Skip to content
2000
Volume 23, Issue 8
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Neuropsychiatric disorders encompass a range of conditions resulting from various dysfunctions within the nervous system, manifesting in diverse neurological impairments. These disorders, including depression, schizophrenia, anxiety, and Alzheimer's disease, impose significant economic and psychological burdens on both individuals and society overall. Recent clinical and preclinical studies have highlighted that dexmedetomidine (Dex), a highly selective α2 adrenergic receptor agonist, may offer therapeutic benefits beyond its well-known sedative properties. Dex has demonstrated neuroprotective effects, including anti-inflammatory and anti-apoptotic effects, as well as contributing to maintaining the integrity of the blood-brain barrier. Additionally, clinical observations suggest that Dex could be beneficial in managing neuropsychiatric disorders, with fewer side effects compared to traditional antipsychotics in both rodent and human studies. This review presents a comprehensive overview of the preclinical and clinical evidence supporting the therapeutic efficacy of Dex in neuropsychiatric disorders. We also discuss the underlying mechanisms of its effect and point out future research directions to further investigate Dex’s role in this field.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X349530241123140415
2025-01-02
2025-10-27
Loading full text...

Full text loading...

References

  1. SalekiK. AlijanizadehP. JavanmehrN. RezaeiN. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management.Med. Res. Rev.20244431267132510.1002/med.22012 38226452
    [Google Scholar]
  2. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Psychiatry20229213715010.1016/S2215‑0366(21)00395‑3 35026139
    [Google Scholar]
  3. GertlerR. BrownH.C. MitchellD.H. SilviusE.N. Dexmedetomidine: A novel sedative-analgesic agent.Proc. Bayl. Univ. Med. Cent.2001141132110.1080/08998280.2001.11927725 16369581
    [Google Scholar]
  4. ShehabiY. RuettimannU. AdamsonH. InnesR. IckeringillM. Dexmedetomidine infusion for more than 24 hours in critically ill patients: Sedative and cardiovascular effects.Intensive Care Med.200430122188219610.1007/s00134‑004‑2417‑z 15338124
    [Google Scholar]
  5. BloorB.C. WardD.S. BellevilleJ.P. MazeM. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes.Anesthesiology19927761134114210.1097/00000542‑199212000‑00014 1361311
    [Google Scholar]
  6. EbertT.J. HallJ.E. BarneyJ.A. UhrichT.D. ColincoM.D. The effects of increasing plasma concentrations of dexmedetomidine in humans.Anesthesiology200093238239410.1097/00000542‑200008000‑00016 10910487
    [Google Scholar]
  7. VennR.M. GroundsR.M. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: Patient and clinician perceptions.Br. J. Anaesth.200187568469010.1093/bja/87.5.684 11878517
    [Google Scholar]
  8. JakobS.M. RuokonenE. GroundsR.M. SarapohjaT. GarrattC. PocockS.J. BrattyJ.R. TakalaJ. Dexmedetomidine vs. midazolam or propofol for sedation during prolonged mechanical ventilation: Two randomized controlled trials.JAMA2012307111151116010.1001/jama.2012.304 22436955
    [Google Scholar]
  9. ZhangZ. FerrettiV. Güntan, İ.; Moro, A.; Steinberg, E.A.; Ye, Z.; Zecharia, A.Y.; Yu, X.; Vyssotski, A.L.; Brickley, S.G.; Yustos, R.; Pillidge, Z.E.; Harding, E.C.; Wisden, W.; Franks, N.P. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists.Nat. Neurosci.201518455356110.1038/nn.3957 25706476
    [Google Scholar]
  10. MartinE. RamsayG. MantzJ. Sum-PingS.T.J. The role of the α2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit.J. Intensive Care Med.2003181294110.1177/0885066602239122 15189665
    [Google Scholar]
  11. TuranA. DuncanA. LeungS. KarimiN. FangJ. MaoG. HargraveJ. GillinovM. TrombettaC. AyadS. HassanM. FeiderA. Howard-QuijanoK. RuetzlerK. SesslerD.I. BergeseS. De OliveiraG. HonarH. NiaziA. ElliottK. HamadnallaH. ChodavarapuP. BajracharyaG. FitzgeraldP. CukoE. AkhtarZ. LokhandeC. KhanM.Z. KhoshknabiD. RiterQ. HutchersonM. YagarS. GlosseL. SahaP. RazaS. Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): A randomised placebo-controlled trial.Lancet20203961024517718510.1016/S0140‑6736(20)30631‑0 32682483
    [Google Scholar]
