Skip to content
2000
image of The Modulatory Effects of Anesthetics and Analgesics on Neurophysiological Monitoring and Underlying Mechanisms

Abstract

Intraoperative Neurophysiological Monitoring (IONM) is an indispensable surgical tool that offers invaluable insights into neurological function across a spectrum of anatomical areas. By comprehensively assessing the integrity of the brain, brainstem, spinal cord, cranial nerves, and peripheral nerves, IONM plays a pivotal role in guiding surgical decision-making and optimizing patient outcomes, particularly in the context of high-risk procedures. Intraoperative drugs, especially anesthetics and/or analgesics, differentially modulate neurophysiological monitoring, which remarkably affects the application of neurophysiological monitoring under specific conditions and indicates the neurobiological mechanisms of anesthetics/analgesics. This review will describe various neurophysiological modalities utilized in intraoperative procedures, each employing a wide variety of physiological principles; summarize the modulatory effects of anesthetics/analgesics on these neurophysiological monitoring parameters; and elucidate their underlying mechanisms, with a particular emphasis on evoked potentials. Insights gleaned from this review can inform strategies of anesthesia management for surgeries that require IONM and guide future investigations on the mechanisms of anesthesia/analgesia.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X349119250127104107
2025-02-18
2025-10-04
Loading full text...

Full text loading...

References

  1. Penfield W. Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937 60 4 389 443 10.1093/brain/60.4.389
    [Google Scholar]
  2. So V.C. Poon C.C.M. Intraoperative neuromonitoring in major vascular surgery. Br. J. Anaesth. 2016 117 Suppl. 2 ii13 ii25 10.1093/bja/aew218 27566804
    [Google Scholar]
  3. Nunes R.R. Bersot C.D.A. Garritano J.G. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr. Opin. Anaesthesiol. 2018 31 5 532 538 10.1097/ACO.0000000000000645 30020157
    [Google Scholar]
  4. Sala F. Kržan M.J. Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: Why, when, how? Childs Nerv. Syst. 2002 18 6-7 264 287 10.1007/s00381‑002‑0582‑3 12172930
    [Google Scholar]
  5. Gonzalez A.A. Jeyanandarajan D. Hansen C. Zada G. Hsieh P.C. Intraoperative neurophysiological monitoring during spine surgery: A review. Neurosurg. Focus 2009 27 4 E6 10.3171/2009.8.FOCUS09150 19795955
    [Google Scholar]
  6. Charalampidis A. Jiang F. Wilson J.R.F. Badhiwala J.H. Brodke D.S. Fehlings M.G. The use of intraoperative neurophysiological monitoring in spine surgery. Global Spine J. 2020 10 1_suppl Suppl. 104S 114S 10.1177/2192568219859314 31934514
    [Google Scholar]
  7. Tropeano M.P. Rossini Z. Franzini A. Capo G. Olei S. De Robertis M. Milani D. Fornari M. Pessina F. Multimodal intraoperative neurophysiological monitoring in intramedullary spinal cord tumors: A 10-year single center experience. Cancers (Basel) 2023 16 1 111 10.3390/cancers16010111 38201539
    [Google Scholar]
  8. Scibilia A. Terranova C. Rizzo V. Raffa G. Morelli A. Esposito F. Mallamace R. Buda G. Conti A. Quartarone A. Germanò A. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: Sirens or indispensable tools? Neurosurg. Focus 2016 41 2 E18 10.3171/2016.5.FOCUS16141 27476842
    [Google Scholar]
  9. Franks N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008 9 5 370 386 10.1038/nrn2372 18425091
    [Google Scholar]
  10. Suzuki M. Larkum M.E. General anesthesia decouples cortical pyramidal neurons. Cell 2020 180 4 666 676.e13 10.1016/j.cell.2020.01.024 32084339
    [Google Scholar]
  11. Flores F.J. Hartnack K.E. Fath A.B. Kim S.E. Wilson M.A. Brown E.N. Purdon P.L. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc. Natl. Acad. Sci. USA 2017 114 32 E6660 E6668 10.1073/pnas.1700148114 28743752
    [Google Scholar]
  12. Hemmings H.C. Jr Akabas M.H. Goldstein P.A. Trudell J.R. Orser B.A. Harrison N.L. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol. Sci. 2005 26 10 503 510 10.1016/j.tips.2005.08.006 16126282
    [Google Scholar]
  13. Moody O.A. Zhang E.R. Vincent K.F. Kato R. Melonakos E.D. Nehs C.J. Solt K. The neural circuits underlying general anesthesia and sleep. Anesth. Analg. 2021 132 5 1254 1264 10.1213/ANE.0000000000005361 33857967
    [Google Scholar]
  14. Franks N.P. Lieb W.R. Molecular and cellular mechanisms of general anaesthesia. Nature 1994 367 6464 607 614 10.1038/367607a0 7509043
    [Google Scholar]
  15. Guarracino F. Cerebral monitoring during cardiovascular surgery. Curr. Opin. Anaesthesiol. 2008 21 1 50 54 10.1097/ACO.0b013e3282f3f499 18195610
    [Google Scholar]
  16. Jameson L.C. Janik D.J. Sloan T.B. Electrophysiologic monitoring in neurosurgery. Anesthesiol. Clin. 2007 25 3 605 630, x 10.1016/j.anclin.2007.05.004 17884710
    [Google Scholar]
  17. Purdon P.L. Sampson A. Pavone K.J. Brown E.N. Clinical Electroencephalography for Anesthesiologists. Anesthesiology 2015 123 4 937 960 10.1097/ALN.0000000000000841 26275092
    [Google Scholar]
  18. Johansen J.W. Update on bispectral index monitoring. Baillieres. Best Pract. Res. Clin. Anaesthesiol. 2006 20 1 81 99 10.1016/j.bpa.2005.08.004 16634416
    [Google Scholar]
  19. Schneider A.L. Jordan K.G. Regional Attenuation WithOut Delta (RAWOD): A distinctive EEG pattern that can aid in the diagnosis and management of severe acute ischemic stroke. Am. J. Electroneurodiagn. Technol. 2005 45 2 102 117 10.1080/1086508X.2005.11079517 15989073
    [Google Scholar]
  20. de Mendonça M.L.F. Luccas F.J.C. Verst S.M. Barros M.R. Maldaun M.V.C. Intraoperative Monitoring: Electroencephalogram. Intraoperative Monitoring: Neurophysiology and Surgical Approaches. Cham Springer International Publishing 2022 203 223 10.1007/978‑3‑030‑95730‑8_10
    [Google Scholar]
  21. Holland N.R. Subcortical strokes from intracranial aneurysm surgery: Implications for intraoperative neuromonitoring. J. Clin. Neurophysiol. 1998 15 5 439 446 10.1097/00004691‑199809000‑00008 9821071
    [Google Scholar]
  22. Hughes S.W. Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 2005 11 4 357 372 10.1177/1073858405277450 16061522
    [Google Scholar]
  23. Hagihira S. Changes in the electroencephalogram during anaesthesia and their physiological basis. Br. J. Anaesth. 2015 115 Suppl. 1 i27 i31 10.1093/bja/aev212 26174297
    [Google Scholar]
  24. Crunelli V. David F. Lőrincz M.L. Hughes S.W. The thalamocortical network as a single slow wave-generating unit. Curr. Opin. Neurobiol. 2015 31 72 80 10.1016/j.conb.2014.09.001 25233254
    [Google Scholar]
  25. Hutt A. Lefebvre J. Hight D. Sleigh J. Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia. Neuroimage 2018 179 414 428 10.1016/j.neuroimage.2018.06.043 29920378
