Skip to content
2000
Volume 23, Issue 8
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Depression is a prevalent mental disorder, affecting approximately 300 million people worldwide. Despite decades of research into the underlying mechanisms of depression, a consensus remains elusive. Recent studies have implicated changes in oligodendrocytes and myelin in the pathogenesis of depression. Conventional antidepressants may alleviate symptoms within weeks of use, but approximately one-third of patients do not respond to them. Ketamine exhibits rapid and sustained antidepressant effects in treatment-resistant patients with depression. Given the association between reduced myelination and depression pathology, alterations in myelination may be a key mechanism underlying ketamine's prolonged antidepressant effects. However, the exact role of myelination in ketamine's sustained antidepressant effects remains unclear. In this review, we summarize the relationship between demyelination and depression and discuss the potential mechanisms by which ketamine may exert its antidepressant effects by repairing myelin damage, offering new insights into the role of myelination in antidepressant mechanisms.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X349856241213144902
2025-01-16
2025-10-27
Loading full text...

Full text loading...

References

  1. Depressive disorder (depression).2023Available from: https://www.who.int/news-room/fact-sheets/detail/depression
  2. HerrmanH. PatelV. KielingC. BerkM. BuchweitzC. CuijpersP. FurukawaT.A. KesslerR.C. KohrtB.A. MajM. McGorryP. ReynoldsC.F.III WeissmanM.M. ChibandaD. DowrickC. HowardL.M. HovenC.W. KnappM. MaybergH.S. PenninxB.W.J.H. XiaoS. TrivediM. UherR. VijayakumarL. WolpertM. Time for united action on depression: A lancet–world psychiatric association commission.Lancet202239910328957102210.1016/S0140‑6736(21)02141‑335180424
    [Google Scholar]
  3. Group interpersonal therapy (IPT) for depression.World Health OrganizationGeneva2016
    [Google Scholar]
  4. RidleyM. RaoG. SchilbachF. PatelV. Poverty, depression, and anxiety: Causal evidence and mechanisms.Science20203706522eaay021410.1126/science.aay021433303583
    [Google Scholar]
  5. CiprianiA. FurukawaT.A. SalantiG. ChaimaniA. AtkinsonL.Z. OgawaY. LeuchtS. RuheH.G. TurnerE.H. HigginsJ.P.T. EggerM. TakeshimaN. HayasakaY. ImaiH. ShinoharaK. TajikaA. IoannidisJ.P.A. GeddesJ.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis.Lancet2018391101281357136610.1016/S0140‑6736(17)32802‑729477251
    [Google Scholar]
  6. EntsuahA.R. HuangH. ThaseM.E. Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo.J. Clin. Psychiatry2001621186987710.4088/JCP.v62n110611775046
    [Google Scholar]
  7. ThaseM.E. HaightB.R. RichardN. RockettC.B. MittonM. ModellJ.G. VanMeterS. HarriettA.E. WangY. Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: A meta-analysis of original data from 7 randomized controlled trials.J. Clin. Psychiatry200566897498110.4088/JCP.v66n080316086611
    [Google Scholar]
  8. DalyE.J. SinghJ.B. FedgchinM. CooperK. LimP. SheltonR.C. ThaseM.E. WinokurA. Van NuetenL. ManjiH. DrevetsW.C. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression.JAMA Psychiatry201875213914810.1001/jamapsychiatry.2017.373929282469
    [Google Scholar]
  9. TrivediM.H. RushA.J. WisniewskiS.R. NierenbergA.A. WardenD. RitzL. NorquistG. HowlandR.H. LebowitzB. McGrathP.J. Shores-WilsonK. BiggsM.M. BalasubramaniG.K. FavaM. STAR*D Study Team Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice.Am. J. Psychiatry20061631284010.1176/appi.ajp.163.1.2816390886
    [Google Scholar]
  10. HashimotoK. Ketamine: Anesthetic, psychotomimetic, antidepressant, or anthelmintic?Mol. Psychiatry20222783116311810.1038/s41380‑022‑01587‑735477972
    [Google Scholar]
  11. MionG. VillevieilleT. Ketamine pharmacology: An update (pharmacodynamics and molecular aspects, recent findings).CNS Neurosci. Ther.201319637038010.1111/cns.1209923575437
    [Google Scholar]
  12. DominoE.F. WarnerD.S. Taming the ketamine tiger. 1965.Anesthesiology2010113367868410.1097/ALN.0b013e3181ed09a220693870
    [Google Scholar]