  12. HoffmanW.E. BaughmanV.L. AlbrechtR.F. Interaction of catecholamines and nitrous oxide ventilation during incomplete brain ischemia in rats.Anesth. Analg.199377590891210.1213/00000539‑199311000‑00006 8105726
    [Google Scholar]
  13. LuoS. LiL. GuoL. WangL. WangY. ChenN. WangE. Dexmedetomidine exerts an anti-inflammatory effect via α2 adrenoceptors to alleviate cognitive dysfunction in 5xFAD mice.Front. Aging Neurosci.20221497876810.3389/fnagi.2022.978768 36204551
    [Google Scholar]
  14. ChenY. ChenC. SongD. LiuT. ChengO. Dexmedetomidine protects SH-SY5Y cells against MPP+-induced declining of mitochondrial membrane potential and cell cycle deficits.Eur. J. Neurosci.20215414141415310.1111/ejn.15252 33905578
    [Google Scholar]
  15. SunW. ZhaoJ. LiC. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer’s disease by mediating the miR-129/YAP1/JAG1 axis.Mol. Neurobiol.202057125044505510.1007/s12035‑020‑02069‑z 32839917
    [Google Scholar]
  16. ZhangP. LiY. HanX. XingQ. ZhaoL. Dexmedetomidine regulates 6-hydroxydopamine-induced microglial polarization.Neurochem. Res.20174251524153210.1007/s11064‑017‑2209‑9 28247333
    [Google Scholar]
  17. JiangL. HuM. LuY. CaoY. ChangY. DaiZ. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis.J. Clin. Anesth.201740253210.1016/j.jclinane.2017.04.003 28625441
    [Google Scholar]
  18. BekkerA. SturaitisM.K. Dexmedetomidine for neurological surgery.Oper. Neurosurg.2005571Suppl.11010.1227/01.NEU.0000163476.42034.A1 15987564
    [Google Scholar]
  19. ZengW. ChenL. LiuX. DengX. HuangK. ZhongM. ZhouS. ZhanL. JiangY. LiangW. Intranasal dexmedetomidine for the treatment of pre-operative anxiety and insomnia: A prospective, randomized, controlled, and clinical trial.Front. Psychiatry20221381689310.3389/fpsyt.2022.816893 35711602
    [Google Scholar]
  20. YaoJ. GongH. ZhaoX. PengQ. ZhaoH. YuS. Parental presence and intranasal dexmedetomidine for the prevention of anxiety during anesthesia induction in children undergoing tonsillectomy and/or adenoidectomy surgery: A randomized controlled trial.Front. Pharmacol.202213101535710.3389/fphar.2022.1015357 36601054
    [Google Scholar]
  21. VirtanenR. SavolaJ.M. SaanoV. NymanL. Characterization of the selectivity, specificity and potency of medetomidine as an α2-adrenoceptor agonist.Eur. J. Pharmacol.19881501-291410.1016/0014‑2999(88)90744‑3 2900154
    [Google Scholar]
  22. HeinL. Adrenoceptors and signal transduction in neurons.Cell Tissue Res.2006326254155110.1007/s00441‑006‑0285‑2 16896948
    [Google Scholar]
  23. BaronR. Neuropathic pain: A clinical perspective.Handb. Exp. Pharmacol.200919419433010.1007/978‑3‑540‑79090‑7_1 19655103
    [Google Scholar]
  24. ScholzJ. FinnerupN.B. AttalN. AzizQ. BaronR. BennettM.I. BenolielR. CohenM. CruccuG. DavisK.D. EversS. FirstM. GiamberardinoM.A. HanssonP. KaasaS. KorwisiB. KosekE. Lavand’hommeP. NicholasM. NurmikkoT. PerrotS. RajaS.N. RiceA.S.C. RowbothamM.C. SchugS. SimpsonD.M. SmithB.H. SvenssonP. VlaeyenJ.W.S. WangS.J. BarkeA. RiefW. TreedeR.D. The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain.Pain20191601535910.1097/j.pain.0000000000001365 30586071
    [Google Scholar]
  25. KnausA. Muthig, V.; Schickinger, S.; Moura, E.; Beetz, N.; Gilsbach, R.; Hein, L. α2-Adrenoceptor subtypes—Unexpected functions for receptors and ligands derived from gene-targeted mouse models.Neurochem. Int.200751527728110.1016/j.neuint.2007.06.036 17664025
    [Google Scholar]
  26. GambardellaJ. FiordelisiA. AvvisatoR. BuonaiutoA. CerasuoloF.A. SorrientoD. IaccarinoG. Adrenergic receptors in endothelial and vascular smooth muscle cells.Curr. Opin. Physiol.20233610072110.1016/j.cophys.2023.100721
    [Google Scholar]
  27. FeldmanJ. BousquetP. Role of cental α2B-adrenergic receptors in blood pressure control and hypertension.J. Hypertens.200321587187210.1097/00004872‑200305000‑00009 12714859
    [Google Scholar]
  28. KanagyN.L. α2-Adrenergic receptor signalling in hypertension.Clin. Sci.2005109543143710.1042/CS20050101 16232127
    [Google Scholar]
  29. AlluriS. EisenbergS.M. GrisantiL.A. TannerM. VolkowN.D. KimS.W. KilK.E. Preclinical evaluation of new C-11 labeled benzo-1,4-dioxane PET radiotracers for brain α2C adrenergic receptors.Eur. J. Med. Chem.202224311476410.1016/j.ejmech.2022.114764 36272201
    [Google Scholar]
