Skip to content
2000
Volume 23, Issue 8
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The increasing prevalence of brain injuries resulting in cognitive and motor function impairments poses a substantial global medical challenge. Nerve repair therapies offer promise for addressing brain injury-related disorders. Ferroptosis, as a cell death mechanism associated with oxidative stress and inflammation. Certain ferroptosis inhibitors, such as iron chelators and antioxidants, exhibit therapeutic potential for brain injury-related conditions. This review explores the fundamental processes and associated mechanisms that regulate neural repair by inhibiting ferroptosis, thereby alleviating brain injury and promoting neuroregeneration. Furthermore, it examines the action mechanisms and potential therapeutic applications of ferroptosis inhibitors in neural repair, aiming to provide novel insights for treating brain injuries.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X343096241209040135
2025-01-15
2025-09-04
Loading full text...

Full text loading...

References

  1. CapizziA. WooJ. Verduzco-GutierrezM. Traumatic brain injury.Med. Clin. North Am.2020104221323810.1016/j.mcna.2019.11.001 32035565
    [Google Scholar]
  2. OpheldersD.R.M.G. GussenhovenR. KleinL. JellemaR.K. WesterlakenR.J.J. HüttenM.C. VermeulenJ. WassinkG. GunnA.J. WolfsT.G.A.M. Preterm brain injury, antenatal triggers, and therapeutics: Timing is key.Cells202098187110.3390/cells9081871 32785181
    [Google Scholar]
  3. HuangY.Y. ChenS.D. LengX.Y. KuoK. WangZ.T. CuiM. TanL. WangK. DongQ. YuJ.T. Post-stroke cognitive impairment: Epidemiology, risk factors, and management.J. Alzheimers Dis.202286398399910.3233/JAD‑215644 35147548
    [Google Scholar]
  4. VuralliD. AyataC. BolayH. Cognitive dysfunction and migraine.J. Headache Pain201819110910.1186/s10194‑018‑0933‑4 30442090
    [Google Scholar]
  5. ZhangL. DaiL. LiD. Mitophagy in neurological disorders.J. Neuroinflammation202118129710.1186/s12974‑021‑02334‑5 34937577
    [Google Scholar]
  6. KeddieS. SmythD. KehR.Y.S. ChouM.K.L. GrantD. SuranaS. HeslegraveA. ZetterbergH. WieskeL. MichaelM. EftimovF. BellantiR. RinaldiS. HartM.S. PetzoldA. LunnM.P. Peripherin is a biomarker of axonal damage in peripheral nervous system disease.Brain2023146114562457310.1093/brain/awad234 37435933
    [Google Scholar]
  7. WernerJ.K. StevensR.D. Traumatic brain injury.Curr. Opin. Neurol.201528656557310.1097/WCO.0000000000000265 26544030
    [Google Scholar]
  8. GodoyD.A. BadenesR. PelosiP. RobbaC. Ketamine in acute phase of severe traumatic brain injury “an old drug for new uses?”.Crit. Care20212511910.1186/s13054‑020‑03452‑x 33407737
    [Google Scholar]
  9. LiL.Q. WangC. FangM.D. XuH.Y. LuH.L. ZhangH.Z. Effects of dexamethasone on post-operative cognitive dysfunction and delirium in adults following general anaesthesia: A meta-analysis of randomised controlled trials.BMC Anesthesiol.201911
    [Google Scholar]
  10. NiñoM.C. CohenD. MejíaJ.A. GutiérrezJ.A. GonzálezM. Letter: Guidelines for the management of severe traumatic brain injury: 2020 Update of the decompressive craniectomy recommendations.Neurosurgery2021884E370E37110.1093/neuros/nyaa574 33442723
    [Google Scholar]
  11. BorlonganM.C. RosiS. Stem cell therapy for sequestration of traumatic brain injury-induced inflammation.Int. J. Mol. Sci.202223181028610.3390/ijms231810286 36142198
    [Google Scholar]
  12. WeiC. WangJ. YuJ. TangQ. LiuX. ZhangY. CuiD. ZhuY. MeiY. WangY. WangW. Therapy of traumatic brain injury by modern agents and traditional chinese medicine.Chin. Med.20231812510.1186/s13020‑023‑00731‑x 36906602