    [Google Scholar]
  26. Bai D. Pennefather P.S. MacDonald J.F. Orser B.A. The general anesthetic propofol slows deactivation and desensitization of GABA(A) receptors. J. Neurosci. 1999 19 24 10635 10646 10.1523/JNEUROSCI.19‑24‑10635.1999 10594047
    [Google Scholar]
  27. Hales T.G. Lambert J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol. 1991 104 3 619 628 10.1111/j.1476‑5381.1991.tb12479.x 1665745
    [Google Scholar]
  28. Dong X.P. Xu T.L. The actions of propofol on gamma-aminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat. Anesth. Analg. 2002 95 4 907 914 [table of contents.]. 12351266
    [Google Scholar]
  29. Pistis M. Belelli D. Peters J.A. Lambert J.J. The interaction of general anaesthetics with recombinant GABA A and glycine receptors expressed in Xenopus laevis oocytes: A comparative study. Br. J. Pharmacol. 1997 122 8 1707 1719 10.1038/sj.bjp.0701563 9422818
    [Google Scholar]
  30. Tibbs G.R. Rowley T.J. Sanford R.L. Herold K.F. Proekt A. Hemmings H.C. Jr Andersen O.S. Goldstein P.A. Flood P.D. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J. Pharmacol. Exp. Ther. 2013 345 3 363 373 10.1124/jpet.113.203620 23549867
    [Google Scholar]
  31. Martella G. De Persis C. Bonsi P. Natoli S. Cuomo D. Bernardi G. Calabresi P. Pisani A. Inhibition of persistent sodium current fraction and voltage-gated L-type calcium current by propofol in cortical neurons: Implications for its antiepileptic activity. Epilepsia 2005 46 5 624 635 10.1111/j.1528‑1167.2005.34904.x 15857426
    [Google Scholar]
  32. Kitayama M. Hirota K. Kudo M. Kudo T. Ishihara H. Matsuki A. Inhibitory effects of intravenous anaesthetic agents on K + -evoked glutamate release from rat cerebrocortical slices. Involvement of voltage-sensitive Ca 2+ channels and GABA A receptors. Naunyn Schmiedebergs Arch. Pharmacol. 2002 366 3 246 253 10.1007/s00210‑002‑0590‑6 12172707
    [Google Scholar]
  33. Purdon P.L. Pierce E.T. Mukamel E.A. Prerau M.J. Walsh J.L. Wong K.F.K. Salazar-Gomez A.F. Harrell P.G. Sampson A.L. Cimenser A. Ching S. Kopell N.J. Tavares-Stoeckel C. Habeeb K. Merhar R. Brown E.N. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. USA 2013 110 12 E1142 E1151 10.1073/pnas.1221180110 23487781
    [Google Scholar]
  34. Lewis L.D. Weiner V.S. Mukamel E.A. Donoghue J.A. Eskandar E.N. Madsen J.R. Anderson W.S. Hochberg L.R. Cash S.S. Brown E.N. Purdon P.L. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci. USA 2012 109 49 E3377 E3386 10.1073/pnas.1210907109 23129622
    [Google Scholar]
  35. Amzica F. Basic physiology of burst‐suppression. Epilepsia 2009 50 s12 Suppl. 12 38 39 10.1111/j.1528‑1167.2009.02345.x 19941521
    [Google Scholar]
  36. Jorm C.M. Stamford J.A. Actions of the hypnotic anaesthetic, dexmedetomidine, on noradrenaline release and cell firing in rat locus coeruleus slices. Br. J. Anaesth. 1993 71 3 447 449 10.1093/bja/71.3.447 8104450
    [Google Scholar]
  37. España R.A. Berridge C.W. Organization of noradrenergic efferents to arousal‐related basal forebrain structures. J. Comp. Neurol. 2006 496 5 668 683 10.1002/cne.20946 16615125
    [Google Scholar]
  38. Morairty S. Rainnie D. McCarley R. Greene R. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: A new mechanism for sleep promotion. Neuroscience 2004 123 2 451 457 10.1016/j.neuroscience.2003.08.066 14698752
    [Google Scholar]
  39. Sherin J.E. Elmquist J.K. Torrealba F. Saper C.B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 1998 18 12 4705 4721 10.1523/JNEUROSCI.18‑12‑04705.1998 9614245
    [Google Scholar]
  40. Akeju O. Loggia M.L. Catana C. Pavone K.J. Vazquez R. Rhee J. Contreras Ramirez V. Chonde D.B. Izquierdo-Garcia D. Arabasz G. Hsu S. Habeeb K. Hooker J.M. Napadow V. Brown E.N. Purdon P.L. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 2014 3 e04499 10.7554/eLife.04499 25432022
    [Google Scholar]
  41. Huupponen E. Maksimow A. Lapinlampi P. Särkelä M. Saastamoinen A. Snapir A. Scheinin H. Scheinin M. Meriläinen P. Himanen S-L. Jääskeläinen S. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol. Scand. 2008 52 2 289 294 10.1111/j.1399‑6576.2007.01537.x 18005372
    [Google Scholar]
  42. Akeju O. Pavone K.J. Westover M.B. Vazquez R. Prerau M.J. Harrell P.G. Hartnack K.E. Rhee J. Sampson A.L. Habeeb K. Gao L. Pierce E.T. Walsh J.L. Brown E.N. Purdon P.L. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology 2014 121 5 978 989 10.1097/ALN.0000000000000419 25187999
    [Google Scholar]
  43. Ralvenius W.T. Benke D. Acuña M.A. Rudolph U. Zeilhofer H.U. Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat. Commun. 2015 6 1 6803 10.1038/ncomms7803 25865415
    [Google Scholar]
  44. Rudolph U. Möhler H. GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu. Rev. Pharmacol. Toxicol. 2014 54 1 483 507 10.1146/annurev‑pharmtox‑011613‑135947 24160694
    [Google Scholar]
  45. Sigel E. Ernst M. The Benzodiazepine binding sites of GABAA receptors. Trends Pharmacol. Sci. 2018 39 7 659 671 10.1016/j.tips.2018.03.006 29716746
    [Google Scholar]
  46. Brown E.N. Purdon P.L. Van Dort C.J. General anesthesia and altered states of arousal: A systems neuroscience analysis. Annu. Rev. Neurosci. 2011 34 1 601 628 10.1146/annurev‑neuro‑060909‑153200 21513454
    [Google Scholar]
  47. Engelhardt W. Friess K. Hartung E. Sold M. Dierks T. EEG and auditory evoked potential P300 compared with psychometric tests in assessing vigilance after benzodiazepine sedation and antagonism. Br. J. Anaesth. 1992 69 1 75 80 10.1093/bja/69.1.75 1637608
    [Google Scholar]
  48. Weiner V.S. Zhou D.W. Kahali P. Stephen E.P. Peterfreund R.A. Aglio L.S. Szabo M.D. Eskandar E.N. Salazar-Gomez A.F. Sampson A.L. Cash S.S. Brown E.N. Purdon P.L. Propofol disrupts alpha dynamics in functionally distinct thalamocortical networks during loss of consciousness. Proc. Natl. Acad. Sci. USA 2023 120 11 e2207831120 10.1073/pnas.2207831120 36897972
    [Google Scholar]
  49. Brown E.N. Lydic R. Schiff N.D. General anesthesia, sleep, and coma. N. Engl. J. Med. 2010 363 27 2638 2650 10.1056/NEJMra0808281 21190458
    [Google Scholar]
  50. Seamans J. Losing inhibition with ketamine. Nat. Chem. Biol. 2008 4 2 91 93 10.1038/nchembio0208‑91 18202677
    [Google Scholar]
  51. Bojak I. Day H.C. Liley D.T.J. Ketamine, Propofol, and the EEG: A neural field analysis of HCN1-mediated interactions. Front. Comput. Neurosci. 2013 7 22 10.3389/fncom.2013.00022 23576979
    [Google Scholar]
  52. McMillan R. Muthukumaraswamy S.D. The neurophysiology of ketamine: An integrative review. Rev. Neurosci. 2020 31 5 457 503 10.1515/revneuro‑2019‑0090 32374293
    [Google Scholar]
  53. Belelli D. Lambert J.J. Peters J.A. Wafford K. Whiting P.J. The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. USA 1997 94 20 11031 11036 10.1073/pnas.94.20.11031 9380754