  30. UysM.M. ShahidM. HarveyB.H. Therapeutic potential of selectively targeting the α2C-adrenoceptor in cognition, depression, and schizophrenia—new developments and future perspective.Front. Psychiatry2017814410.3389/fpsyt.2017.00144 28855875
    [Google Scholar]
  31. SallinenJ. HolappaJ. KoivistoA. KuokkanenK. ChapmanH. LehtimäkiJ. PiepponenP. MijatovicJ. TanilaH. VirtanenR. SirviöJ. HaapalinnaA. Pharmacological characterisation of a structurally novel α2C-adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models.Basic Clin. Pharmacol. Toxicol.2013113423924910.1111/bcpt.12090 23718812
    [Google Scholar]
  32. UysM. ShahidM. SallinenJ. DreyerW. CockeranM. HarveyB.H. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol.Prog. Neuropsychopharmacol. Biol. Psychiatry20167110811610.1016/j.pnpbp.2016.07.002 27381554
    [Google Scholar]
  33. SallinenJ. HaapalinnaA. MacDonaldE. ViitamaaT. LähdesmäkiJ. RybnikovaE. Pelto-HuikkoM. KobilkaB.K. ScheininM. Genetic alteration of the α2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels.Mol. Psychiatry19994544345210.1038/sj.mp.4000543 10523817
    [Google Scholar]
  34. SchwartzT.L. SachdevaS. StahlS.M. Glutamate neurocircuitry: Theoretical underpinnings in Schizophrenia.Front. Pharmacol.2012319510.3389/fphar.2012.00195 23189055
    [Google Scholar]
  35. LiS.S. ZhangW.S. JiD. ZhouY.L. LiH. YangJ.L. XiongY.C. ZhangY.Q. XuH. Involvement of spinal microglia and interleukin-18 in the anti-nociceptive effect of dexmedetomidine in rats subjected to CCI.Neurosci. Lett.2014560212510.1016/j.neulet.2013.12.012 24345418
    [Google Scholar]
  36. ReutterM.A. RichardsE.M. SumnersC. Regulation of alpha2A-adrenergic receptor expression by epinephrine in cultured astroglia from rat brain.J. Neurochem.1998701869510.1046/j.1471‑4159.1998.70010086.x 9422350
    [Google Scholar]
  37. MeiB. LiJ. ZuoZ. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor.Brain Behav. Immun.20219129631410.1016/j.bbi.2020.10.008 33039659
    [Google Scholar]
  38. GyonevaS. TraynelisS.F. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors.J. Biol. Chem.201328821152911530210.1074/jbc.M113.458901 23548902
    [Google Scholar]
  39. MeiB. XuX. WengJ. YangY. WangP. QiuG. ZhangC. ZhangQ. LuY. LiuX. Activating astrocytic α2A adrenoceptors in hippocampus reduces glutamate toxicity to attenuate sepsis-associated encephalopathy in mice.Brain Behav. Immun.202411737639810.1016/j.bbi.2024.02.005 38320682
    [Google Scholar]
  40. AnP. ZhaoX.C. LiuM.J. YouY.Q. LiJ.Y. GongH.S. Dexmedetomidine alleviates intracerebral hemorrhage-induced anxiety-like behaviors in mice through the inhibition of TRPV4 opening.Front. Pharmacol.20221385240110.3389/fphar.2022.852401 35431940
    [Google Scholar]
  41. GaoJ. SunZ. XiaoZ. DuQ. NiuX. WangG. ChangY.W. SunY. SunW. LinA. BresnahanJ.C. MazeM. BeattieM.S. PanJ.Z. Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury.Br. J. Anaesth.2019123682783810.1016/j.bja.2019.08.026 31623841
    [Google Scholar]
  42. XuB. ZhangW. YangJ. XuH. DengX. ZhangY. Dexmedetomidine blocks thermal hyperalgesia and spinal glial activation in rat model of monoarthritis.Acta Pharmacol. Sin.201031552353010.1038/aps.2010.32 20364156
    [Google Scholar]
  43. LiuX. GangosoE. YiC. JeansonT. KandelmanS. MantzJ. GiaumeC. General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons.Glia201664452453610.1002/glia.22946 26666873
    [Google Scholar]
  44. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  45. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement.20184157559010.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  46. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  47. Santa-MariaI. VargheseM. Ksiȩżak-Reding, H.; Dzhun, A.; Wang, J.; Pasinetti, G.M. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes.J. Biol. Chem.201228724205222053310.1074/jbc.M111.323279 22496370
    [Google Scholar]
  48. VeerhuisR. Van BreemenM.J. HoozemansJ.J. MorbinM. OuladhadjJ. TagliaviniF. EikelenboomP. Amyloid β plaque-associated proteins C1q and SAP enhance the Aβ1–42 peptide-induced cytokine secretion by adult human microglia in vitro.Acta Neuropathol.2003105213514410.1007/s00401‑002‑0624‑7 12536224
    [Google Scholar]
  49. GarwoodC.J. PoolerA.M. AthertonJ. HangerD.P. NobleW. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture.Cell Death Dis.201126e16710.1038/cddis.2011.50 21633390