  13. NewportD.J. CarpenterL.L. McDonaldW.M. PotashJ.B. TohenM. NemeroffC.B. Ketamine and Other NMDA Antagonists: Early Clinical Trials and Possible Mechanisms in Depression.Am. J. Psychiatry20151721095096610.1176/appi.ajp.2015.1504046526423481
    [Google Scholar]
  14. YangC. YangJ. LuoA. HashimotoK. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites.Transl. Psychiatry20199128010.1038/s41398‑019‑0624‑131699965
    [Google Scholar]
  15. WeiY. ChangL. HashimotoK. Molecular mechanisms underlying the antidepressant actions of arketamine: Beyond the NMDA receptor.Mol. Psychiatry202227155957310.1038/s41380‑021‑01121‑133963284
    [Google Scholar]
  16. HashimotoK. Are "mystical experiences" essential for antidepressant actions of ketamine and the classic psychedelics?Eur. Arch. Psychiatry Clin. Neurosci.2024(E Pub ahmed of print)10.1007/s00406‑024‑01770‑738411629
    [Google Scholar]
  17. HuangC.L. Myelin-associated oligodendrocytic basic protein-dependent myelin repair confers the long-lasting antidepressant effect of ketamine.Mol. Psychiatry20242961741175337848708
    [Google Scholar]
  18. StadelmannC. TimmlerS. Barrantes-FreerA. SimonsM. Myelin in the central nervous system: Structure, function, and pathology.Physiol. Rev.20199931381143110.1152/physrev.00031.201831066630
    [Google Scholar]
  19. NaveK.A. WernerH.B. SchekmanR. LehmannR. Myelination of the nervous system: Mechanisms and functions.Annual Review of Cell and Developmental Biology.Palo AltoAnnual Reviews20143050310.1146/annurev‑cellbio‑100913‑013101
    [Google Scholar]
  20. NaveK.A. Myelination and support of axonal integrity by glia.Nature2010468732124425210.1038/nature0961421068833
    [Google Scholar]
  21. WaxmanS.G. RitchieJ.M. Molecular dissection of the myelinated axon.Ann. Neurol.199333212113610.1002/ana.4103302027679565
    [Google Scholar]
  22. SeidlA.H. Regulation of conduction time along axons.Neuroscience201427612613410.1016/j.neuroscience.2013.06.04723820043
    [Google Scholar]
  23. FünfschillingU. SupplieL.M. MahadD. BoretiusS. SaabA.S. EdgarJ. BrinkmannB.G. KassmannC.M. TzvetanovaI.D. MöbiusW. DiazF. MeijerD. SuterU. HamprechtB. SeredaM.W. MoraesC.T. FrahmJ. GoebbelsS. NaveK.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.Nature2012485739951752110.1038/nature1100722622581
    [Google Scholar]
  24. SaabA.S. NaveK.A. Myelin dynamics: Protecting and shaping neuronal functions.Curr. Opin. Neurobiol.20174710411210.1016/j.conb.2017.09.01329065345
    [Google Scholar]
  25. LeeY. MorrisonB.M. LiY. LengacherS. FarahM.H. HoffmanP.N. LiuY. TsingaliaA. JinL. ZhangP.W. PellerinL. MagistrettiP.J. RothsteinJ.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration.Nature2012487740844344810.1038/nature1131422801498
    [Google Scholar]
  26. BaumannN. Pham-DinhD. Biology of oligodendrocyte and myelin in the mammalian central nervous system.Physiol. Rev.200181287192710.1152/physrev.2001.81.2.87111274346
    [Google Scholar]
  27. DawsonM. PolitoA. LevineJ.M. ReynoldsR. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS.Mol. Cell. Neurosci.200324247648810.1016/S1044‑7431(03)00210‑014572468
    [Google Scholar]
  28. ZhouQ. WangS. AndersonD.J. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors.Neuron200025233134310.1016/S0896‑6273(00)80898‑310719889
    [Google Scholar]
  29. ZhouQ. AndersonD.J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification.Cell20021091617310.1016/S0092‑8674(02)00677‑311955447
    [Google Scholar]
  30. TimsitS. MartinezS. AllinquantB. PeyronF. PuellesL. ZalcB. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression.J. Neurosci.19951521012102410.1523/JNEUROSCI.15‑02‑01012.19957869079
    [Google Scholar]
  31. BrunnerC. LassmannH. WaehneldtT.V. MatthieuJ.M. LiningtonC. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats.J. Neurochem.198952129630410.1111/j.1471‑4159.1989.tb10930.x2462020
    [Google Scholar]
  32. LinningtonC. WebbM. WoodhamsP.L. A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody.J. Neuroimmunol.19846638739610.1016/0165‑5728(84)90064‑X6207204
    [Google Scholar]
  33. BarbareseE. BarryC. ChouC.H.J. GoldsteinD.J. NakosG.A. Hyde-DeRuyscherR. ScheldK. CarsonJ.H. Expression and localization of myelin basic protein in oligodendrocytes and transfected fibroblasts.J. Neurochem.19885161737174510.1111/j.1471‑4159.1988.tb01153.x2460587