    [Google Scholar]
  54. Forman S.A. Warner D.S. Clinical and molecular pharmacology of etomidate. Anesthesiology 2011 114 3 695 707 10.1097/ALN.0b013e3181ff72b5 21263301
    [Google Scholar]
  55. Delgado-Lezama R. Loeza-Alcocer E. Andrés C. Aguilar J. Guertin P. Felix R. Extrasynaptic GABA(A) receptors in the brainstem and spinal cord: Structure and function. Curr. Pharm. Des. 2013 19 24 4485 4497 10.2174/1381612811319240013 23360278
    [Google Scholar]
  56. O’Meara G.F. Newman R.J. Fradley R.L. Dawson G.R. Reynolds D.S. The GABA-A β3 subunit mediates anaesthesia induced by etomidate. Neuroreport 2004 15 10 1653 1656 10.1097/01.wnr.0000134842.56131.fe 15232301
    [Google Scholar]
  57. Zhang L. Fan S. Zhang J. Fang K. Wang L. Cao Y. Chen L. Liu X. Gu E. Electroencephalographic dynamics of etomidate‐induced loss of consciousness. BMC Anesthesiol. 2021 21 1 108 10.1186/s12871‑021‑01308‑7 33832426
    [Google Scholar]
  58. Perouansky M. Hentschke H. Perkins M. Pearce R.A. Amnesic concentrations of the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (F6, 2N) and isoflurane alter hippocampal theta oscillations in vivo. Anesthesiology 2007 106 6 1168 1176 10.1097/01.anes.0000267600.09764.af 17525592
    [Google Scholar]
  59. Corder G. Castro D.C. Bruchas M.R. Scherrer G. Endogenous and Exogenous Opioids in pain. Annu. Rev. Neurosci. 2018 41 1 453 473 10.1146/annurev‑neuro‑080317‑061522 29852083
    [Google Scholar]
  60. Rusin K.I. Giovannucci D.R. Stuenkel E.L. Moises H.C. Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J. Neurosci. 1997 17 17 6565 6574 10.1523/JNEUROSCI.17‑17‑06565.1997 9254669
    [Google Scholar]
  61. Torrecilla M. Marker C.L. Cintora S.C. Stoffel M. Williams J.T. Wickman K. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J. Neurosci. 2002 22 11 4328 4334 10.1523/JNEUROSCI.22‑11‑04328.2002 12040038
    [Google Scholar]
  62. Scott J.C. Ponganis K.V. Stanski D.R. EEG quantitation of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985 62 3 234 241 10.1097/00000542‑198503000‑00005 3919613
    [Google Scholar]
  63. Kelly E.W. Solt K. Raines D.E. Volatile aromatic anesthetics variably impact human gamma-aminobutyric acid type A receptor function. Anesth. Analg. 2007 105 5 1287 1292 10.1213/01.ane.0000282829.21797.97 17959956
    [Google Scholar]
  64. Nishikawa K. MacIver M.B. Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated responses. Anesthesiology 2000 92 1 228 236 10.1097/00000542‑200001000‑00035 10638920
    [Google Scholar]
  65. Brosnan R.J. GABAA receptor antagonism increases NMDA receptor inhibition by isoflurane at a minimum alveolar concentration. Vet. Anaesth. Analg. 2011 38 3 231 239 10.1111/j.1467‑2995.2011.00605.x 21492389
    [Google Scholar]
  66. Sirois J.E. Lei Q. Talley E.M. Lynch C. III Bayliss D.A. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci. 2000 20 17 6347 6354 10.1523/JNEUROSCI.20‑17‑06347.2000 10964940
    [Google Scholar]
  67. Johansson J.S. Noninactivating tandem pore domain potassium channels as attractive targets for general anesthetics. Anesth. Analg. 2003 96 5 1248 1250 10.1213/01.ANE.0000058847.84859.54 12707114
    [Google Scholar]
  68. Lei L. Ji M. Meng Q. Yang J.J. Neurotoxicity of general anesthetics in the developing brain: Insight into the Glutamate and GABA receptor signalling. J. Anesth. Transl. Med. 2022 1 1 10 19 10.58888/2957‑3912‑20220103
    [Google Scholar]
  69. Akeju O. Westover M.B. Pavone K.J. Sampson A.L. Hartnack K.E. Brown E.N. Purdon P.L. Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology 2014 121 5 990 998 10.1097/ALN.0000000000000436 25233374
    [Google Scholar]
  70. Kumar A. Bhattacharya A. Makhija N. Evoked potential monitoring in anaesthesia and analgesia. Anaesthesia 2000 55 3 225 241 10.1046/j.1365‑2044.2000.01120.x 10671840
    [Google Scholar]
  71. Banoub M. Tetzlaff J.E. Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: Implications for perioperative monitoring. Anesthesiology 2003 99 3 716 737 10.1097/00000542‑200309000‑00029 12960558
    [Google Scholar]
  72. Richards C.D. Actions of general anaesthetics on synaptic transmission in the CNS. Br. J. Anaesth. 1983 55 3 201 207 10.1093/bja/55.3.201 6131686
    [Google Scholar]
  73. Rabai F. Mohamed B. Seubert C.N. Optimizing intraoperative Neuromonitoring: Anesthetic considerations. Curr. Anesthesiol. Rep. 2018 8 3 306 317 10.1007/s40140‑018‑0281‑6
    [Google Scholar]
  74. Ghatol D. Widrich J. Intraoperative Neurophysiological Monitoring. 2024
    [Google Scholar]
  75. Patton H.D. Amassian V.E. Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J. Neurophysiol. 1954 17 4 345 363 10.1152/jn.1954.17.4.345 13175052
    [Google Scholar]
  76. MacDonald D.B. Intraoperative motor evoked potential monitoring: Overview and update. J. Clin. Monit. Comput. 2006 20 5 347 377 10.1007/s10877‑006‑9033‑0 16832580
    [Google Scholar]
  77. Langeloo D.D. Lelivelt A. Louis Journée H. Slappendel R. de Kleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: A study of 145 patients. Spine 2003 28 10 1043 1050 10.1097/01.BRS.0000061995.75709.78 12768147
    [Google Scholar]
  78. Kothbauer K.F. Deletis V. Epstein F.J. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: Correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg. Focus 1998 4 5 E3 10.3171/foc.1998.4.5.4 17154450
    [Google Scholar]
  79. Deletis V. Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: A review focus on the corticospinal tracts. Clin. Neurophysiol. 2008 119 2 248 264 10.1016/j.clinph.2007.09.135 18053764
    [Google Scholar]
  80. Morota N. Deletis V. Constantini S. Kofler M. Cohen H. Epstein F.J. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 1997 41 6 1327 1336 10.1097/00006123‑199712000‑00017 9402584
    [Google Scholar]
  81. MacDonald D.B. Skinner S. Shils J. Yingling C. Intraoperative motor evoked potential monitoring – A position statement by the American society of neurophysiological monitoring. Clin. Neurophysiol. 2013 124 12 2291 2316 10.1016/j.clinph.2013.07.025 24055297
    [Google Scholar]
  82. Kungys G. Kim J. Jinks S.L. Atherley R.J. Antognini J.F. Propofol produces immobility via action in the ventral horn of the spinal cord by a GABAergic mechanism. Anesth. Analg. 2009 108 5 1531 1537 10.1213/ane.0b013e31819d9308 19372332
    [Google Scholar]
  83. Jin Y.H. Zhang Z. Mendelowitz D. Andresen M.C. Presynaptic actions of propofol enhance inhibitory synaptic transmission in isolated solitary tract nucleus neurons. Brain Res. 2009 1286 75 83 10.1016/j.brainres.2009.06.058 19559683
    [Google Scholar]