    [Google Scholar]
  50. KitazawaM. YamasakiT.R. LaferlaF.M. Microglia as a potential bridge between the amyloid β-peptide and tau.Ann. N. Y. Acad. Sci.2004103518510310.1196/annals.1332.006 15681802
    [Google Scholar]
  51. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.13016 36918389
    [Google Scholar]
  52. LianX. ZhangX. ChenW. XueF. WangG. Dexmedetomidine mitigates neuroinflammation in an Alzheimer’s disease mouse model via the miR-204-3p/FBXL7 signaling axis.Brain Res.2024182214861210.1016/j.brainres.2023.148612 37778649
    [Google Scholar]
  53. TanQ. LiuL. WangS. WangQ. SunY. Dexmedetomidine promoted HSPB8 expression via inhibiting the lncRNA SNHG14/UPF1 axis to inhibit apoptosis of nerve cells in AD.Neurotox. Res.202341547148010.1007/s12640‑023‑00653‑4 37656385
    [Google Scholar]
  54. ArslanM. KüçükA. KiranM.M. KöksalZ. KurtipekO. KavutçuM. Evaluation of the effects of recurrent dexmedetomidine on cognitive functions and brain tissue in streptozotocin-induced rats with Alzheimer’s disease.Gazi Med J.20223315910.12996/gmj.2022.02
    [Google Scholar]
  55. GuoY. WuY. LiN. WangZ. Up-regulation of miRNA-151-3p enhanced the neuroprotective effect of dexmedetomidine against β-amyloid by targeting DAPK-1 and TP53.Exp. Mol. Pathol.202111810458710.1016/j.yexmp.2020.104587 33275947
    [Google Scholar]
  56. LiP. ShenT. LuoX. YangJ. LuoZ. TanY. HeG. WangZ. YuX. WangY. YangX. Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke.Sci. Rep.20211111334510.1038/s41598‑021‑92906‑5 34172807
    [Google Scholar]
  57. GuerreiroR. WojtasA. BrasJ. CarrasquilloM. RogaevaE. MajounieE. CruchagaC. SassiC. KauweJ.S.K. YounkinS. HazratiL. CollingeJ. PocockJ. LashleyT. WilliamsJ. LambertJ-C. AmouyelP. GoateA. RademakersR. MorganK. PowellJ. St George-HyslopP. SingletonA. HardyJ. TREM2 variants in Alzheimer’s disease.N. Engl. J. Med.2013368211712710.1056/NEJMoa1211851 23150934
    [Google Scholar]
  58. ArranzA.M. De StrooperB. The role of astroglia in Alzheimer’s disease: Pathophysiology and clinical implications.Lancet Neurol.201918440641410.1016/S1474‑4422(18)30490‑3 30795987
    [Google Scholar]
  59. MadadiS. SchwarzenbachH. SaidijamM. MahjubR. SoleimaniM. Potential microRNA-related targets in clearance pathways of amyloid-β Novel therapeutic approach for the treatment of Alzheimer’s disease.Cell Biosci.2019919110.1186/s13578‑019‑0354‑3 31749959
    [Google Scholar]
  60. HuG. ShiZ. ShaoW. XuB. MicroRNA-214-5p involves in the protection effect of Dexmedetomidine against neurological injury in Alzheimer’s disease via targeting the suppressor of zest 12.Brain Res. Bull.202217816417210.1016/j.brainresbull.2021.10.016 34715270
    [Google Scholar]
  61. WhittingtonR.A. VirágL. GratuzeM. PetryF.R. NoëlA. PoitrasI. TruchettiG. MarcouillerF. PaponM.A. El KhouryN. WongK. BrettevilleA. MorinF. PlanelE. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.Neurobiol. Aging20153682414242810.1016/j.neurobiolaging.2015.05.002 26058840
    [Google Scholar]
  62. LeeD. ClarkE.D. AntonsdottirI.M. PorsteinssonA.P.A. 2023 update on the advancements in the treatment of agitation in Alzheimer’s disease.Expert Opin. Pharmacother.202324669170310.1080/14656566.2023.2195539 36958727
    [Google Scholar]
  63. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  64. ZhouL. XieQ. ZhangQ. HuM. MaT. XieH. Dexmedetomidine attenuates motor deficits via restoring the function of neurons in the nigrostriatal circuit in Parkinson’s disease model mice.Eur. J. Pharmacol.202292017480610.1016/j.ejphar.2022.174806 35150656
    [Google Scholar]
  65. ZhangB. WuL. WuX. WangF. ZhaoX. Dexmedetomidine protects against degeneration of dopaminergic neurons and improves motor activity in Parkinson’s disease mice model.Saudi J. Biol. Sci.20212863198320310.1016/j.sjbs.2021.04.013 34121856
    [Google Scholar]
  66. HuS.P. ZhaoJ.J. WangW.X. LiuY. WuH.F. ChenC. YuL. GuiJ.B. Dexmedetomidine increases acetylation level of histone through ERK1/2 pathway in dopamine neuron.Hum. Exp. Toxicol.201736547448210.1177/0960327116652458 27334975
    [Google Scholar]
  67. WhittingtonR.A. VirágL. Dexmedetomidine-induced decreases in accumbal dopamine in the rat are partly mediated via the locus coeruleus.Anesth. Analg.2006102244845510.1213/01.ane.0000195234.07413.5a 16428541
    [Google Scholar]
