholar]
  115. Gouveia-NhancaM. Rolim BezerraM.L. BatistaK.S. PinheiroR.O. SoaresN.L. de Paiva SousaM.C. AlvesA.F. RibeiroM.D. SilvaA.S. MagnaniM. dos Santos LimaM. de Souza AquinoJ. The non-conventional edible plant foroba (Parkia biglobosa) has anti-obesity effect, improves lipid peroxidation and reverses colon and hippocampal lesions in healthy and obese rats.J. Funct. Foods202310810574510.1016/j.jff.2023.105745
    [Google Scholar]
  116. ChoiD.J. KimS.L. ChoiJ.W. ParkY.I. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells.Life Sci.20141091576410.1016/j.lfs.2014.05.020 24928367
    [Google Scholar]
  117. RyukJ.A. KoB.S. MoonN.R. ParkS. Protection against neurological symptoms by consuming corn silk water extract in artery-occluded gerbils with reducing oxidative stress, inflammation, and post-stroke hyperglycemia through the gut-brain axis.Antioxidants202211116810.3390/antiox11010168 35052672
    [Google Scholar]
  118. GuoY. LiQ. YuX. LiangY. Rhubarb anthraquinone glycosides protect against cerebral ischemia‐reperfusion injury in rats by regulating brain–gut neurotransmitters.Biomed. Chromatogr.2021355e505810.1002/bmc.5058 33373060
    [Google Scholar]
  119. NieH. GeJ. YangK. PengZ. WuH. YangT. MeiZ. Naotaifang III protects against cerebral ischemia injury through LPS/TLR4 signaling pathway in the microbiota-gut-brain axis.Drug Des. Devel. Ther.2023173571358810.2147/DDDT.S421658 38058793
    [Google Scholar]
  120. XianM. MaZ. ZhanS. ShenL. LiT. LinH. HuangM. CaiJ. HuT. LiangJ. LiangS. WangS. Network analysis of microbiome and metabolome to explore the mechanism of raw rhubarb in the protection against ischemic stroke via microbiota-gut-brain axis.Fitoterapia202417510596910.1016/j.fitote.2024.105969 38643860
    [Google Scholar]
  121. YamauchiY. GeY.W. YoshimatsuK. KomatsuK. KuboyamaT. YangX. TohdaC. Memory enhancement by oral administration of extract of Eleutherococcus senticosus leaves and active compounds transferred in the brain.Nutrients2019115114210.3390/nu11051142 31121888
    [Google Scholar]
  122. WangR. SunY. WangM. LiH. LiuS. LiuZ. Therapeutic effect of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves on ischemic stroke via the microbiota-gut-brain axis.Phytother. Res.202337104801481810.1002/ptr.7947 37518502
    [Google Scholar]
  123. den BestenG. van EunenK. GroenA.K. VenemaK. ReijngoudD.J. BakkerB.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.J. Lipid Res.20135492325234010.1194/jlr.R036012 23821742
    [Google Scholar]
  124. GuoH.H. ShenH.R. TangM.Z. ShengN. DingX. LinY. ZhangJ.L. JiangJ.D. GaoT.L. WangL.L. HanY.X. Microbiota-derived short-chain fatty acids mediate the effects of dengzhan shengmai in ameliorating cerebral ischemia via the gut–brain axis.J. Ethnopharmacol.202330611615810.1016/j.jep.2023.116158 36638854
    [Google Scholar]
  125. PangS.Q. LuoZ.T. WangC.C. HongX.P. ZhouJ. ChenF. GeL. LiX. DaiY. WuY. Effects of Dioscorea polystachya’yam gruel’on the cognitive function of diabetic rats with focal cerebral ischemia-reperfusion injury via the gut-brain axis.J. Integr. Neurosci.2020192273283
    [Google Scholar]
  126. MaglioccaG. MoneP. Di IorioB.R. HeidlandA. MarzoccoS. Short-chain fatty acids in chronic kidney disease: Focus on inflammation and oxidative stress regulation.Int. J. Mol. Sci.20222310535410.3390/ijms23105354 35628164
    [Google Scholar]
  127. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  128. WuZ. YinB. WangZ. SongE. YouF. Clinical evidence and potential mechanisms in treating radiation enteritis with modified baitouweng decoction.Evid. Based Complement. Alternat. Med.202320231973131510.1155/2023/9731315 36756038
    [Google Scholar]
  129. KasindiA. FuchsD.T. KoronyoY. RentsendorjA. BlackK. Koronyo-HamaouiM. Glatiramer acetate immunomodulation: Evidence of neuroprotection and cognitive preservation.Cells2022119157810.3390/cells11091578 35563884
    [Google Scholar]
  130. UnchitiK. LeurcharusmeeP. SamerchuaA. PipanmekapornT. ChattipakornN. ChattipakornS.C. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies.Eur. J. Neurosci.20215497006704710.1111/ejn.15474 34561931
    [Google Scholar]