  84. Deguchi H. Furutani K. Mitsuma Y. Kamiya Y. Baba H. Propofol reduces the amplitude of transcranial electrical motor-evoked potential without affecting spinal motor neurons: A prospective, single-arm, interventional study. J. Anesth. 2021 35 3 434 441 10.1007/s00540‑021‑02927‑7 33825982
    [Google Scholar]
  85. Rozet I. Metzner J. Brown M. Treggiari M.M. Slimp J.C. Kinney G. Sharma D. Lee L.A. Vavilala M.S. Dexmedetomidine does not affect evoked potentials during spine surgery. Anesth. Analg. 2015 121 2 492 501 10.1213/ANE.0000000000000840 26097987
    [Google Scholar]
  86. Tobias J.D. Goble T.J. Bates G. Anderson J.T. Hoernschemeyer D.G. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr. Anaesth. 2008 18 11 1082 1088 10.1111/j.1460‑9592.2008.02733.x 18717802
    [Google Scholar]
  87. Bala E. Sessler D.I. Nair D.R. McLain R. Dalton J.E. Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology 2008 109 3 417 425 10.1097/ALN.0b013e318182a467 18719439
    [Google Scholar]
  88. Li Y. Meng L. Peng Y. Qiao H. Guo L. Han R. Gelb A.W. Effects of Dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: A randomized controlled trial. BMC Anesthesiol. 2015 16 1 51 10.1186/s12871‑016‑0217‑y 27484701
    [Google Scholar]
  89. Chen Z. Lin S. Shao W. Effects on somatosensory and motor evoked potentials of senile patients using different doses of dexmedetomidine during spine surgery. Ir. J. Med. Sci. 2015 184 4 813 818 10.1007/s11845‑014‑1178‑0 25183287
    [Google Scholar]
  90. Mahmoud M. Sadhasivam S. Salisbury S. Nick T.G. Schnell B. Sestokas A.K. Wiggins C. Samuels P. Kabalin T. McAuliffe J. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology 2010 112 6 1364 1373 10.1097/ALN.0b013e3181d74f55 20460997
    [Google Scholar]
  91. Jiang X. Tang X. Liu S. Liu L. Effects of dexmedetomidine on evoked potentials in spinal surgery under combined intravenous inhalation anesthesia: A randomized controlled trial. BMC Anesthesiol. 2023 23 1 36 10.1186/s12871‑023‑01990‑9 36721105
    [Google Scholar]
  92. Weber V. Abbott T.E.F. Ackland G.L. Reducing the dose of neuromuscular blocking agents with adjuncts: A systematic review and meta-analysis. Br. J. Anaesth. 2021 126 3 608 621 10.1016/j.bja.2020.09.048 33218672
    [Google Scholar]
  93. Langeron O. Lille F. Zerhouni O. Orliaguet G. Saillant G. Riou B. Coriat P. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br. J. Anaesth. 1997 78 6 701 706 10.1093/bja/78.6.701 9215023
    [Google Scholar]
  94. Zaarour C. Engelhardt T. Strantzas S. Pehora C. Lewis S. Crawford M.W. Effect of low-dose ketamine on voltage requirement for transcranial electrical motor evoked potentials in children. Spine 2007 32 22 E627 E630 10.1097/BRS.0b013e3181573eb4 18090070
    [Google Scholar]
  95. Kalkman C.J. Drummond J.C. Patel P.M. Sano T. Chesnut R.M. Effects of droperidol, pentobarbital, and ketamine on myogenic transcranial magnetic motor-evoked responses in humans. Neurosurgery 1994 35 6 1066 1071 10.1227/00006123‑199412000‑00008 7885550
    [Google Scholar]
  96. Furutani K. Deguchi H. Matsuhashi M. Mitsuma Y. Kamiya Y. Baba H. A bolus dose of ketamine reduces the amplitude of the transcranial electrical motor-evoked potential: A randomized, double-blinded, placebo-controlled study. J. Neurosurg. Anesthesiol. 2021 33 3 230 238 10.1097/ANA.0000000000000653 31633576
    [Google Scholar]
  97. Hara Y. Tamagawa M. Nakaya H. The effects of ketamine on conduction velocity and maximum rate of rise of action potential upstroke in guinea pig papillary muscles: Comparison with quinidine. Anesth. Analg. 1994 79 4 687 693 10.1213/00000539‑199410000‑00012 7943776
    [Google Scholar]
  98. Iida H. Dohi S. Tanahashi T. Watanabe Y. Takenaka M. Spinal conduction block by intrathecal ketamine in dogs. Anesth. Analg. 1997 85 1 106 110 9212131
    [Google Scholar]
  99. Liu H.Y. Zeng H.Y. Cheng H. Wang M.R. Qiao H. Han R.Q. Comparison of the effects of etomidate and propofol combined with remifentanil and guided by comparable BIS on transcranial electrical motor-evoked potentials during spinal surgery. J. Neurosurg. Anesthesiol. 2012 24 2 133 138 10.1097/ANA.0b013e31823dfb2e 22126894
    [Google Scholar]
  100. Sloan T. Rogers J. Dose and timing effect of etomidate on motor evoked potentials elicited by transcranial electric or magnetic stimulation in the monkey and baboon. J. Clin. Monit. Comput. 2009 23 4 253 261 10.1007/s10877‑009‑9190‑z 19597748
    [Google Scholar]
  101. Meinck H.M. Möhlenhof O. Kettler D. Neurophysiological effects of etomidate, a new short-acting hypnotic. Electroencephalogr. Clin. Neurophysiol. 1980 50 5-6 515 522 10.1016/0013‑4694(80)90019‑X 6160995
    [Google Scholar]
  102. Ghoneim M.M. Yamada T. Etomidate. Anesth. Analg. 1977 56 4 479 485 10.1213/00000539‑197707000‑00003 560132
    [Google Scholar]
  103. Ghaly R.F. Stone J.L. Levy W.J. Roccaforte P. Brunner E.B. The effect of etomidate on motor evoked potentials induced by transcranial magnetic stimulation in the monkey. Neurosurgery 1990 27 6 936 942 10.1227/00006123‑199012000‑00012 2133376
    [Google Scholar]
  104. Ho S. Waite P.M. Effects of different anesthetics on the paired-pulse depression of the h reflex in adult rat. Exp. Neurol. 2002 177 2 494 502 10.1006/exnr.2002.8013 12429194
    [Google Scholar]
  105. Sloan T.B. Muscle relaxant use during intraoperative neurophysiologic monitoring. J. Clin. Monit. Comput. 2013 27 1 35 46 10.1007/s10877‑012‑9399‑0 23015366
    [Google Scholar]
  106. Betz M. Aguirre J. Schubert M. Götschi T. Huber B. Schüpbach R. Brada M. Spirig J.M. Farshad M. Hand or foot train-of-four tests and surgical site muscle relaxation assessed with multiple motor evoked potentials. Eur. J. Anaesthesiol. 2021 38 8 872 879 10.1097/EJA.0000000000001398 33259448
    [Google Scholar]
  107. Hayashi H. Kawaguchi M. Yamamoto Y. Inoue S. Koizumi M. Ueda Y. Takakura Y. Furuya H. Evaluation of reliability of post-tetanic motor-evoked potential monitoring during spinal surgery under general anesthesia. Spine 2008 33 26 E994 E1000 10.1097/BRS.0b013e318188adfc 19092611
    [Google Scholar]
  108. Plaud B. Meretoja O. Hofmockel R. Raft J. Stoddart P.A. van Kuijk J.H.M. Hermens Y. Mirakhur R.K. Reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology 2009 110 2 284 294 10.1097/ALN.0b013e318194caaa 19194156
    [Google Scholar]
  109. Tobias J.D. Trifa M. Krishna S. D’Mello A. Hakim M. Sugammadex to reverse neuromuscular blockade and provide optimal conditions for motor-evoked potential monitoring. Saudi J. Anaesth. 2017 11 2 219 221 10.4103/1658‑354X.203024 28442963
    [Google Scholar]
  110. Venkatraghavan L. Royan N. Boyle S.L. Dinsmore M. Lu N. Cushman K. Massicotte E.M. Prabhu A. Effect of reversal of residual neuromuscular blockade on the amplitude of motor evoked potentials: A randomized controlled crossover study comparing sugammadex and placebo. Neurol. Sci. 2022 43 1 615 623 10.1007/s10072‑021‑05318‑8 34041634