  68. SuzukiT. SasajimaH. UetaY. IshidaH. HashimotoY. TachiN. Epiretinal membrane surgery for a patient with dyskinesia related to Parkinson’s disease using intravenous dexmedetomidine administration.Case Rep. Ophthalmol.202213396797110.1159/000527157 36466054
    [Google Scholar]
  69. LiZ. YangH. Intraoperative relief of resting tremor by dexmedetomidine in a patient with Parkinson’s disease.Asian J. Surg.20244741951195210.1016/j.asjsur.2023.12.162 38212224
    [Google Scholar]
  70. NakajimaT. SuzukiY. MiyaueN. Successful management of Parkinson’s disease dyskinesia during local anesthesia with dexmedetomidine.Cureus2021133e1373910.7759/cureus.13739 33842117
    [Google Scholar]
  71. LeeP.S. CrammondD.J. RichardsonR.M. Deep brain stimulation of the subthalamic nucleus and globus pallidus for Parkinson’s disease.Prog. Neurol. Surg.20183320722110.1159/000481105 29332085
    [Google Scholar]
  72. KrackP. BatirA. Van BlercomN. ChabardesS. FraixV. ArdouinC. KoudsieA. LimousinP.D. BenazzouzA. LeBasJ.F. BenabidA.L. PollakP. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease.N. Engl. J. Med.2003349201925193410.1056/NEJMoa035275 14614167
    [Google Scholar]
  73. BosM.J. SanchezA.M.A. BanconeR. TemelY. de GreefB.T.A. AbsalomA.R. GommerE.D. van Kranen-MastenbroekV.H.J.M. BuhreW.F. RobertsM.J. JanssenM.L.F. Influence of anesthesia and clinical variables on the firing rate, coefficient of variation and multi-unit activity of the subthalamic nucleus in patients with Parkinson’s disease.J. Clin. Med.202094122910.3390/jcm9041229 32344572
    [Google Scholar]
  74. MulroyE. RobertsonN. MacdonaldL. BokA. SimpsonM. Patients’ perioperative experience of awake deep-brain stimulation for Parkinson disease.World Neurosurg.201710552652810.1016/j.wneu.2017.05.132 28606582
    [Google Scholar]
  75. Martinez-SimonA. ValenciaM. Cacho-AsenjoE. Honorato-CiaC. Nuñez-CordobaJ.M. ManzanillaO. AldazA. PanaderoA. GuridiJ. AlegreM. Effects of dexmedetomidine on subthalamic local field potentials in Parkinson’s disease.Br. J. Anaesth.2021127224525310.1016/j.bja.2021.01.036 33896591
    [Google Scholar]
  76. SassiM. ZekajE. GrottaA. PolliniA. PellandaA. BorroniM. PacchettiC. MenghettiC. PortaM. ServelloD. Safety in the use of dexmedetomidine (precedex) for deep brain stimulation surgery: Our experience in 23 randomized patients.Neuromodulation201316540140610.1111/j.1525‑1403.2012.00483.x
    [Google Scholar]
  77. MoraceR. De AngelisM. AglialoroE. MaucioneG. CavalloL. SolariD. ModugnoN. SantilliM. EspositoV. AlojF. Sedation with α2 agonist dexmedetomidine during unilateral subthalamic nucleus deep brain stimulation: A preliminary report.World Neurosurg.20168932032810.1016/j.wneu.2016.01.037 26805677
    [Google Scholar]
  78. LombardoM. DiPiazzaA. RippeyK. LubarrN. ClarE. AzmiH. Treatment of acute delirium in a patient with Parkinson’s disease by transfer to the intensive care unit and administration of dexmedetomidine.J. Mov. Disord.202013215916210.14802/jmd.20005 32498499
    [Google Scholar]
  79. YaoJ. ShenZ. JinH. MaT. WangJ. LiS. ZengM. LiuX. PengY. Dexmedetomidine after deep brain stimulation for prevention of delirium in elderly patients with Parkinson’s disease: Protocol for a single-centre, randomised, double-blind, placebo-controlled trial in China.BMJ Open2023137e07018510.1136/bmjopen‑2022‑070185 37433729
    [Google Scholar]
  80. Asadi-PooyaA.A. BrigoF. LattanziS. BlumckeI. Adult epilepsy.Lancet20234021039941242410.1016/S0140‑6736(23)01048‑6 37459868
    [Google Scholar]
  81. Cetindag CiltasA. OzdemirE. GumusE. TaskiranA.S. GunesH. ArslanG. The anticonvulsant effects of alpha-2 adrenoceptor agonist dexmedetomidine on pentylenetetrazole-induced seizures in rats.Neurochem. Res.202247230531410.1007/s11064‑021‑03445‑4 34491515
    [Google Scholar]
  82. MirskiM.A.Z. RossellL.A. McPhersonR.W. TraystmanR.J. Dexmedetomidine decreases seizure threshold in a rat model of experimental generalized epilepsy.Anesthesiology19948161422142810.1097/00000542‑199412000‑00017 7992911
    [Google Scholar]
  83. ChiuK.M. LinT.Y. LeeM.Y. LuC.W. WangM.J. WangS.J. Dexmedetomidine protects neurons from kainic acid-induced excitotoxicity by activating BDNF signaling.Neurochem. Int.201912910449310.1016/j.neuint.2019.104493 31220473
    [Google Scholar]