    [Google Scholar]
  13. El SeblaniN. WellefordA.S. QuinteroJ.E. van HorneC.G. GerhardtG.A. Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS.J. Neurosci. Methods202033510862310.1016/j.jneumeth.2020.108623 32027890
    [Google Scholar]
  14. ZhengS. WeiH. ChengH. QiY. GuY. MaX. SunJ. YeF. GuoF. ChengC. Advances in nerve guidance conduits for peripheral nerve repair and regeneration.Am. J. Stem Cells2023125112123 38213640
    [Google Scholar]
  15. HermanZ.J. IlyasA.M. Sensory outcomes in digital nerve repair techniques: An updated meta-analysis and systematic review.Hand (N. Y.)202015215716410.1177/1558944719844346 31043071
    [Google Scholar]
  16. ChenS.H. KaoH.K. WunJ.R. ChouP.Y. ChenZ.Y. ChenS.H. HsiehS.T. FangH.W. LinF.H. Thermosensitive hydrogel carrying extracellular vesicles from adipose-derived stem cells promotes peripheral nerve regeneration after microsurgical repair.APL Bioeng.20226404610310.1063/5.0118862 36345317
    [Google Scholar]
  17. WachsR.A. WellmanS.M. PorvasnikS.L. LakesE.H. CornelisonR.C. SongY.H. AllenK.D. SchmidtC.E. Apoptosis-decellularized peripheral nerve scaffold allows regeneration across nerve gap.Cells Tissues Organs2023212651252210.1159/000525704 36030771
    [Google Scholar]
  18. ZhaoS. WangS. CaoL. ZengH. LinS. LinZ. ChenM. ZhuM. PangZ. ZhangY. Acupuncture promotes nerve repair through the benign regulation of mTOR-mediated neuronal autophagy in traumatic brain injury rats.CNS Neurosci. Ther.202329145847010.1111/cns.14018 36422883
    [Google Scholar]
  19. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  20. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  21. HuangL. BianM. ZhangJ. JiangL. Iron metabolism and ferroptosis in peripheral nerve injury.Oxid. Med. Cell. Longev.2022202211410.1155/2022/5918218 36506935
    [Google Scholar]
  22. MaH. DongY. ChuY. GuoY. LiL. The mechanisms of ferroptosis and its role in Alzheimer’s disease.Front. Mol. Biosci.2022996506410.3389/fmolb.2022.965064 36090039
    [Google Scholar]
  23. ZhangY. LanJ. ZhaoD. RuanC. ZhouJ. TanH. BaoY. Netrin-1 upregulates GPX4 and prevents ferroptosis after traumatic brain injury via the UNC5B/Nrf2 signaling pathway.CNS Neurosci. Ther.202329121622710.1111/cns.13997 36468399
    [Google Scholar]
  24. CaoY. LiY. HeC. YanF. LiJ.R. XuH.Z. ZhuangJ.F. ZhouH. PengY.C. FuX.J. LuX.Y. YaoY. WeiY.Y. TongY. ZhouY.F. WangL. Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage.Neurosci. Bull.202137453554910.1007/s12264‑020‑00620‑5 33421025
    [Google Scholar]
  25. DeGregorio-RocasolanoN. Martí-SistacO. PonceJ. Castelló-RuizM. MillánM. GuiraoV. García-YébenesI. SalomJ.B. Ramos-CabrerP. AlborchE. LizasoainI. CastilloJ. DávalosA. GasullT. Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage.Redox Biol.20181514315810.1016/j.redox.2017.11.026 29248829
    [Google Scholar]
  26. CapellettiM.M. ManceauH. PuyH. Peoc’hK. Ferroptosis in liver diseases: An overview.Int. J. Mol. Sci.20202114490810.3390/ijms21144908 32664576
    [Google Scholar]
  27. LeiP. BaiT. SunY. Mechanisms of ferroptosis and relations with regulated cell death: A review.Front. Physiol.20191013910.3389/fphys.2019.00139 30863316
    [Google Scholar]
  28. Garza-LombóC. PosadasY. QuintanarL. GonsebattM.E. FrancoR. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox signaling and oxidative stress.Antioxid. Redox Signal.201828181669170310.1089/ars.2017.7272 29402131
    [Google Scholar]