    [Google Scholar]
  111. Xiang B. Jiao S. Zhang Y. Wang L. Yao Y. Yuan F. Chen R. Zhou Q. Effects of desflurane and sevoflurane on somatosensory-evoked and motor-evoked potential monitoring during neurosurgery: A randomized controlled trial. BMC Anesthesiol. 2021 21 1 240 10.1186/s12871‑021‑01463‑x 34620093
    [Google Scholar]
  112. Tamkus A.A. Rice K.S. Kim H.L. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014 14 8 1440 1446 10.1016/j.spinee.2013.08.037 24209393
    [Google Scholar]
  113. Chong C.T. Manninen P. Sivanaser V. Subramanyam R. Lu N. Venkatraghavan L. Direct comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials monitoring. J. Neurosurg. Anesthesiol. 2014 26 4 306 312 10.1097/ANA.0000000000000041 24487732
    [Google Scholar]
  114. Shida Y. Shida C. Hiratsuka N. Kaji K. Ogata J. High-frequency stimulation restored motor-evoked potentials to the baseline level in the upper extremities but not in the lower extremities under sevoflurane anesthesia in spine surgery. J. Neurosurg. Anesthesiol. 2012 24 2 113 120 10.1097/ANA.0b013e318237fa41 22036875
    [Google Scholar]
  115. Lyon R. Feiner J. Lieberman J.A. Progressive suppression of motor evoked potentials during general anesthesia: The phenomenon of “anesthetic fade”. J. Neurosurg. Anesthesiol. 2005 17 1 13 19 15632537
    [Google Scholar]
  116. Gray N.W. Zhorov B.S. Moczydlowski E.G. Interaction of local anesthetics with the K + channel pore domain. Channels (Austin) 2013 7 3 182 193 10.4161/chan.24455 23545989
    [Google Scholar]
  117. Komai H. McDowell T.S. Local anesthetic inhibition of voltage-activated potassium currents in rat dorsal root ganglion neurons. Anesthesiology 2001 94 6 1089 1095 10.1097/00000542‑200106000‑00025 11465602
    [Google Scholar]
  118. Sugiyama K. Muteki T. Local anesthetics depress the calcium current of rat sensory neurons in culture. Anesthesiology 1994 80 6 1369 1378 10.1097/00000542‑199406000‑00025 8010481
    [Google Scholar]
  119. Becker D.E. Reed K.L. Local anesthetics: Review of pharmacological considerations. Anesth. Prog. 2012 59 2 90 102 10.2344/0003‑3006‑59.2.90 22822998
    [Google Scholar]
  120. Wang Y. Zhao S. Han L. Huang S. Xu F. Fu D. The effect of intravenous injection of lidocaine before anesthesia induction on perioperative Propofol requirement: A meta-analysis. J. Anesth. Transl. Med. 2022 1 2 7 11 10.58888/2957‑3912‑20220202
    [Google Scholar]
  121. Sloan T.B. Mongan P. Lyda C. Koht A. Lidocaine infusion adjunct to total intravenous anesthesia reduces the total dose of propofol during intraoperative neurophysiological monitoring. J. Clin. Monit. Comput. 2014 28 2 139 147 10.1007/s10877‑013‑9506‑x 23996498
    [Google Scholar]
  122. Furutani K. Tobita T. Ishii H. Deguchi H. Mitsuma Y. Kamiya Y. Baba H. Epidural administration of ropivacaine reduces the amplitude of transcranial electrical motor–Evoked potentials: A double-blinded, randomized, controlled trial. Anesth. Analg. 2021 132 4 1092 1100 10.1213/ANE.0000000000005236 33060493
    [Google Scholar]
  123. Bräu M.E. Branitzki P. Olschewski A. Vogel W. Hempelmann G. Block of neuronal tetrodotoxin-resistant Na+ currents by stereoisomers of piperidine local anesthetics. Anesth. Analg. 2000 91 6 1499 1505 10.1097/00000539‑200012000‑00038 11094008
    [Google Scholar]
  124. Domagalska M. Ciftsi B. Janusz P. Reysner T. Daroszewski P. Kowalski G. Wieczorowska-Tobis K. Kotwicki T. Effectiveness of the bilateral and bilevel Erector Spinae plane block (ESPB) in pediatric Idiopathic Scoliosis surgery: A randomized, double-blinded, controlled trial. J. Pediatr. Orthop. 2024 44 7 e634 e640 10.1097/BPO.0000000000002707 38689466
    [Google Scholar]
  125. Pan S.J. Vorhies J.S. Lee L.H. López J.R. Tsui B.C.H. The effect of intraoperative lidocaine administration in a disrupted erector spinae fascial plane on intercostal transcranial motor evoked potentials. J. Clin. Anesth. 2022 82 110956 10.1016/j.jclinane.2022.110956 36029703
    [Google Scholar]
  126. Saima S. Tsurumachi N. Okuda Y. Pericapsular nerve group block under motor evoked potentials monitoring. Minerva Anestesiol. 2024 90 7-8 708 709 10.23736/S0375‑9393.24.18059‑5 38571406
    [Google Scholar]
  127. Ivanusic J. Konishi Y. Barrington M.J. A cadaveric study investigating the mechanism of action of Erector Spinae Blockade. Reg. Anesth. Pain Med. 2018 43 6 567 571 10.1097/AAP.0000000000000789 29746445
    [Google Scholar]
  128. Manohara N. Pinto V. Lobo C. Byrappa V. Lobo F.A. Changes in motor evoked potentials after erector spinae block in scoliosis surgery—when to take pre-incision baseline recordings? J. Clin. Monit. Comput. 2023 38 1 229 234 10.1007/s10877‑023‑01058‑6 37460867
    [Google Scholar]
  129. Boisseau N. Madany M. Staccini P. Armando G. Martin F. Grimaud D. Raucoules-Aimé M. Comparison of the effects of sevoflurane and propofol on cortical somatosensory evoked potentials. Br. J. Anaesth. 2002 88 6 785 789 10.1093/bja/88.6.785 12173194
    [Google Scholar]
  130. Tanaka R. Tanaka S. Ichino T. Ishida T. Fuseya S. Kawamata M. Differential effects of sevoflurane and propofol on an electroretinogram and visual evoked potentials. J. Anesth. 2020 34 2 298 302 10.1007/s00540‑020‑02733‑7 31950267
    [Google Scholar]
  131. Feuerecker M. Lenk M. Flake G. Edelmann-Gahr V. Wiepcke D. Hornuss C. Daunderer M. Müller H.H. Kuhnle G.E. Effects of increasing sevoflurane MAC levels on mid-latency auditory evoked potentials in infants, schoolchildren, and the elderly. Br. J. Anaesth. 2011 107 5 726 734 10.1093/bja/aer226 21862495
    [Google Scholar]
  132. Litvan H. Jensen E.W. Revuelta M. Henneberg S.W. Paniagua P. Campos J.M. Martínez P. Caminal P. Villar Landeira J.M. Comparison of auditory evoked potentials and the A‐line ARX Index for monitoring the hypnotic level during sevoflurane and propofol induction. Acta Anaesthesiol. Scand. 2002 46 3 245 251 10.1034/j.1399‑6576.2002.t01‑1‑460304.x 11939913
    [Google Scholar]
  133. Ghita A.M. Parvu D. Sava R. Georgescu L. Zagrean L. Analysis of the visual evoked potential in anesthesia with sevoflurane and chloral hydrate : (Variability of amplitudes, latencies and morphology of VEP with the depth of anesthesia). J. Med. Life 2013 6 2 214 225 23904886
    [Google Scholar]
  134. Liu E.H.C. Wong H.K. Chia C.P. Lim H.J. Chen Z.Y. Lee T.L. Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br. J. Anaesth. 2005 94 2 193 197 10.1093/bja/aei003 15516356
    [Google Scholar]
  135. Schwender D. Haessler R. Klasing S. Madler C. Pöppel E. Peter K. Mid-latency auditory evoked potentials and circulatory response to loud sounds. Br. J. Anaesth. 1994 72 3 307 314 10.1093/bja/72.3.307 8130050
    [Google Scholar]