    [Google Scholar]
  34. MichalskiJ.P. AndersonC. BeauvaisA. De RepentignyY. KotharyR. The proteolipid protein promoter drives expression outside of the oligodendrocyte lineage during embryonic and early postnatal development.PLoS One201165e1977210.1371/journal.pone.001977221572962
    [Google Scholar]
  35. TrappB.D. Myelin-associated glycoprotein. Location and potential functions.Ann. N. Y. Acad. Sci.19906051294310.1111/j.1749‑6632.1990.tb42378.x1702602
    [Google Scholar]
  36. RaffM.C. MirskyR. FieldsK.L. LisakR.P. DorfmanS.H. SilberbergD.H. GregsonN.A. LeibowitzS. KennedyM.C. Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture.Nature1978274567381381610.1038/274813a0355894
    [Google Scholar]
  37. CrawfordA.H. TripathiR.B. FoersterS. McKenzieI. KougioumtzidouE. GristM. RichardsonW.D. FranklinR.J.M. Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination.Am. J. Pathol.2016186351151610.1016/j.ajpath.2015.11.00526773350
    [Google Scholar]
  38. TargettM.P. SussmantJ. ScoldingtN. O’LearyM.T. CompstonD.A.S. BlakemoreW.F. Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain.Neuropathol. Appl. Neurobiol.199622319920610.1111/j.1365‑2990.1996.tb00895.x8804021
    [Google Scholar]
  39. DuncanI.D. RadcliffA.B. HeidariM. KiddG. AugustB.K. WierengaL.A. The adult oligodendrocyte can participate in remyelination.Proc. Natl. Acad. Sci. USA201811550E11807E1181610.1073/pnas.180806411530487224
    [Google Scholar]
  40. TrakaM. PodojilJ.R. McCarthyD.P. MillerS.D. PopkoB. Oligodendrocyte death results in immune-mediated CNS demyelination.Nat. Neurosci.2016191657410.1038/nn.419326656646
    [Google Scholar]
  41. FieldsR.D. White matter in learning, cognition and psychiatric disorders.Trends Neurosci.200831736137010.1016/j.tins.2008.04.00118538868
    [Google Scholar]
  42. EdgarN. SibilleE. A putative functional role for oligodendrocytes in mood regulation.Transl. Psychiatry201225e10910.1038/tp.2012.3422832953
    [Google Scholar]
  43. MiyataS. TaniguchiM. KoyamaY. ShimizuS. TanakaT. YasunoF. YamamotoA. IidaH. KudoT. KatayamaT. TohyamaM. Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression.Sci. Rep.2016612308410.1038/srep2308426976207
    [Google Scholar]
  44. FriesG.R. SaldanaV.A. FinnsteinJ. ReinT. Molecular pathways of major depressive disorder converge on the synapse.Mol. Psychiatry202328128429710.1038/s41380‑022‑01806‑136203007
    [Google Scholar]
  45. HarmerC.J. DumanR.S. CowenP.J. How do antidepressants work? New perspectives for refining future treatment approaches.Lancet Psychiatry20174540941810.1016/S2215‑0366(17)30015‑928153641
    [Google Scholar]
  46. KaltenboeckA. HarmerC. The neuroscience of depressive disorders: A brief review of the past and some considerations about the future.Brain Neurosci. Adv.20182239821281879926910.1177/239821281879926932166149
    [Google Scholar]
  47. CrownW.H. FinkelsteinS. BerndtE.R. LingD. PoretA.W. RushA.J. RussellJ.M. The impact of treatment-resistant depression on health care utilization and costs.J. Clin. Psychiatry2002631196397110.4088/JCP.v63n110212444808
    [Google Scholar]
  48. HolsboerF. IsingM. Stress hormone regulation: biological role and translation into therapy.Annu. Rev. Psychol.201061181109, C1-C1110.1146/annurev.psych.093008.10032119575614
    [Google Scholar]
  49. KoningA.S.C.A.M. BuurstedeJ.C. van WeertL.T.C.M. MeijerO.C. Glucocorticoid and mineralocorticoid receptors in the brain: A transcriptional perspective.J. Endocr. Soc.20193101917193010.1210/js.2019‑0015831598572
    [Google Scholar]
  50. KellerJ. GomezR. WilliamsG. LembkeA. LazzeroniL. MurphyG.M.Jr SchatzbergA.F. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition.Mol. Psychiatry201722452753610.1038/mp.2016.12027528460
    [Google Scholar]
  51. ChaoM.V. Neurotrophins and their receptors: A convergence point for many signalling pathways.Nat. Rev. Neurosci.20034429930910.1038/nrn107812671646
    [Google Scholar]
  52. HuangE.J. ReichardtL.F. Neurotrophins: Roles in neuronal development and function.Annu. Rev. Neurosci.200124167773610.1146/annurev.neuro.24.1.67711520916
    [Google Scholar]
  53. CastrénE. RantamäkiT. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity.Dev. Neurobiol.201070528929710.1002/dneu.2075820186711