  29. CondeV. SiebnerH.R. Brain damage by trauma.Handb. Clin. Neurol.2020168394910.1016/B978‑0‑444‑63934‑9.00005‑6 32164867
    [Google Scholar]
  30. HuangL. ZhangL. Neural stem cell therapies and hypoxic-ischemic brain injury.Prog. Neurobiol.201917311710.1016/j.pneurobio.2018.05.004 29758244
    [Google Scholar]
  31. Tefr FaridováA. Heř;man, H.; Danačíková, Š.; Svoboda, J.; Otáhal, J. Serum biomarkers of hypoxic-ischemic brain injury.Physiol. Res.202372S5S461S474 38165751
    [Google Scholar]
  32. Graff-RadfordJ. YongK.X.X. ApostolovaL.G. BouwmanF.H. CarrilloM. DickersonB.C. RabinoviciG.D. SchottJ.M. JonesD.T. MurrayM.E. New insights into atypical Alzheimer’s disease in the era of biomarkers.Lancet Neurol.202120322223410.1016/S1474‑4422(20)30440‑3 33609479
    [Google Scholar]
  33. TolosaE. GarridoA. ScholzS.W. PoeweW. Challenges in the diagnosis of Parkinson’s disease.Lancet Neurol.202120538539710.1016/S1474‑4422(21)00030‑2 33894193
    [Google Scholar]
  34. ZhaoY. LiuY. XuY. LiK. ZhouL. QiaoH. XuQ. ZhaoJ. The role of ferroptosis in blood–brain barrier injury.Cell. Mol. Neurobiol.202343122323610.1007/s10571‑022‑01197‑5 35106665
    [Google Scholar]
  35. NakamichiN. OikawaH. KambeY. YonedaY. Relevant modulation by ferrous ions of N-methyl-D-aspartate receptors in ischemic brain injuries.Curr. Neurovasc. Res.20041542944010.2174/1567202043361910 16181091
    [Google Scholar]
  36. LiuJ.L. FanY.G. YangZ.S. WangZ.Y. GuoC. Iron and alzheimer’s disease: From pathogenesis to therapeutic implications.Front. Neurosci.20181263210.3389/fnins.2018.00632 30250423
    [Google Scholar]
  37. PerryG. TaddeoM.A. PetersenR.B. CastellaniR.J. HarrisP.L.R. SiedlakS.L. CashA.D. LiuQ. NunomuraA. AtwoodC.S. SmithM.A. Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease.Biometals2003161778110.1023/A:1020731021276 12572666
    [Google Scholar]
  38. ZilleM. KaruppagounderS.S. ChenY. GoughP.J. BertinJ. FingerJ. MilnerT.A. JonasE.A. RatanR.R. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis.Stroke20174841033104310.1161/STROKEAHA.116.015609 28250197
    [Google Scholar]
  39. RiedererP. MonoranuC. StrobelS. IordacheT. Sian-HülsmannJ. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson’s disease.J. Neural Transm. (Vienna)2021128101577159810.1007/s00702‑021‑02414‑z 34636961
    [Google Scholar]
  40. AytonS. WangY. DioufI. SchneiderJ.A. BrockmanJ. MorrisM.C. BushA.I. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology.Mol. Psychiatry202025112932294110.1038/s41380‑019‑0375‑7 30778133
    [Google Scholar]
  41. SinisN. GeunaS. ViterboF. Translational research in peripheral nerve repair and regeneration.BioMed Res. Int.201420141210.1155/2014/381426 25276783
    [Google Scholar]
  42. AdidharmaW. KhouriA.N. LeeJ.C. VanderbollK. KungT.A. CedernaP.S. KempS.W.P. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury.Muscle Nerve202266438439610.1002/mus.27661 35779064
    [Google Scholar]
  43. ChangF. WangY. LiuP. PengJ. HanG-H. DingX. WeiS. GaoG. HuangK. Role of macrophages in peripheral nerve injury and repair.Neural Regen. Res.20191481335134210.4103/1673‑5374.253510 30964051
    [Google Scholar]
  44. HuangQ. LiuB. WuW. Biomaterial-based bFGF delivery for nerve repair.Oxid. Med. Cell. Longev.2023202311310.1155/2023/8003821 37077657
    [Google Scholar]
  45. LinJ.S. JainS.A. Challenges in nerve repair and reconstruction.Hand Clin.202339340341510.1016/j.hcl.2023.05.001 37453767
    [Google Scholar]
  46. JuckettL. SaffariT.M. OrmsethB. SengerJ.L. MooreA.M. The effect of electrical stimulation on nerve regeneration following peripheral nerve injury.Biomolecules20221212185610.3390/biom12121856 36551285