  136. Schwender D. Kaiser A. Klasing S. Faber-Züllig E. Golling W. Pöppel E. Peter K. [Anesthesia with flunitrazepam/fentanyl and isoflurane/fentanyl. Unconscious perception and mid-latency auditory evoked potentials]. Anaesthesist 1994 43 5 289 297 10.1007/s001010050060 8042757
    [Google Scholar]
  137. Sloan T. Sloan H. Rogers J. Nitrous oxide and isoflurane are synergistic with respect to amplitude and latency effects on sensory evoked potentials. J. Clin. Monit. Comput. 2010 24 2 113 123 10.1007/s10877‑009‑9219‑3 20063047
    [Google Scholar]
  138. Zhou H.H. Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology 2000 93 1 32 38 10.1097/00000542‑200007000‑00010 10861143
    [Google Scholar]
  139. Ubags L.H. Kalkman C.J. Been H.D. Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery 1998 43 1 90 94 10.1097/00006123‑199807000‑00058 9657194
    [Google Scholar]
  140. Hasan M.S. Tan J.K. Chan C.Y.W. Kwan M.K. Karim F.S.A. Goh K.J. Comparison between effect of desflurane/remifentanil and propofol/remifentanil anesthesia on somatosensory evoked potential monitoring during scoliosis surgery—A randomized controlled trial. J. Orthop. Surg. (Hong Kong) 2018 26 3 2309499018789529 10.1177/2309499018789529 30058437
    [Google Scholar]
  141. Schwender D. Klasing S. Conzen P. Finsterer U. Pöppel E. Peter K. Midlatency auditory evoked potentials during anaesthesia with increasing endexpiratory concentrations of desflurane. Acta Anaesthesiol. Scand. 1996 40 2 171 176 10.1111/j.1399‑6576.1996.tb04416.x 8848915
    [Google Scholar]
  142. Davies F.W. Mantzaridis H. Kenny G.N.C. Fisher A.C. Middle latency auditory evoked potentials during repeated transitions from consciousness to unconsciousness. Anaesthesia 1996 51 2 107 113 10.1111/j.1365‑2044.1996.tb07694.x 8779362
    [Google Scholar]
  143. Schwender D. Daunderer M. Mulzer S. Klasing S. Finsterer U. Peter K. Midlatency auditory evoked potentials predict movements during anesthesia with isoflurane or propofol. Anesth. Analg. 1997 85 1 164 173 9212142
    [Google Scholar]
  144. Thornton C. Konieczko K.M. Knight A.B. Kaul B. Jones J.G. Dore C.J. White D.C. Effect of propofol on the auditory evoked response and oesophageal contractility. Br. J. Anaesth. 1989 63 4 411 417 10.1093/bja/63.4.411 2818917
    [Google Scholar]
  145. Ota T. Kawai K. Kamada K. Kin T. Saito N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J. Neurosurg. 2010 112 2 285 294 10.3171/2009.6.JNS081272 19630493
    [Google Scholar]
  146. Nathan N. Tabaraud F. Lacroix F. Mouliès D. Viviand X. Lansade A. Terrier G. Feiss P. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br. J. Anaesth. 2003 91 4 493 497 10.1093/bja/aeg211 14504148
    [Google Scholar]
  147. Meng X.L. Wang L.W. Zhao W. Guo X.Y. Effects of different etomidate doses on intraoperative somatosensory-evoked potential monitoring. Ir. J. Med. Sci. 2015 184 4 799 803 10.1007/s11845‑014‑1174‑4 25060967
    [Google Scholar]
  148. McPherson R.W. Sell B. Traystman R.J. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology 1986 65 6 584 589 10.1097/00000542‑198612000‑00004 3789431
    [Google Scholar]
  149. Thornton C. Heneghan C.P.H. Navaratnarajah M. Bateman P.E. Jones J.G. Effect of etomidate on the auditory evoked response in man. Br. J. Anaesth. 1985 57 6 554 561 10.1093/bja/57.6.554 3890909
    [Google Scholar]
  150. Chi O.Z. Subramoni J. Jasaitis D. Visual evoked potentials during etomidate administration in humans. Can. J. Anaesth. 1990 37 4 452 456 10.1007/BF03005626 2340616
    [Google Scholar]
  151. Kalkman C.J. Drummond J.C. Ribberink A.A. Patel P.M. Sano T. Bickford R.G. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 1992 76 4 502 509 10.1097/00000542‑199204000‑00003 1550274
    [Google Scholar]
  152. Schubert A. Licina M.G. Lineberry P.J. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology 1990 72 1 33 39 10.1097/00000542‑199001000‑00007 2297131
    [Google Scholar]
  153. Schwender D. Faber-Züllig E. Fett W. Klasing S. Finsterer U. Pöppel E. Peter K. Mid-latency auditory evoked potentials in humans during anesthesia with S (+) ketamine--a double-blind, randomized comparison with racemic ketamine. Anesth. Analg. 1994 78 2 267 274 10.1213/00000539‑199402000‑00012 8311278
    [Google Scholar]
  154. Schwender D. Klasing S. Madler C. Pöppel E. Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br. J. Anaesth. 1993 71 5 629 632 10.1093/bja/71.5.629 8251269
    [Google Scholar]
  155. Hou W.Y. Lee W.Y. Lin S.M. Liu C.C. Susceto L. Sun W.Z. Lin S.Y. The effects of ketamine, propofol and nitrous oxide on visual evoked potential during fentanyl anesthesia. Ma Zui Xue Za Zhi 1993 31 2 97 102 7934693
    [Google Scholar]
  156. Pacreu S. Vilà E. Moltó L. Fernández-Candil J. Fort B. Lin Y. León A. Effect of dexmedetomidine on evoked‐potential monitoring in patients undergoing brain stem and supratentorial cranial surgery. Acta Anaesthesiol. Scand. 2021 65 8 1043 1053 10.1111/aas.13835 33884609
    [Google Scholar]
  157. Loughnan B.L. Sebel P.S. Thomas D. Rutherfoord C.F. Rogers H. Evoked potentials following diazepam or fentanyl. Anaesthesia 1987 42 2 195 198 10.1111/j.1365‑2044.1987.tb02999.x 3826596
    [Google Scholar]
  158. Chabal C. Jacobson L. Little J. Effects of intrathecal fentanyl and lidocaine on somatosensory-evoked potentials, the H-reflex, and clinical responses. Anesth. Analg. 1988 67 6 509 513 10.1213/00000539‑198806000‑00003 3377205
    [Google Scholar]
  159. Schubert A. Drummond J.C. Peterson D.O. Saidman L.J. The effect of high-dose fentanyl on human median nerve somatosensory-evoked responses. Can. J. Anaesth. 1987 34 1 35 40 10.1007/BF03007679 3829283
    [Google Scholar]
  160. Pathak K.S. Brown R.H. Cascorbi H.F. Nash C.L. Jr Effects of fentanyl and morphine on intraoperative somatosensory cortical-evoked potentials. Anesth. Analg. 1984 63 9 833 837 10.1213/00000539‑198409000‑00009 6465579
    [Google Scholar]
  161. Schwender D. Rimkus T. Haessler R. Klasing S. Pöppel E. Peter K. Effects of increasing doses of alfentanil, fentanyl and morphine on mid-latency auditory evoked potentials. Br. J. Anaesth. 1993 71 5 622 628 10.1093/bja/71.5.622 8251268
    [Google Scholar]
  162. Damiani Cavero S. Viera Alemán C. Santos Anzorandia C. Bacallao Gallestey J. Febles Piñar E. Rivero Moreno M. Anesthetic agents and visual evoked potentials in patients undergoing transphenoidal or breast reconstruction surgery. Neurologia 1997 12 2 51 55 9147451
    [Google Scholar]
  163. Fernández-Galinski S.M. Monells J. Espadaler J.M. Pol O. Puig M.M. Effects of subarachnoid lidocaine, meperidine and fentanyl on somatosensory and motor evoked responses in awake humans. Acta Anaesthesiol. Scand. 1996 40 1 39 46 10.1111/j.1399‑6576.1996.tb04386.x 8904258
    [Google Scholar]