    [Google Scholar]
  54. YangB. RenQ. ZhangJ. ChenQ-X. HashimotoK. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: Rethinking the brain–liver axis.Transl. Psychiatry201775e112810.1038/tp.2017.9528509900
    [Google Scholar]
  55. KishiT. YoshimuraR. IkutaT. IwataN. Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses.Front. Psychiatry2018830810.3389/fpsyt.2017.0030829387021
    [Google Scholar]
  56. BusB A A. MolendijkM.L. TendolkarI. PenninxB.W.J.H. PrickaertsJ. ElzingaB.M. VoshaarR.C.O. Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time.Mol. Psychiatry201520560260810.1038/mp.2014.8325155878
    [Google Scholar]
  57. CastrénE. MonteggiaL.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action.Biol. Psychiatry202190212813610.1016/j.biopsych.2021.05.00834053675
    [Google Scholar]
  58. CasarottoP.C. GirychM. FredS.M. KovalevaV. MolinerR. EnkaviG. BiojoneC. CannarozzoC. SahuM.P. KaurinkoskiK. BrunelloC.A. SteinzeigA. WinkelF. PatilS. VestringS. SerchovT. DinizC.R.A.F. LaukkanenL. CardonI. AntilaH. RogT. PiepponenT.P. BramhamC.R. NormannC. LauriS.E. SaarmaM. VattulainenI. CastrénE. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors.Cell2021184512991313.e1910.1016/j.cell.2021.01.03433606976
    [Google Scholar]
  59. MinichielloL. TrkB signalling pathways in LTP and learning.Nat. Rev. Neurosci.2009101285086010.1038/nrn273819927149
    [Google Scholar]
  60. ChangL. WeiY. HashimotoK. Brain–gut–microbiota axis in depression: A historical overview and future directions.Brain Res. Bull.2022182445610.1016/j.brainresbull.2022.02.00435151796
    [Google Scholar]
  61. WongM-L. InserraA. LewisM.D. MastronardiC.A. LeongL. ChooJ. KentishS. XieP. MorrisonM. WesselinghS.L. RogersG.B. LicinioJ. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.Mol. Psychiatry201621679780510.1038/mp.2016.4627090302
    [Google Scholar]
  62. RogersG.B. KeatingD.J. YoungR.L. WongM-L. LicinioJ. WesselinghS. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways.Mol. Psychiatry201621673874810.1038/mp.2016.5027090305
    [Google Scholar]
  63. CryanJ.F. O’RiordanK.J. CowanC.S.M. SandhuK.V. BastiaanssenT.F.S. BoehmeM. CodagnoneM.G. CussottoS. FullingC. GolubevaA.V. GuzzettaK.E. JaggarM. Long-SmithC.M. LyteJ.M. MartinJ.A. Molinero-PerezA. MoloneyG. MorelliE. MorillasE. O’ConnorR. Cruz-PereiraJ.S. PetersonV.L. ReaK. RitzN.L. SherwinE. SpichakS. TeichmanE.M. van de WouwM. Ventura-SilvaA.P. Wallace-FitzsimonsS.E. HylandN. ClarkeG. DinanT.G. The microbiota-gut-brain axis.Physiol. Rev.20199941877201310.1152/physrev.00018.201831460832
    [Google Scholar]
  64. ZhouB. ZhuZ. RansomB.R. TongX. Oligodendrocyte lineage cells and depression.Mol. Psychiatry202126110311710.1038/s41380‑020‑00930‑033144710
    [Google Scholar]
  65. CathomasF. AzzinnariD. BergaminiG. SigristH. BuergeM. HoopV. WickiB. GoetzeL. SoaresS. KukelovaD. SeifritzE. GoebbelsS. NaveK.A. GhandourM.S. SeoigheC. HildebrandtT. LeparcG. KleinH. StupkaE. HengererB. PryceC.R. Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice.Genes Brain Behav.2019181e1247510.1111/gbb.1247529566304
    [Google Scholar]
  66. NolanM. RomanE. NasaA. LevinsK.J. O’HanlonE. O’KeaneV. WillianR.D. Hippocampal and amygdalar volume changes in major depressive disorder: A targeted review and focus on stress.Chronic Stress (Thousand Oaks)20204247054702094455310.1177/247054702094455333015518
    [Google Scholar]
  67. ViganòF. MöbiusW. GötzM. DimouL. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain.Nat. Neurosci.201316101370137210.1038/nn.350323995069
    [Google Scholar]
  68. DavisA.D. HasselS. ArnottS.R. HarrisJ. LamR.W. MilevR. RotzingerS. ZamyadiM. FreyB.N. MinuzziL. StrotherS.C. MacQueenG.M. KennedyS.H. HallG.B. White matter indices of medication response in major depression: a diffusion tensor imaging study.Biol. Psychiatry Cogn. Neurosci. Neuroimaging201941091392410.1016/j.bpsc.2019.05.01631471185
    [Google Scholar]
  69. ChenT. ChenZ. GongQ. White matter-based structural brain network of major depression.Adv. Exp. Med. Biol.20211305355510.1007/978‑981‑33‑6044‑0_333834393
    [Google Scholar]