    [Google Scholar]
  47. YangY. RaoC. YinT. WangS. ShiH. YanX. ZhangL. MengX. GuW. DuY. HongF. Application and underlying mechanism of acupuncture for the nerve repair after peripheral nerve injury: Remodeling of nerve system.Front. Cell. Neurosci.202317125343810.3389/fncel.2023.1253438 37941605
    [Google Scholar]
  48. UrbánN. BlomfieldI.M. GuillemotF. Quiescence of adult mammalian neural stem cells: A highly regulated rest.Neuron2019104583484810.1016/j.neuron.2019.09.026 31805262
    [Google Scholar]
  49. Navarro NegredoP. YeoR.W. BrunetA. Aging and rejuvenation of neural stem cells and their niches.Cell Stem Cell202027220222310.1016/j.stem.2020.07.002 32726579
    [Google Scholar]
  50. SongQ.F. CuiQ. WangY.S. ZhangL.X. Mesenchymal stem cells, extracellular vesicles, and transcranial magnetic stimulation for ferroptosis after spinal cord injury.Neural Regen. Res.202318918611868 36926700
    [Google Scholar]
  51. ShenD. WuW. LiuJ. LanT. XiaoZ. GaiK. HuL. LuoZ. WeiC. WangX. LuY. WangY. ZhangC. WangP. ZuoZ. YangF. LiQ. Ferroptosis in oligodendrocyte progenitor cells mediates white matter injury after hemorrhagic stroke.Cell Death Dis.202213325910.1038/s41419‑022‑04712‑0 35318305
    [Google Scholar]
  52. LvX. LingY. NiuD. ZengY. QiuY. SiY. GuoT. NiY. ZhangJ. WangZ. HuJ. Human neural stem cell secretome inhibits neuron heme uptake and ferroptosis in intracerebral hemorrhage through Nrf-2 signaling pathway.Stem Cells Dev.20233211-1234636310.1089/scd.2023.0010 36960702
    [Google Scholar]
  53. GuoY-L. ZhaiQ-Y. YeY-H. RenY-Q. SongZ-H. GeK-L. ChengB-H. Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation.Neural Regen. Res.202318361862510.4103/1673‑5374.350207 36018186
    [Google Scholar]
  54. FabbroA. PratoM. BalleriniL. Carbon nanotubes in neuroregeneration and repair.Adv. Drug Deliv. Rev.201365152034204410.1016/j.addr.2013.07.002 23856411
    [Google Scholar]
  55. ChengY. GaoY. LiJ. RuiT. LiQ. ChenH. JiaB. SongY. GuZ. WangT. GaoC. WangY. WangZ. WangF. TaoL. LuoC. TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway.Free Radic. Biol. Med.202319418419810.1016/j.freeradbiomed.2022.12.002 36493983
    [Google Scholar]
  56. LongQ. LiT. ZhuQ. HeL. ZhaoB. SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway.J. Ethnopharmacol.202432311767910.1016/j.jep.2023.117679 38160863
    [Google Scholar]
  57. FangJ. YuanQ. DuZ. ZhangQ. YangL. WangM. YangW. YuanC. YuJ. WuG. HuJ. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury.Free Radic. Biol. Med.2023204688110.1016/j.freeradbiomed.2023.04.014 37105419
    [Google Scholar]
  58. SunY. XiaX. BasnetD. ZhengJ.C. HuangJ. LiuJ. Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases.Front. Aging Neurosci.20221490415210.3389/fnagi.2022.904152 35837484
    [Google Scholar]
  59. JomovaK. MakovaM. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. RhodesC.J. ValkoM. Essential metals in health and disease.Chem. Biol. Interact.202236711017310.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  60. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules24081583 31013638
    [Google Scholar]
  61. VernisL. El BannaN. BaïlleD. HatemE. HenemanA. HuangM.E. Fe-S clusters emerging as targets of therapeutic drugs.Oxid. Med. Cell. Longev.201720171364765710.1155/2017/3647657 29445445
    [Google Scholar]
  62. RochetteL. DogonG. RigalE. ZellerM. CottinY. VergelyC. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis.Int. J. Mol. Sci.202224144910.3390/ijms24010449 36613888