  164. Scaife J.C. Groves J. Langley R.W. Bradshaw C.M. Szabadi E. Sensitivity of late-latency auditory and somatosensory evoked potentials to threat of electric shock and the sedative drugs diazepam and diphenhydramine in human volunteers. J. Psychopharmacol. 2006 20 4 485 495 10.1177/0269881105059343 16204321
    [Google Scholar]
  165. Schwender D. Klasing S. Madler C. Pöppel E. Peter K. Effects of benzodiazepines on mid-latency auditory evoked potentials. Can. J. Anaesth. 1993 40 12 1148 1154 10.1007/BF03009604 8281591
    [Google Scholar]
  166. Ebe M. Meier-Ewert K.H. Broughton R. Effects of intravenous diazepam (valium) upon evoked potentials of photosensitive epileptic and normal subjects. Electroencephalogr. Clin. Neurophysiol. 1969 27 4 429 435 10.1016/0013‑4694(69)91454‑0 4186742
    [Google Scholar]
  167. Kaieda R. Maekawa T. Takeshita H. Maruyama Y. Shimizu H. Shimoji K. Effects of diazepam on evoked electrospinogram and evoked electromyogram in man. Anesth. Analg. 1981 60 4 197 200 10.1213/00000539‑198160040‑00005 7193997
    [Google Scholar]
  168. Sloan T.B. Fugina M.L. Toleikis J.R. Effects of midazolam on median nerve somatosensory evoked potentials. Br. J. Anaesth. 1990 64 5 590 593 10.1093/bja/64.5.590 2354098
    [Google Scholar]
  169. Lauer K. Munshi C. Larson S. The effect of midazolam on median nerve somatosensory evoked potentials. J. Clin. Monit. 1994 10 3 181 184 10.1007/BF02908858 8027749
    [Google Scholar]
  170. Schwender D. Daunderer M. Schnatmann N. Klasing S. Finsterer U. Peter K. Midlatency auditory evoked potentials and motor signs of wakefulness during anaesthesia with midazolam. Br. J. Anaesth. 1997 79 1 53 58 10.1093/bja/79.1.53 9301389
    [Google Scholar]
  171. Koopmans R. Dingemanse J. Danhof M. Horsten G.P.M. van Boxtel C.J. Pharmacokinetic-pharmacodynamic modeling of midazolam effects on the human central nervous system. Clin. Pharmacol. Ther. 1988 44 1 14 22 10.1038/clpt.1988.106 3391000
    [Google Scholar]
  172. Urban M.K. Fields K. Donegan S.W. Beathe J.C. Pinter D.W. Boachie-Adjei O. Emerson R.G. A randomized crossover study of the effects of lidocaine on motor- and sensory-evoked potentials during spinal surgery. Spine J. 2017 17 12 1889 1896 10.1016/j.spinee.2017.06.024 28666848
    [Google Scholar]
  173. Kraus M. Segal N. Shkolnik M. Kochva A. German L. Kaplan D. Greemberg L. Puterman M. The influence of epidural anesthesia on the hearing system after normal labor. Int. J. Audiol. 2011 50 8 519 522 10.3109/14992027.2011.568012 21486123
    [Google Scholar]
  174. Kasaba T. Kosaka Y. Itoga S. Effects of intravenous lidocaine administration on auditory brainstem response. Masui 1991 40 6 931 935 1875540
    [Google Scholar]
  175. Liu M. Wang N. Wang D. Liu J. Zhou X. Jin W. Effect of low-dose lidocaine on MEPs in patients undergoing intracranial tumor resection with propofol anesthesia: A randomized controlled trial. Medicine (Baltimore) 2022 101 32 e29965 10.1097/MD.0000000000029965 35960044
    [Google Scholar]
  176. Chiappa K.H. Ropper A.H. Evoked potentials in clinical medicine (second of two parts). N. Engl. J. Med. 1982 306 20 1205 1211 10.1056/NEJM198205203062004 6280049
    [Google Scholar]
  177. Sebel P.S. Erwin C.W. Neville W.K. Effects of halothane and enflurane on far and near field somatosensory evoked potentials. Br. J. Anaesth. 1987 59 12 1492 1496 10.1093/bja/59.12.1492 3426907
    [Google Scholar]
  178. Guertin P.A. Hounsgaard J. Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials. Neuroscience 1999 88 2 353 358 10.1016/S0306‑4522(98)00371‑6 10197758
    [Google Scholar]
  179. Bloom M. Beric A. Bekker A. Dexmedetomidine infusion and somatosensory evoked potentials. J. Neurosurg. Anesthesiol. 2001 13 4 320 322 10.1097/00008506‑200110000‑00007 11733664
    [Google Scholar]
  180. Drexler B. Jurd R. Rudolph U. Antkowiak B. Distinct actions of etomidate and propofol at β3-containing γ-aminobutyric acid type A receptors. Neuropharmacology 2009 57 4 446 455 10.1016/j.neuropharm.2009.06.014 19555700
    [Google Scholar]
  181. Koht A. Schütz W. Schmidt G. Schramm J. Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth. Analg. 1988 67 5 435 441 10.1213/00000539‑198805000‑00003 3364762
    [Google Scholar]
  182. Sloan T.B. Nondepolarizing neuromuscular blockade does not alter sensory evoked potentials. J. Clin. Monit. 1994 10 1 4 10 10.1007/BF01651460 8126538
    [Google Scholar]
  183. Sloan T.B. Toleikis J.R. Toleikis S.C. Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3 % desflurane. J. Clin. Monit. Comput. 2015 29 1 77 85 10.1007/s10877‑014‑9571‑9 24643708
    [Google Scholar]
  184. Schubert A. Licina M.G. Glaze G.M. Paranandi L. Systemic lidocaine and human somatosensoryevoked potentials during sufentanil-isoflurane anaesthesia. Can. J. Anaesth. 1992 39 6 569 575 10.1007/BF03008320 1386560
    [Google Scholar]
  185. Nagy I. Woolf C.J. Lignocaine selectively reduces C fibre-evoked neuronal activity in rat spinal cord in vitro by decreasing N -methyl-D-aspartate and neurokinin receptor-mediated post-synaptic depolarizations; implications for the development of novel centrally acting analgesics. Pain 1996 64 1 59 70 10.1016/0304‑3959(95)00072‑0 8867247
    [Google Scholar]
  186. Chui J. Freytag A. Glimore G. Dhir S. Rachinsky M. Murkin J. A novel approach of using brachial plexus blockade as an experimental model for diagnosis of intraoperative nerve dysfunction with somatosensory evoked potentials: A blinded proof-of-concept study Can J Anaesth 2021 68 7 1018 1027
    [Google Scholar]
  187. Kawaguchi J. Matsuura N. Kasahara M. Ichinohe T. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side. J. Clin. Neurophysiol. 2015 32 1 39 43 10.1097/WNP.0000000000000122 25159735
    [Google Scholar]
  188. Labrom R.D. Hoskins M. Reilly C.W. Tredwell S.J. Wong P.K.H. Clinical usefulness of somatosensory evoked potentials for detection of brachial plexopathy secondary to malpositioning in scoliosis surgery. Spine 2005 30 18 2089 2093 10.1097/01.brs.0000179305.89193.46 16166901
    [Google Scholar]
  189. Grundy B.L. Jannetta P.J. Procopio P.T. Lina A. Boston J.R. Doyle E. Intraoperative monitoring of brain-stem auditory evoked potentials. J. Neurosurg. 1982 57 5 674 681 10.3171/jns.1982.57.5.0674 7131068
    [Google Scholar]
  190. Park S.K. Joo B.E. Lee S. Lee J.A. Hwang J.H. Kong D.S. Seo D.W. Park K. Lee H.T. The critical warning sign of real-time brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm. Clin. Neurophysiol. 2018 129 5 1097 1102 10.1016/j.clinph.2017.12.032 29342440
    [Google Scholar]
  191. Kaga K. Hink R.F. Shinoda Y. Suzuki J. Evidence for a primary cortical origin of a middle latency auditory evoked potential in cats. Electroencephalogr. Clin. Neurophysiol. 1980 50 3-4 254 266 10.1016/0013‑4694(80)90153‑4 6160967