  84. TreimanD.M. WaltonN.Y. KendrickC. A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus.Epilepsy Res.199051496010.1016/0920‑1211(90)90065‑4 2303022
    [Google Scholar]
  85. FletcherA. ForsterE.A. A proconvulsant action of selective α2-adrenoceptor antagonists.Eur. J. Pharmacol.19881511273410.1016/0014‑2999(88)90688‑7 2901362
    [Google Scholar]
  86. SitnikovaE. PupikinaM. RutskovaE. Alpha2 adrenergic modulation of spike-wave epilepsy: Experimental study of pro-epileptic and sedative effects of dexmedetomidine.Int. J. Mol. Sci.20232411944510.3390/ijms24119445 37298397
    [Google Scholar]
  87. YavuzM. İyiköşkerP. MutluN. KiliçparlarS. ŞalciÖ.H. DoluG. KaymakçilarE.N. AkkolS. OnatF. Dexmedetomidine, an alpha 2A receptor agonist, triggers seizures unilaterally in GAERS during the pre-epileptic phase: Does the onset of spikeand- wave discharges occur in a focal manner?Front. Neurol.202314123173610.3389/fneur.2023.1231736 38146441
    [Google Scholar]
  88. GiorgiF.S. PizzanelliC. BiagioniF. MurriL. FornaiF. The role of norepinephrine in epilepsy: From the bench to the bedside.Neurosci. Biobehav. Rev.200428550752410.1016/j.neubiorev.2004.06.008 15465138
    [Google Scholar]
  89. JurgensC.W.D. Hammad, H.M.; Lichter, J.A.; Boese, S.J.; Nelson, B.W.; Goldenstein, B.L.; Davis, K.L.; Xu, K.; Hillman, K.L.; Porter, J.E.; Doze, V.A. α2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region.Mol. Pharmacol.20077161572158110.1124/mol.106.031773 17341653
    [Google Scholar]
  90. TenneyJ.R. MillerJ.W. RoseD.F. Intranasal dexmedetomidine for sedation during magnetoencephalography.J. Clin. Neurophysiol.201936537137410.1097/WNP.0000000000000602 31107715
    [Google Scholar]
  91. TewariA. MahmoudM. RoseD. DingL. TenneyJ. CraveroJ. Intravenous dexmedetomidine sedation for magnetoencephalography: A retrospective study.Paediatr. Anaesth.202030779980510.1111/pan.13925 32436319
    [Google Scholar]
  92. ChaitanyaG. ArivazhaganA. SinhaS. ReddyK.R.M. ThennarasuK. BharathR.D. RaoM.B. ChandramouliB.A. SatishchandraP. Dexmedetomidine anesthesia enhances spike generation during intra-operative electrocorticography: A promising adjunct for epilepsy surgery.Epilepsy Res.2015109657110.1016/j.eplepsyres.2014.10.006 25524844
    [Google Scholar]
  93. JangM. JungT. KimS.H. NohJ. Sex differential effect of dexmedetomidine on fear memory extinction and anxiety behavior in adolescent rats.Neurosci. Res.2019149293710.1016/j.neures.2019.01.006 30685494
    [Google Scholar]
  94. QiuG. WangP. RaoJ. QingX. CaoC. WangD. MeiB. ZhangJ. LiuH. YangZ. LiuX. Dexmedetomidine inhibits paraventricular corticotropin-releasing hormone neurons that attenuate acute stress-induced anxiety-like behavior in mice.Anesthesiology202414061134115210.1097/ALN.0000000000004982 38498811
    [Google Scholar]
  95. LimY.P. YahyaN. IzahamA. KamaruzamanE. ZainuddinM.Z. Wan MatW.R. TangS.S.P. Md ZainJ. MahdiM.S.N. The comparison between propofol and dexmedetomidine infusion on perioperative anxiety during regional anesthesia.Turk. J. Med. Sci.20184861219122710.3906/sag‑1802‑126 30541250
    [Google Scholar]
  96. WuL.P. KangW. Effect of dexmedetomidine for sedation and cognitive function in patients with preoperative anxiety undergoing carotid artery stenting.J. Int. Med. Res.2020489030006052093895910.1177/0300060520938959 32972265
    [Google Scholar]
  97. TangL.J. HanJ. FengY.J. PuC.X. ZhangY. Comparative study of the efficacy of dexmedetomidine and fentanyl on anxiety and pain of parturients with different COMTva1158met genotypes.BMC Anesthesiol.20222218410.1186/s12871‑022‑01628‑2 35346044
    [Google Scholar]
  98. LohP.S. AriffinM.A. RaiV. LaiL.L. ChanL. RamliN. Comparing the efficacy and safety between propofol and dexmedetomidine for sedation in claustrophobic adults undergoing magnetic resonance imaging (PADAM trial).J. Clin. Anesth.20163421622210.1016/j.jclinane.2016.03.074 27687378
    [Google Scholar]
  99. DuZ. ZhangX.Y. QuS.Q. SongZ.B. WeiS.W. XiangZ. GuoQ.L. CraveroJ. The comparison of dexmedetomidine and midazolam premedication on postoperative anxiety in children for hernia repair surgery: A randomized controlled trial.Paediatr. Anaesth.201929884384910.1111/pan.13667 31125470
    [Google Scholar]
  100. LiZ. RuanM. ChenJ. FangY. Major depressive disorder: Advances in neuroscience research and translational applications.Neurosci. Bull.202137686388010.1007/s12264‑021‑00638‑3 33582959