  70. TaylorW.D. MacFallJ.R. PayneM.E. McQuoidD.R. ProvenzaleJ.M. SteffensD.C. KrishnanK.R.R. Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter.Am. J. Psychiatry200416171293129610.1176/appi.ajp.161.7.129315229065
    [Google Scholar]
  71. AstonC. JiangL. SokolovB.P. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.Mol. Psychiatry200510330932210.1038/sj.mp.400156515303102
    [Google Scholar]
  72. BaeJ.N. MacFallJ.R. KrishnanK.R.R. PayneM.E. SteffensD.C. TaylorW.D. Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression.Biol. Psychiatry200660121356136310.1016/j.biopsych.2006.03.05216876144
    [Google Scholar]
  73. BenedettiF. YehP.H. BellaniM. RadaelliD. NicolettiM.A. PolettiS. FaliniA. DallaspeziaS. ColomboC. ScottiG. SmeraldiE. SoaresJ.C. BrambillaP. Disruption of white matter integrity in bipolar depression as a possible structural marker of illness.Biol. Psychiatry201169430931710.1016/j.biopsych.2010.07.02820926068
    [Google Scholar]
  74. ZhangA. AjiloreO. ZhanL. GadElkarimJ. KorthauerL. YangS. LeowA. KumarA. White matter tract integrity of anterior limb of internal capsule in major depression and type 2 diabetes.Neuropsychopharmacology20133881451145910.1038/npp.2013.4123389692
    [Google Scholar]
  75. SacchetM.D. PrasadG. Foland-RossL.C. JoshiS.H. HamiltonJ. ThompsonP.M. GotlibI.H. Structural abnormality of the corticospinal tract in major depressive disorder.Biol. Mood Anxiety Disord.201441810.1186/2045‑5380‑4‑825295159
    [Google Scholar]
  76. RajkowskaG. MahajanG. MaciagD. SathyanesanM. IyoA.H. MoulanaM. KyleP.B. WoolvertonW.L. Miguel-HidalgoJ.J. StockmeierC.A. NewtonS.S. Oligodendrocyte morphometry and expression of myelin – related mRNA in ventral prefrontal white matter in major depressive disorder.J. Psychiatr. Res.201565536210.1016/j.jpsychires.2015.04.01025930075
    [Google Scholar]
  77. BhatiaK.D. HendersonL.A. HsuE. YimM. Reduced integrity of the uncinate fasciculus and cingulum in depression: A stem-by-stem analysis.J. Affect. Disord.201823522022810.1016/j.jad.2018.04.05529656270
    [Google Scholar]
  78. HyettM.P. PerryA. BreakspearM. WenW. ParkerG.B. White matter alterations in the internal capsule and psychomotor impairment in melancholic depression.PLoS One2018134e019567210.1371/journal.pone.019567229672517
    [Google Scholar]
  79. WilliamsM.R. SharmaP. MacdonaldC. PearceR.K.B. HirschS.R. MaierM. Axonal myelin decrease in the splenium in major depressive disorder.Eur. Arch. Psychiatry Clin. Neurosci.2019269438739510.1007/s00406‑018‑0904‑429980921
    [Google Scholar]
  80. RegenoldW.T. PhatakP. MaranoC.M. GearhartL. ViensC.H. HisleyK.C. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression.Psychiatry Res.2007151317918810.1016/j.psychres.2006.12.01917433451
    [Google Scholar]
  81. ThamM.W. WoonP.S. SumM.Y. LeeT.S. SimK. White matter abnormalities in major depression: Evidence from post-mortem, neuroimaging and genetic studies.J. Affect. Disord.20111321-2263610.1016/j.jad.2010.09.01320889213
    [Google Scholar]
  82. ColeJ. ChaddockC.A. FarmerA.E. AitchisonK.J. SimmonsA. McGuffinP. FuC.H.Y. White matter abnormalities and illness severity in major depressive disorder.Br. J. Psychiatry20122011333910.1192/bjp.bp.111.10059422576724
    [Google Scholar]
  83. MakinodanM. RosenK.M. ItoS. CorfasG. A critical period for social experience-dependent oligodendrocyte maturation and myelination.Science201233761001357136010.1126/science.122084522984073
    [Google Scholar]
  84. LiuJ. DietzK. DeLoyhtJ.M. PedreX. KelkarD. KaurJ. VialouV. LoboM.K. DietzD.M. NestlerE.J. DupreeJ. CasacciaP. Impaired adult myelination in the prefrontal cortex of socially isolated mice.Nat. Neurosci.201215121621162310.1038/nn.326323143512
    [Google Scholar]
  85. LehmannM.L. WeigelT.K. ElkahlounA.G. HerkenhamM. Chronic social defeat reduces myelination in the mouse medial prefrontal cortex.Sci. Rep.2017714654810.1038/srep4654828418035
    [Google Scholar]
  86. MaleticV. RaisonC.L. Neurobiology of depression, fibromyalgia and neuropathic pain.Front. Biosci.20091415291533810.2741/359819482616
    [Google Scholar]
  87. PantazatosS.P. HuangY-Y. RosoklijaG.B. DworkA.J. ArangoV. MannJ.J. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity.Mol. Psychiatry201722576077310.1038/mp.2016.13027528462
    [Google Scholar]