    [Google Scholar]
  63. GuptaU. GhoshS. WallaceC.T. ShangP. XinY. NairA.P. YazdankhahM. StrizhakovaA. RossM.A. LiuH. HoseS. StepichevaN.A. ChowdhuryO. NemaniM. MaddipatlaV. GrebeR. DasM. LathropK.L. SahelJ.A. ZiglerJ.S.Jr QianJ. GhoshA. SergeevY. HandaJ.T. St CroixC.M. SinhaD. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD.Autophagy20231919211110.1080/15548627.2022.2062887 35473441
    [Google Scholar]
  64. MeiheL. ShanG. MinchaoK. XiaolingW. PengA. XiliW. JinZ. HuiminD. The ferroptosis-NLRP1 inflammasome: The vicious cycle of an adverse pregnancy.Front. Cell Dev. Biol.2021970795910.3389/fcell.2021.707959 34490257
    [Google Scholar]
  65. KowdleyK.V. GochanourE.M. SundaramV. ShahR.A. HandaP. Hepcidin signaling in health and disease: Ironing out the details.Hepatol. Commun.20215572373510.1002/hep4.1717 34027264
    [Google Scholar]
  66. FarzipourS. ShaghaghiZ. MotieianS. AlvandiM. YazdiA. AsadzadehB. AbbasiS. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease.Mini Rev. Med. Chem.202222172271228610.2174/1389557522666220218123404 35184711
    [Google Scholar]
  67. YangY. MaY. LiQ. LingY. ZhouY. ChuK. XueL. TaoS. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway.Cell Death Dis.202213653010.1038/s41419‑022‑04971‑x 35668064
    [Google Scholar]
  68. LiY. ZengX. LuD. YinM. ShanM. GaoY. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis.Hum. Reprod.202136495196410.1093/humrep/deaa363 33378529
    [Google Scholar]
  69. Spasić, S.; Nikolić-Kokić, A.; Miletić, S.; Oreščanin-Dušić, Z.; Spasić, M.B.; Blagojević, D.; Stević, Z Edaravone may prevent ferroptosis in ALS.Curr. Drug Targets202021877678010.2174/1389450121666200220123305 32077821
    [Google Scholar]
  70. HuM. ZhangY. MaS. LiJ. WangX. LiangM. Sferruzzi-PerriA.N. WuX. MaH. BrännströmM. ShaoL.R. BilligH. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome.Mol. Hum. Reprod.20212712gaab06710.1093/molehr/gaab067 34850077
    [Google Scholar]
  71. WuY. RanL. YangY. GaoX. PengM. LiuS. SunL. WanJ. WangY. YangK. YinM. ChunyuW. Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota.Life Sci.202331412131210.1016/j.lfs.2022.121312 36563842
    [Google Scholar]
  72. HouW. XieY. SongX. SunX. LotzeM.T. ZehH.J.III KangR. TangD. Autophagy promotes ferroptosis by degradation of ferritin.Autophagy20161281425142810.1080/15548627.2016.1187366 27245739
    [Google Scholar]
  73. ZhuD. LiangR. LiuY. LiZ. ChengL. RenJ. GuoY. WangM. ChaiH. NiuQ. YangS. BaiJ. YuH. ZhangH. QinX. Deferoxamine ameliorated Al(mal)3-induced neuronal ferroptosis in adult rats by chelating brain iron to attenuate oxidative damage.Toxicol. Mech. Methods202232753054110.1080/15376516.2022.2053254 35313783
    [Google Scholar]
  74. GuoS. LeiQ. GuoH. YangQ. XueY. ChenR. Edaravone attenuates Aβ 1-42-induced inflammatory damage and ferroptosis in HT22 cells.Neurochem. Res.202348257057810.1007/s11064‑022‑03782‑y 36333599
    [Google Scholar]
  75. SripetchwandeeJ. KhamseekaewJ. SvastiS. SrichairatanakoolS. FucharoenS. ChattipakornN. ChattipakornS.C. Deferiprone and efonidipine mitigated iron-overload induced neurotoxicity in wild-type and thalassemic mice.Life Sci.201923911687810.1016/j.lfs.2019.116878 31669736
    [Google Scholar]
  76. ZhengQ. MaP. YangP. ZhaiS. HeM. ZhangX. TuQ. JiaoL. YeL. FengZ. ZhangC. Alpha lipoic acid ameliorates motor deficits by inhibiting ferroptosis in Parkinson’s disease.Neurosci. Lett.202381013734610.1016/j.neulet.2023.137346 37308056
    [Google Scholar]