    [Google Scholar]
  101. KesslerR.C. BerglundP. DemlerO. JinR. KoretzD. MerikangasK.R. RushA.J. WaltersE.E. WangP.S. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R).JAMA2003289233095310510.1001/jama.289.23.3095 12813115
    [Google Scholar]
  102. LimG.Y. TamW.W. LuY. HoC.S. ZhangM.W. HoR.C. Prevalence of depression in the community from 30 countries between 1994 and 2014.Sci. Rep.201881286110.1038/s41598‑018‑21243‑x 29434331
    [Google Scholar]
  103. GoldP.W. Machado-VieiraR. PavlatouM.G. Clinical and biochemical manifestations of depression: Relation to the neurobiology of stress.Neural Plast.2015201511110.1155/2015/581976 25878903
    [Google Scholar]
  104. DunlopB.W. NemeroffC.B. The role of dopamine in the pathophysiology of depression.Arch. Gen. Psychiatry200764332733710.1001/archpsyc.64.3.327 17339521
    [Google Scholar]
  105. MoonE.J. KoI.G. KimS.E. JinJ.J. HwangL. KimC.J. AnH. LeeB.J. YiJ.W. Dexmedetomidine ameliorates sleep deprivation-induced depressive behaviors in mice.Int. Neurourol. J.201822Suppl. 3S139S14610.5213/inj.1836228.114 30396263
    [Google Scholar]
  106. XuS. ZhaoX. ZhuZ. HeM. ZhengX. ZhangX. A new potential antidepressant: Dexmedetomidine alleviates neuropathic pain-induced depression by increasing neurogenesis in the hippocampus.Pharmacology20221075-631732910.1159/000521737 35196664
    [Google Scholar]
  107. PancaroC. SegalB.S. SikesR.W. AlmeerZ. SchumannR. AzocarR.J. MarchandJ.E. Dexmedetomidine and ketamine show distinct patterns of cell degeneration and apoptosis in the developing rat neonatal brain.J. Matern. Fetal Neonatal Med.201629233827383310.3109/14767058.2016.1148132
    [Google Scholar]
  108. GaoX. ZhuangF.Z. QinS.J. ZhouL. WangY. ShenQ.F. LiM. VillarrealM. BenefieldL. GuS.L. MaT.F. Dexmedetomidine protects against learning and memory impairments caused by electroconvulsive shock in depressed rats: Involvement of the NMDA receptor subunit 2B (NR2B)-ERK signaling pathway.Psychiatry Res.201624344645210.1016/j.psychres.2016.07.020 27455425
    [Google Scholar]
  109. ShamsT. El-MasryR. Ketofol-Dexmedetomidine combination in ECT: A punch for depression and agitation.Indian J. Anaesth.201458327528010.4103/0019‑5049.135037 25024469
    [Google Scholar]
  110. YuH.Y. WangS.Y. QuanC.X. FangC. LuoS.C. LiD.Y. ZhenS.S. MaJ.H. DuanK.M. Dexmedetomidine alleviates postpartum depressive symptoms following cesarean section in chinese women: A randomized placebo-controlled study.Pharmacotherapy20193910994100410.1002/phar.2320 31411762
    [Google Scholar]
  111. ZhouY. BaiZ. ZhangW. XuS. FengY. LiQ. LiL. PingA. ChenL. WangS. DuanK. Effect of dexmedetomidine on postpartum depression in women with prenatal depression.JAMA Netw. Open202471e235325210.1001/jamanetworkopen.2023.53252 38270949
    [Google Scholar]
  112. LiuY. HuQ. XuS. LiW. LiuJ. HanL. MaoH. CaiF. LiuQ. ZhuR. FangC. LouY. WangZ. YangH. WangW. Antidepressant effects of dexmedetomidine compared with ECT in patients with treatment-resistant depression.J. Affect. Disord.202434743744410.1016/j.jad.2023.11.077 38000472
    [Google Scholar]
  113. ReadeM.C. EastwoodG.M. BellomoR. BaileyM. BerstenA. CheungB. DaviesA. DelaneyA. GhoshA. van HarenF. HarleyN. KnightD. McGuinessS. MulderJ. O’DonoghueS. SimpsonN. YoungP. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium.JAMA2016315141460146810.1001/jama.2016.2707 26975647
    [Google Scholar]
  114. WardK. CitromeL. The treatment of acute agitation associated with schizophrenia or bipolar disorder: Investigational drugs in early stages of their clinical development, and their clinical context and potential place in therapy.Expert Opin. Investig. Drugs202029324525710.1080/13543784.2020.1727884 32031021
    [Google Scholar]
  115. PreskornS.H. ZellerS. CitromeL. FinmanJ. GoldbergJ.F. FavaM. KakarR. De VivoM. YoccaF.D. RisingerR. Effect of sublingual dexmedetomidine vs. placebo on acute agitation associated with bipolar disorder.JAMA2022327872773610.1001/jama.2022.0799 35191924
    [Google Scholar]
  116. CsernanskyJ.G. MahmoudR. BrennerR. A comparison of risperidone and haloperidol for the prevention of relapse in patients with Schizophrenia.N. Engl. J. Med.20023461162210.1056/NEJMoa002028 11777998
    [Google Scholar]