  88. BermanR.M. CappielloA. AnandA. OrenD.A. HeningerG.R. CharneyD.S. KrystalJ.H. Antidepressant effects of ketamine in depressed patients.Biol. Psychiatry200047435135410.1016/S0006‑3223(99)00230‑910686270
    [Google Scholar]
  89. JiangY. DuZ. ShenY. ZhouQ. ZhuH. The correlation of Esketamine with specific adverse events: A deep dive into the FAERS database.Eur. Arch. Psychiatry Clin. Neurosci.2023(E Pub ahmed of print)10.1007/s00406‑023‑01732‑538103077
    [Google Scholar]
  90. ZanosP. MoaddelR. MorrisP.J. GeorgiouP. FischellJ. ElmerG.I. AlkondonM. YuanP. PributH.J. SinghN.S. DossouK.S.S. FangY. HuangX.P. MayoC.L. WainerI.W. AlbuquerqueE.X. ThompsonS.M. ThomasC.J. ZarateC.A.Jr GouldT.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites.Nature2016533760448148610.1038/nature1799827144355
    [Google Scholar]
  91. AutryA.E. AdachiM. NosyrevaE. NaE.S. LosM.F. ChengP. KavalaliE.T. MonteggiaL.M. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.Nature20114757354919510.1038/nature1013021677641
    [Google Scholar]
  92. MoghaddamB. AdamsB. VermaA. DalyD. Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.J. Neurosci.19971782921292710.1523/JNEUROSCI.17‑08‑02921.19979092613
    [Google Scholar]
  93. FukumotoK. IijimaM. ChakiS. The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine Require AMPA Receptor Stimulation in the mPFC and Subsequent Activation of the 5-HT neurons in the DRN.Neuropsychopharmacology20164141046105610.1038/npp.2015.23326245499
    [Google Scholar]
  94. JiangC. LinW.J. SaltonS.R. Role of a VGF/BDNF/TrkB autoregulatory feedback loop in rapid-acting antidepressant efficacy.J. Mol. Neurosci.201968350450910.1007/s12031‑018‑1124‑030022437
    [Google Scholar]
  95. Erratum.Biol. Psychiatry202087768668710.1016/j.biopsych.2020.01.01832164916
    [Google Scholar]
  96. LiuR.J. FuchikamiM. DwyerJ.M. LepackA.E. DumanR.S. AghajanianG.K. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine.Neuropsychopharmacology201338112268227710.1038/npp.2013.12823680942
    [Google Scholar]
  97. MurnaneJ.P. YezziM.J. YoungB.R. Recombination events during integration of transfected DNA into normal human cells.Nucleic Acids Res.19901892733273810.1093/nar/18.9.27332339059
    [Google Scholar]
  98. ShinoharaR. AghajanianG.K. AbdallahC.G. Neurobiology of the rapid-acting antidepressant effects of ketamine: Impact and opportunities.Biol. Psychiatry2021902859510.1016/j.biopsych.2020.12.00633568318
    [Google Scholar]
  99. HareB.D. ShinoharaR. LiuR.J. PothulaS. DiLeoneR.J. DumanR.S. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects.Nat. Commun.201910122310.1038/s41467‑018‑08168‑930644390
    [Google Scholar]
  100. ChangL. ZhangK. PuY. QuY. WangS. XiongZ. ShirayamaY. HashimotoK. Lack of dopamine D1 receptors in the antidepressant actions of (R)-ketamine in a chronic social defeat stress model.Eur. Arch. Psychiatry Clin. Neurosci.2020270227127510.1007/s00406‑019‑01012‑130927075
    [Google Scholar]
  101. FukumotoK. FogaçaM.V. LiuR.J. DumanC.H. LiX.Y. ChakiS. DumanR.S. Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT1A receptor stimulation.Neuropsychopharmacology202045101725173410.1038/s41386‑020‑0705‑032396921
    [Google Scholar]
  102. YangY. CuiY. SangK. DongY. NiZ. MaS. HuH. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.Nature2018554769231732210.1038/nature2550929446381
    [Google Scholar]
  103. MaS. ChenM. JiangY. XiangX. WangS. WuZ. LiS. CuiY. WangJ. ZhuY. ZhangY. MaH. DuanS. LiH. YangY. LingleC.J. HuH. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb.Nature2023622798480280910.1038/s41586‑023‑06624‑137853123
    [Google Scholar]
  104. YangC. QuY. FujitaY. RenQ. MaM. DongC. HashimotoK. Possible role of the gut microbiota–brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model.Transl. Psychiatry2017712129410.1038/s41398‑017‑0031‑429249803
    [Google Scholar]
  105. QuY. YangC. RenQ. MaM. DongC. HashimotoK. Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model.Sci. Rep.2017711572510.1038/s41598‑017‑16060‑729147024
    [Google Scholar]
  106. HashimotoK. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression.Prog. Brain Res.2023278617710.1016/bs.pbr.2023.01.00337414494
    [Google Scholar]