  77. LeeW.J. LeeH.G. HurJ. LeeG.H. WonJ.P. KimE. HwangJ.S. SeoH.G. PPARδ activation mitigates 6-OHDA-induced neuronal damage by regulating intracellular iron levels.Antioxidants202211581010.3390/antiox11050810 35624674
    [Google Scholar]
  78. PengW. ZhuZ. YangY. HouJ. LuJ. ChenC. LiuF. PiR. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells.Brain Res. Bull.202117425025910.1016/j.brainresbull.2021.06.014 34171402
    [Google Scholar]
  79. GaoY. LiJ. WuQ. WangS. YangS. LiX. ChenN. LiL. ZhangL. Tetrahydroxy stilbene glycoside ameliorates alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis.Int. Immunopharmacol.20219910800210.1016/j.intimp.2021.108002 34333354
    [Google Scholar]
  80. AtesG. GoldbergJ. CurraisA. MaherP. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease.Redox Biol.20203610164810.1016/j.redox.2020.101648 32863221
    [Google Scholar]
  81. JiangY.N. GuoY.Z. LuD.H. PanM.H. LiuH.Z. JiaoG.L. BiW. KuriharaH. LiY.F. DuanW.J. HeR.R. YaoX.S. Tianma gouteng granules decreases the susceptibility of parkinson’s disease by inhibiting ALOX15-mediated lipid peroxidation.J. Ethnopharmacol.202025611282410.1016/j.jep.2020.112824 32259664
    [Google Scholar]
  82. FuC. WuY. LiuS. LuoC. LuY. LiuM. WangL. ZhangY. LiuX. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia.J. Ethnopharmacol.202228911502110.1016/j.jep.2022.115021 35091012
    [Google Scholar]
  83. SongQ. ZhaoY. LiQ. HanX. DuanJ. Puerarin protects against iron overload-induced retinal injury through regulation of iron-handling proteins.Biomed. Pharmacother.202012210969010.1016/j.biopha.2019.109690 31786468
    [Google Scholar]
  84. ZhangQ. YaoM. QiJ. SongR. WangL. LiJ. ZhouX. ChangD. HuangQ. LiL. WangN. Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway.Front Pharmacol.2023141134380
    [Google Scholar]
  85. TianM. ShenJ. QiZ. FengY. FangP. Bioinformatics analysis and prediction of alzheimer’s disease and alcohol dependence based on ferroptosis-related genes.Front. Aging Neurosci.202315120114210.3389/fnagi.2023.1201142 37520121
    [Google Scholar]
  86. Cosín-TomásM. AntonellA. LladóA. AlcoleaD. ForteaJ. EzquerraM. LleóA. MartíM.J. PallàsM. Sanchez-ValleR. MolinuevoJ.L. SanfeliuC. KalimanP. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: Potential and limitations.Mol. Neurobiol.20175475550556210.1007/s12035‑016‑0088‑8 27631879
    [Google Scholar]
  87. WangZ. XiaQ. LiuX. LiuW. HuangW. MeiX. LuoJ. ShanM. LinR. ZouD. MaZ. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review.J. Ethnopharmacol.201821031833910.1016/j.jep.2017.08.040 28887216
    [Google Scholar]
  88. JiaoC. GaoF. OuL. YuJ. LiM. WeiP. MiaoF. Tetrahydroxy stilbene glycoside (TSG) antagonizes Aβ-induced hippocampal neuron injury by suppressing mitochondrial dysfunction via Nrf2-dependent HO-1 pathway.Biomed. Pharmacother.20179622222810.1016/j.biopha.2017.09.134 28987946
    [Google Scholar]
  89. LiL. LiW.J. ZhengX.R. LiuQ.L. DuQ. LaiY.J. LiuS.Q. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation.Mol. Med.20222811110.1186/s10020‑022‑00442‑3 35093024
    [Google Scholar]
  90. LiN. MaZ. LiM. XingY. HouY. Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine chinese dragon's blood.J. Ethnopharmacol.2014152350852110.1016/j.jep.2014.01.032 24509154
    [Google Scholar]
  91. LuW.J. LinK.H. TsengM.F. YuanK.C. HuangH.C. SheuJ.R. ChenR.J. New therapeutic strategy of hinokitiol in haemorrhagic shock-induced liver injury.J. Cell. Mol. Med.20192331723173410.1111/jcmm.14070 30548082
    [Google Scholar]