  117. SkrupkyL.P. DrewryA.M. WessmanB. FieldR.R. FagleyR.E. VargheseL. LieuA. OlatundeJ. MicekS.T. KollefM.H. BoyleW.A. Clinical effectiveness of a sedation protocol minimizing benzodiazepine infusions and favoring early dexmedetomidine: A before-after study.Crit. Care201519113610.1186/s13054‑015‑0874‑0 25887495
    [Google Scholar]
  118. ZellerS. CitromeL. Managing agitation associated with schizophrenia and bipolar disorder in the emergency setting.West. J. Emerg. Med.201617216517210.5811/westjem.2015.12.28763 26973742
    [Google Scholar]
  119. GerritsM. de GreefR. PeetersP. Effect of absorption site on the pharmacokinetics of sublingual asenapine in healthy male subjects.Biopharm. Drug Dispos.2010315-635135710.1002/bdd.718 20549835
    [Google Scholar]
  120. CaoS. WuY. GaoZ. TangJ. XiongL. HuJ. LiC. Automated phenotyping of postoperative delirium-like behaviour in mice reveals the therapeutic efficacy of dexmedetomidine.Commun. Biol.20236180710.1038/s42003‑023‑05149‑7 37532767
    [Google Scholar]
  121. ZhaoW. XuS. ZhangY. LiD. ZhuC. WangK. The application of extended reality in treating children with Autism Spectrum Disorder.Neurosci. Bull.20244081189120410.1007/s12264‑024‑01190‑6 38498091
    [Google Scholar]
  122. LiangZ.K. XiongW. WangC. ChenL. ZouX. MaiJ.W. DongB. GuoC. XinW.J. LuoD.X. XuT. FengX. Resolving neuroinflammatory and social deficits in ASD model mice: Dexmedetomidine downregulates NF-κB/IL-6 pathway via α2AR.Brain Behav. Immun.2024119849510.1016/j.bbi.2024.03.040 38552922
    [Google Scholar]
  123. LuqueC.G. Atkins-LabelleC. PauwelsJ. CostelloR. KozakF.K. ChadhaN.K. Intranasal Dexmedetomidine increases the successful sedation of children with Autism for out-patient auditory brainstem response hearing tests.Int. J. Pediatr. Otorhinolaryngol.202115111094510.1016/j.ijporl.2021.110945 34736008
    [Google Scholar]
  124. KenneallyA. CumminsM. BaileyA. YackeyK. JonesL. CarterC. DuganA. BaumR.A. Intranasal dexmedetomidine use in pediatric patients for anxiolysis in the emergency department.Pediatr. Emerg. Care202339968569110.1097/PEC.0000000000002901 36728557
    [Google Scholar]
  125. KaplanE. ShifeldrimA. KrausD. WeissbachA. KadmonG. MilkhR. NahumE. Intranasal dexmedetomidine vs. oral triclofos sodium for sedation of children with autism undergoing electroencephalograms.Eur. J. Paediatr. Neurol.202237192410.1016/j.ejpn.2022.01.005 35016051
    [Google Scholar]
  126. DuttaS. LalR. KarolM.D. CohenT. EbertT. Influence of cardiac output on dexmedetomidine pharmacokinetics.J. Pharm. Sci.200089451952710.1002/(SICI)1520‑6017(200004)89:4<519::AID‑JPS9>3.0.CO;2‑U 10737913
    [Google Scholar]
  127. KeatingG.M. Dexmedetomidine: A review of its use for sedation in the intensive care setting.Drugs201575101119113010.1007/s40265‑015‑0419‑5 26063213
    [Google Scholar]
  128. JangY.E. KimY.C. YoonH.K. JeonY.T. HwangJ.W. KimE. ParkH.P. A randomized controlled trial of the effect of preoperative dexmedetomidine on the half maximal effective concentration of propofol for successful i-gel insertion without muscle relaxants.J. Anesth.201529333834510.1007/s00540‑014‑1949‑9 25394762
    [Google Scholar]
  129. LinY. ChenY. HuangJ. ChenH. ShenW. GuoW. ChenQ. LingH. GanX. Efficacy of premedication with intranasal dexmedetomidine on inhalational induction and postoperative emergence agitation in pediatric undergoing cataract surgery with sevoflurane.J. Clin. Anesth.20163328929510.1016/j.jclinane.2016.04.027 27555179
    [Google Scholar]
  130. ZanatyO.M. El MetainyS.A. A comparative evaluation of nebulized dexmedetomidine, nebulized ketamine, and their combination as premedication for outpatient pediatric dental surgery.Anesth. Analg.2015121116717110.1213/ANE.0000000000000728 25822924
    [Google Scholar]
  131. XingF. ZhangT.T. YangZ. QuM. ShiX. LiY. LiY. ZhangW. WangZ. XingN. Comparison of dexmedetomidine and a dexmedetomidine-esketamine combination for reducing dental anxiety in preschool children undergoing dental treatment under general anesthesia: A randomized controlled trial.J. Affect. Disord.202434756957510.1016/j.jad.2023.12.011 38065480
    [Google Scholar]
/content/journals/cn/10.2174/011570159X349530241123140415
Loading
/content/journals/cn/10.2174/011570159X349530241123140415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test