  107. HuaH. HuangC. LiuH. XuX. XuX. WuZ. LiuC. WangY. YangC. Depression and antidepressant effects of ketamine and its metabolites: The pivotal role of gut microbiota.Neuropharmacology202222010927210.1016/j.neuropharm.2022.10927236170927
    [Google Scholar]
  108. FranklinR.J.M. ffrench-ConstantC. Regenerating CNS myelin — from mechanisms to experimental medicines.Nat. Rev. Neurosci.2017181275376910.1038/nrn.2017.13629142295
    [Google Scholar]
  109. FranklinR.J.M. ffrench-ConstantC. Remyelination in the CNS: From biology to therapy.Nat. Rev. Neurosci.200891183985510.1038/nrn248018931697
    [Google Scholar]
  110. FancyS.P.J. ZhaoC. FranklinR.J.M. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS.Mol. Cell. Neurosci.200427324725410.1016/j.mcn.2004.06.01515519240
    [Google Scholar]
  111. WangS. SdrullaA.D. diSibioG. BushG. NofzigerD. HicksC. WeinmasterG. BarresB.A. Notch receptor activation inhibits oligodendrocyte differentiation.Neuron1998211637510.1016/S0896‑6273(00)80515‑29697852
    [Google Scholar]
  112. BlakemoreW.F. Pattern of remyelination in the CNS.Nature1974249545757757810.1038/249577a04834082
    [Google Scholar]
  113. MoyonS. HuynhJ.L. DuttaD. ZhangF. MaD. YooS. LawrenceR. WegnerM. JohnG.R. EmeryB. LubetzkiC. FranklinR.J.M. FanG. ZhuJ. DupreeJ.L. CasacciaP. Functional characterization of DNA methylation in the oligodendrocyte lineage.Cell Rep.201615474876010.1016/j.celrep.2016.03.06027149841
    [Google Scholar]
  114. WangX. ChangL. WanX. TanY. QuY. ShanJ. YangY. MaL. HashimotoK. (R)-ketamine ameliorates demyelination and facilitates remyelination in cuprizone-treated mice: A role of gut–microbiota–brain axis.Neurobiol. Dis.202216510563510.1016/j.nbd.2022.10563535085752
    [Google Scholar]
  115. WangX. ChangL. TanY. QuY. ShanJ. HashimotoK. (R)-ketamine ameliorates the progression of experimental autoimmune encephalomyelitis in mice.Brain Res. Bull.202117731632310.1016/j.brainresbull.2021.10.01334688833
    [Google Scholar]
  116. VasavadaM.M. LeaverA.M. EspinozaR.T. JoshiS.H. NjauS.N. WoodsR.P. NarrK.L. Structural connectivity and response to ketamine therapy in major depression: A preliminary study.J. Affect. Disord.201619083684110.1016/j.jad.2015.11.01826630613
    [Google Scholar]
  117. TarakuB. WoodsR.P. BoucherM. EspinozaR. JogM. Al-SharifN. NarrK.L. Zavaliangos-PetropuluA. Changes in white matter microstructure following serial ketamine infusions in treatment resistant depression.Hum. Brain Mapp.20234462395240610.1002/hbm.2621736715291
    [Google Scholar]
  118. ReinerA. LevitzJ. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert.Neuron20189861080109810.1016/j.neuron.2018.05.01829953871
    [Google Scholar]
  119. TraynelisS.F. WollmuthL.P. McBainC.J. MennitiF.S. VanceK.M. OgdenK.K. HansenK.B. YuanH. MyersS.J. DingledineR. Glutamate receptor ion channels: structure, regulation, and function.Pharmacol. Rev.201062340549610.1124/pr.109.00245120716669
    [Google Scholar]
  120. HansenK.B. YiF. PerszykR.E. FurukawaH. WollmuthL.P. GibbA.J. TraynelisS.F. Structure, function, and allosteric modulation of NMDA receptors.J. Gen. Physiol.201815081081110510.1085/jgp.20181203230037851
    [Google Scholar]
  121. WollmuthL.P. Ion permeation in ionotropic glutamate receptors: Still dynamic after all these years.Curr. Opin. Physiol.20182364110.1016/j.cophys.2017.12.00329607422
    [Google Scholar]
  122. De BiaseL.M. KangS.H. BaxiE.G. FukayaM. PucakM.L. MishinaM. CalabresiP.A. BerglesD.E. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination.J. Neurosci.20113135126501266210.1523/JNEUROSCI.2455‑11.201121880926
    [Google Scholar]
  123. FannonJ. TarmierW. FultonD. Neuronal activity and AMPA‐type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells.Glia20156361021103510.1002/glia.2279925739948
    [Google Scholar]
  124. LiY. StamF.J. AimoneJ.B. GouldingM. CallawayE.M. GageF.H. Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus.Proc. Natl. Acad. Sci. USA2013110229106911110.1073/pnas.130691211023671081
    [Google Scholar]
  125. SpitzerS.O. SitnikovS. KamenY. EvansK.A. Kronenberg-VersteegD. DietmannS. de FariaO.Jr AgathouS. KáradóttirR.T. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age.Neuron20191013459471.e510.1016/j.neuron.2018.12.02030654924