  92. ZhangX. XieL. LongJ. XieQ. ZhengY. LiuK. LiX. Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties.Chem. Biol. Interact.202133910926810.1016/j.cbi.2020.109268 33617801
    [Google Scholar]
  93. ShenL-H. LuoQ-Q. HuC-B. JiangH. YangY. WangG-H. JiQ-H. JiaZ-Z. DL-3-n-butylphthalide alleviates motor disturbance by suppressing ferroptosis in a rat model of parkinson’s disease.Neural Regen. Res.202318119419910.4103/1673‑5374.343892 35799542
    [Google Scholar]
  94. YuW. IlyasI. HuX. XuS. YuH. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective.Front. Immunol.202213107200710.3389/fimmu.2022.1072007 36618414
    [Google Scholar]
  95. SunY. HeL. WangW. XieZ. ZhangX. WangP. WangL. YanC. LiuZ. ZhaoJ. CuiZ. WangY. TangL. ZhangZ. Activation of Atg7-dependent autophagy by a novel inhibitor of the Keap1-Nrf2 protein-protein interaction from Penthorum chinense Pursh. attenuates 6-hydroxydopamine-induced ferroptosis in zebrafish and dopaminergic neurons.Food Funct.202213147885790010.1039/D2FO00357K 35776077
    [Google Scholar]
  96. Abo LabanA.I. El-BassossyH.M. HassanN.A. Hinokitiol produces vasodilation in aortae from normal and angiotensin II- induced hypertensive rats via endothelial-dependent and independent pathways.Vascul. Pharmacol.202214610709210.1016/j.vph.2022.107092 35907614
    [Google Scholar]
  97. RahmaniA.H. AlmatroudiA. KhanA.A. BabikerA.Y. AlaneziM. AllemailemK.S. The multifaceted role of baicalein in cancer management through modulation of cell signalling pathways.Molecules20222722802310.3390/molecules27228023 36432119
    [Google Scholar]
  98. LiX. ZhangJ. ZhangX. DongM. Puerarin suppresses MPP+/MPTP-induced oxidative stress through an Nrf2-dependent mechanism.Food Chem. Toxicol.202014411164410.1016/j.fct.2020.111644 32763437
    [Google Scholar]
  99. ShenP. LinW. DengX. BaX. HanL. ChenZ. QinK. HuangY. TuS. Potential implications of quercetin in autoimmune diseases.Front. Immunol.20211268904410.3389/fimmu.2021.689044 34248976
    [Google Scholar]
  100. LiX. ShangN. KangY. ShengN. LanJ. TangJ. WuL. ZhangJ. PengY. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway.Acta Pharmacol. Sin.202445224826710.1038/s41401‑023‑01177‑5 37833536
    [Google Scholar]
  101. ZhangX. DuQ. YangY. WangJ. DouS. LiuC. DuanJ. The protective effect of luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway.Biomed. Pharmacother.2017911042105210.1016/j.biopha.2017.05.033 28525945
    [Google Scholar]
  102. ShuZ. YangY. YangL. JiangH. YuX. WangY. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway.Food Funct.201910120321510.1039/C8FO01256C 30525169
    [Google Scholar]
  103. WuB. FengJ. YuL. WangY. ChenY. WeiY. HanJ. FengX. ZhangY. DiS. MaZ. FanC. HaX. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage.Br. J. Pharmacol.2018175214137415310.1111/bph.14457 30051466
    [Google Scholar]
  104. ZhaoX.B. QinY. NiuY.L. YangJ. Retracted: Matrine inhibits hypoxia/reoxygenation-induced apoptosis of cardiac microvascular endothelial cells in rats via the JAK2/STAT3 signaling pathway.Biomed. Pharmacother.201810611712410.1016/j.biopha.2018.06.003 29957461
    [Google Scholar]
  105. HeZ. SongC. LiS. DongC. LiaoW. XiongY. YangS. LiuY. Development and application of the CRISPR-dcas13d-eIF4G translational regulatory system to inhibit ferroptosis in calcium oxalate crystal-induced kidney injury.Adv. Sci. (Weinh.)20241117230923410.1002/advs.202309234 38380498
    [Google Scholar]
/content/journals/cn/10.2174/011570159X343096241209040135
Loading
/content/journals/cn/10.2174/011570159X343096241209040135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test