  131. JacksonP.P.J. WijeyesekeraA. WilliamsC.M. TheisS. van HarsselaarJ. RastallR.A. Inulin-type fructans and 2’fucosyllactose alter both microbial composition and appear to alleviate stress-induced mood state in a working population compared to placebo (maltodextrin): The EFFICAD Trial, a randomized, controlled trial.Am. J. Clin. Nutr.2023118593895510.1016/j.ajcnut.2023.08.016 37657523
    [Google Scholar]
  132. AzumaN. MawatariT. SaitoY. TsukamotoM. SampeiM. IwamaY. Effect of continuous ingestion of bifidobacteria and dietary fiber on improvement in cognitive function: A randomized, double-blind, placebo-controlled trial.Nutrients20231519417510.3390/nu15194175 37836458
    [Google Scholar]
  133. ManderinoL. CarrollI. Azcarate-PerilM.A. RochetteA. HeinbergL. PeatC. SteffenK. MitchellJ. GunstadJ. Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults.J. Int. Neuropsychol. Soc.201723870070510.1017/S1355617717000492 28641593
    [Google Scholar]
  134. ShinJ.H. KimC.S. ChaJ. KimS. LeeS. ChaeS. ChunW.Y. ShinD.M. Consumption of 85% cocoa dark chocolate improves mood in association with gut microbial changes in healthy adults: A randomized controlled trial.J. Nutr. Biochem.20229910885410.1016/j.jnutbio.2021.108854 34530112
    [Google Scholar]
  135. BerdingK. Long-SmithC.M. CarbiaC. BastiaanssenT.F.S. van de WouwM. WileyN. StrainC.R. FouhyF. StantonC. CryanJ.F. DinanT.G. A specific dietary fibre supplementation improves cognitive performance—an exploratory randomised, placebo-controlled, crossover study.Psychopharmacology (Berl.)2021238114916310.1007/s00213‑020‑05665‑y 32951067
    [Google Scholar]
  136. AlexoudiA. KesidouL. GatzonisS. CharalampopoulosC. TsogaA. Effectiveness of the combination of probiotic supplementation on motor symptoms and constipation in Parkinson’s Disease.Cureus20231511e4932010.7759/cureus.49320 38146566
    [Google Scholar]
  137. WoodE. HeinS. MesnageR. FernandesF. AbhayaratneN. XuY. ZhangZ. BellL. WilliamsC. Rodriguez-MateosA. Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: A double-blind randomized controlled trial.Am. J. Clin. Nutr.202311761306131910.1016/j.ajcnut.2023.03.017 36972800
    [Google Scholar]
  138. BellL. WhyteA. DuysburghC. MarzoratiM. Van den AbbeeleP. Le CozannetR. Fança-BerthonP. FromentinE. WilliamsC. A randomized, placebo-controlled trial investigating the acute and chronic benefits of American Ginseng (Cereboost®) on mood and cognition in healthy young adults, including in vitro investigation of gut microbiota changes as a possible mechanism of action.Eur. J. Nutr.202261141342810.1007/s00394‑021‑02654‑5 34396468
    [Google Scholar]
  139. Del Bo’C. BernardiS. CherubiniA. PorriniM. GargariG. Hidalgo-LiberonaN. González-DomínguezR. Zamora-RosR. PeronG. MarinoM. GigliottiL. WinterboneM.S. KirkupB. KroonP.A. Andres-LacuevaC. GuglielmettiS. RisoP. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial.Clin. Nutr.20214053006301810.1016/j.clnu.2020.12.014 33388204
    [Google Scholar]
  140. AndersonG. Why are aging and stress associated with dementia, cancer, and other diverse medical conditions? Role of pineal melatonin interactions with the HPA axis in mitochondrial regulation via BAG-1.Melatonin Res.20236334537110.32794/mr112500158
    [Google Scholar]
  141. AndersonG. MaesM. Gut dysbiosis dysregulates central and systemic homeostasis via a suboptimal mitochondrial function: Assessment, treatment and classification implications.Curr. Top. Med. Chem.202020752453910.2174/1568026620666200131094445 32003689
    [Google Scholar]
  142. BjørklundG. DadarM. AndersonG. ChirumboloS. MaesM. Preventive treatments to slow substantia nigra damage and Parkinson’s disease progression: A critical perspective review.Pharmacol. Res.202016110506510.1016/j.phrs.2020.105065 32652199
    [Google Scholar]
  143. DuF. YuQ. SwerdlowR.H. WaitesC.L. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology.Brain2023146104378439410.1093/brain/awad127 37070763
    [Google Scholar]
/content/journals/cn/10.2174/011570159X353541250128101649
Loading
/content/journals/cn/10.2174/011570159X353541250128101649
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test