    [Google Scholar]
  126. De BiaseL.M. NishiyamaA. BerglesD.E. Excitability and synaptic communication within the oligodendrocyte lineage.J. Neurosci.201030103600361110.1523/JNEUROSCI.6000‑09.201020219994
    [Google Scholar]
  127. SouletD. RivestS. Microglia.Curr. Biol.20081812R506R50810.1016/j.cub.2008.04.04718579087
    [Google Scholar]
  128. HagemeyerN. HanftK.M. AkriditouM.A. UngerN. ParkE.S. StanleyE.R. StaszewskiO. DimouL. PrinzM. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood.Acta Neuropathol.2017134344145810.1007/s00401‑017‑1747‑128685323
    [Google Scholar]
  129. WlodarczykA. HoltmanI.R. KruegerM. YogevN. BruttgerJ. KhorooshiR. Benmamar-BadelA. de Boer-BergsmaJ.J. MartinN.A. KarramK. KramerI. BoddekeE.W.G.M. WaismanA. EggenB.J.L. OwensT. A novel microglial subset plays a key role in myelinogenesis in developing brain.EMBO J.201736223292330810.15252/embj.20169605628963396
    [Google Scholar]
  130. HamiltonS.P. RomeL.H. Stimulation of in vitro myelin synthesis by microglia.Glia199411432633510.1002/glia.4401104057960036
    [Google Scholar]
  131. NicholasR.S.T.J. WingM.G. CompstonA. Nonactivated microglia promote oligodendrocyte precursor survival and maturation through the transcription factor NF‐κB.Eur. J. Neurosci.200113595996710.1046/j.0953‑816x.2001.01470.x11264668
    [Google Scholar]
  132. MironV.E. BoydA. ZhaoJ.W. YuenT.J. RuckhJ.M. ShadrachJ.L. van WijngaardenP. WagersA.J. WilliamsA. FranklinR.J.M. ffrench-ConstantC. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination.Nat. Neurosci.20131691211121810.1038/nn.346923872599
    [Google Scholar]
  133. KamT.I. HinkleJ.T. DawsonT.M. DawsonV.L. Microglia and astrocyte dysfunction in parkinson’s disease.Neurobiol. Dis.202014410502810.1016/j.nbd.2020.10502832736085
    [Google Scholar]
  134. CuiY. YangY. NiZ. DongY. CaiG. FoncelleA. MaS. SangK. TangS. LiY. ShenY. BerryH. WuS. HuH. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression.Nature2018554769232332710.1038/nature2575229446379
    [Google Scholar]
  135. CaoP. ChenC. LiuA. ShanQ. ZhuX. JiaC. PengX. ZhangM. FarzinpourZ. ZhouW. WangH. ZhouJ.N. SongX. WangL. TaoW. ZhengC. ZhangY. DingY.Q. JinY. XuL. ZhangZ. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines.Neuron20211091625732589.e910.1016/j.neuron.2021.06.01234233151
    [Google Scholar]
  136. ZanosP. MoaddelR. MorrisP.J. RiggsL.M. HighlandJ.N. GeorgiouP. PereiraE.F.R. AlbuquerqueE.X. ThomasC.J. ZarateC.A.Jr GouldT.D. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms.Pharmacol. Rev.201870362166010.1124/pr.117.01519829945898
    [Google Scholar]
  137. WhiteP.F. SchüttlerJ. ShaferA. StanskiD.R. HoraiY. TrevorA.J. Comparative pharmacology of the ketamine isomers. Studies in volunteers.Br. J. Anaesth.198557219720310.1093/bja/57.2.1973970799
    [Google Scholar]
  138. SchüttlerJ. StanskiD.R. WhiteP.F. TrevorA.J. HoraiY. VerottaD. SheinerL.B. Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man.J. Pharmacokinet. Biopharm.198715324125310.1007/BF010663203668802
    [Google Scholar]
  139. HimmelseherS. PfenningerE. The clinical application of S-(+)-ketamine.Anasthesiol. Intensivmed. Notfallmed. Schmerzther.1998331276477010.1055/s‑2007‑9948519893910
    [Google Scholar]
  140. YangC. ShirayamaY. ZhangJ. RenQ. YaoW. MaM. DongC. HashimotoK. R-ketamine: A rapid-onset and sustained antidepressant without psychotomimetic side effects.Transl. Psychiatry201559e63210.1038/tp.2015.13626327690
    [Google Scholar]
  141. ZhangJ. LiS. HashimotoK. R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine.Pharmacol. Biochem. Behav.201411613714110.1016/j.pbb.2013.11.03324316345
    [Google Scholar]
  142. ZhaoL. ZhangG. LouX. HashimotoK. YangJ. Ketamine and its enantiomers for depression: A bibliometric analysis from 2000 to 2023.Eur. Arch. Psychiatry Clin. Neurosci.2024(Epub ahead of print).10.1007/s00406‑024‑01809‑938662093
    [Google Scholar]
/content/journals/cn/10.2174/011570159X349856241213144902
Loading
/content/journals/cn/10.2174/011570159X349856241213144902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Arketamine; depression; enantiomer; esketamine; ketamine; myelination; oligodendrocyte
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test