    [Google Scholar]
  192. Lovrich D. Novick B. Vaughan H.G. Jr Topographic analysis of auditory event-related potentials associated with acoustic and semantic processing. Evok. Pot. 1988 71 1 40 54 10.1016/0168‑5597(88)90018‑4 2446845
    [Google Scholar]
  193. Jefferys J.G.R. Traub R.D. Whittington M.A. Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci. 1996 19 5 202 208 10.1016/S0166‑2236(96)10023‑0 8723208
    [Google Scholar]
  194. Galambos R. Makeig S. Talmachoff P.J. A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA 1981 78 4 2643 2647 10.1073/pnas.78.4.2643 6941317
    [Google Scholar]
  195. Plourde G. Picton T.W. Human auditory steady-state response during general anesthesia. Anesth. Analg. 1990 71 5 460 468 10.1213/00000539‑199011000‑00002 2221405
    [Google Scholar]
  196. Rowbotham D.J. Smith G. Aitkenhead A.R. Smith and Aitkenhead’s Textbook of Anaesthesia. Elsevier 6th ed 2013
    [Google Scholar]
  197. Cohen M.S. Britt R.H. Effects of sodium pentobarbital, ketamine, halothane, and chloralose on brainstem auditory evoked responses. Anesth. Analg. 1982 61 4 338 343 10.1213/00000539‑198204000‑00005 7199850
    [Google Scholar]
  198. Kochs E. Bischoff P. Ketamine and evoked potentials. Anaesthesist 1994 43 Suppl. 2 S8 S14 7840419
    [Google Scholar]
  199. Iselin-Chaves I.A. El Moalem H.E. Gan T.J. Ginsberg B. Glass P.S.A. Changes in the auditory evoked potentials and the bispectral index following propofol or propofol and alfentanil. Anesthesiology 2000 92 5 1300 1310 10.1097/00000542‑200005000‑00018 10781275
    [Google Scholar]
  200. Eisenberg L. Taub H.A. Burana A. Memory under diazepam-morphine neuroleptanesthesia in male surgical patients. Anesth. Analg. 1974 53 4 488 495 10.1213/00000539‑197407000‑00002 4858243
    [Google Scholar]
  201. Mempel E. Tarnecki R. Ligezińska B. Pawłowski G. Effect of diazepam on somatosensory evoked potentials. Neurol. Neurochir. Pol. 1986 20 6 571 576 3600976
    [Google Scholar]
  202. Schwender D. Conzen P. Klasing S. Finsterer U. Pöppel E. Peter K. The effects of anesthesia with increasing end-expiratory concentrations of sevoflurane on midlatency auditory evoked potentials. Anesth. Analg. 1995 81 4 817 822 7574016
    [Google Scholar]
  203. Madler C. Keller I. Schwender D. Pöppel E. Sensory information processing during general anaesthesia: Effect of isoflurane on auditory evoked neuronal oscillations. Br. J. Anaesth. 1991 66 1 81 87 10.1093/bja/66.1.81 1997064
    [Google Scholar]
  204. Thornton C. Heneghan C.P.H. James M.F.M. Jones J.G. Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br. J. Anaesth. 1984 56 4 315 323 10.1093/bja/56.4.315 6712847
    [Google Scholar]
  205. Heneghan C.P.H. Thornton C. Navaratnarajah M. Jones J.G. Effect of isoflurane on the auditory evoked response in man. Br. J. Anaesth. 1987 59 3 277 282 10.1093/bja/59.3.277 3828175
    [Google Scholar]
  206. Thornton C. Catley D.M. Jordan C. Lehane J.R. Royston D. Jones J.G. Enflurane anaesthesia causes graded changes in the brainstem and early cortical auditory evoked response in man. Br. J. Anaesth. 1983 55 6 479 486 10.1093/bja/55.6.479 6407493
    [Google Scholar]
  207. Chiappa K.H. Ropper A.H. Evoked potentials in clinical medicine (first of two parts). N. Engl. J. Med. 1982 306 19 1140 1150 10.1056/NEJM198205133061904 7040957
    [Google Scholar]
  208. Luo Y. Regli L. Bozinov O. Sarnthein J. Clinical utility and limitations of intraoperative monitoring of visual evoked potentials. PLoS One 2015 10 3 e0120525 10.1371/journal.pone.0120525 25803287
    [Google Scholar]
  209. Sebel P.S. Ingram D.A. Flynn P.J. Rutherfoord C.F. Rogers H. Evoked potentials during isoflurane anaesthesia. Br. J. Anaesth. 1986 58 6 580 585 10.1093/bja/58.6.580 3707793
    [Google Scholar]
  210. Uribe A.A. Mendel E. Peters Z.A. Shneker B.F. Abdel-Rasoul M. Bergese S.D. Comparison of visual evoked potential monitoring during spine surgeries under total intravenous anesthesia versus balanced general anesthesia. Clin. Neurophysiol. 2017 128 10 2006 2013 10.1016/j.clinph.2017.07.420 28837906
    [Google Scholar]
  211. Ma J. Xiong W. Guo D. Wang A. Qiao H. Han R. Effects of Sevoflurane-Propofol-balanced anesthesia on flash visual evoked potential monitoring in spine surgery: A randomized noninferiority trial. Anesth. Analg. 2022 134 5 1054 1061 34543246
    [Google Scholar]
  212. Wiedemayer H. Fauser B. Armbruster W. Gasser T. Stolke D. Visual evoked potentials for intraoperative neurophysiologic monitoring using total intravenous anesthesia. J. Neurosurg. Anesthesiol. 2003 15 1 19 24 10.1097/00008506‑200301000‑00004 12499978
    [Google Scholar]
  213. Holland N.R. Intraoperative electromyography. J. Clin. Neurophysiol. 2002 19 5 444 453 10.1097/00004691‑200210000‑00007 12477989
    [Google Scholar]
  214. O’Bryan R. Kincaid J. Nerve conduction studies. Neurol. Clin. 2021 39 4 897 917 10.1016/j.ncl.2021.06.002 34602218
    [Google Scholar]
  215. Park Y.S. Koo Y.S. Ha S. Lee S. Sim J.H. Kim J.U. Total intravenous anesthesia protocol for decreasing unacceptable movements during cerebral aneurysm clipping with motor-evoked potential Monitoring: A historical control study and meta-analysis. J. Pers. Med. 2023 13 8 1266 10.3390/jpm13081266 37623516
    [Google Scholar]
  216. Li X. Zhang B. Yu L. Yang J. Tan H. Influence of sevoflurane‐based anesthesia versus total intravenous anesthesia on intraoperative Neuromonitoring during Thyroidectomy. Otolaryngol. Head Neck Surg. 2020 162 6 853 859 10.1177/0194599820912030 32178568
    [Google Scholar]
  217. Shah R.S. Chang S.Y. Min H.K. Cho Z.H. Blaha C.D. Lee K.H. Deep brain stimulation: Technology at the cutting edge. J. Clin. Neurol. 2010 6 4 167 182 10.3988/jcn.2010.6.4.167 21264197
    [Google Scholar]
  218. Kenney C. Simpson R. Hunter C. Ondo W. Almaguer M. Davidson A. Jankovic J. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J. Neurosurg. 2007 106 4 621 625 10.3171/jns.2007.106.4.621 17432713
    [Google Scholar]
  219. Shils J.L. Kochanski R. Borghei A. Sani S. Deletis V. Shils J.L. Sala F. Seidel K. Neurophysiological monitoring during neurosurgery for movement disorders. Neurophysiology in Neurosurgery Academic Press 2nd ed 2020 473 497 10.1016/B978‑0‑12‑815000‑9.00034‑4
    [Google Scholar]
  220. Lenz F.A. Dostrovsky J.O. Tasker R.R. Yamashiro K. Kwan H.C. Murphy J.T. Single-unit analysis of the human ventral thalamic nuclear group: Somatosensory responses. J. Neurophysiol. 1988 59 2 299 316 10.1152/jn.1988.59.2.299 3351564
    [Google Scholar]
  221. Lenz F.A. Tasker R.R. Kwan H.C. Schider S. Kwong R. Dostrovsky J.O. Murphy J.T. Selection of the optimal lesion site for the relief of parkinsonian tremor on the basis of spectral analysis of neuronal firing patterns. Appl. Neurophysiol. 1987 50 1-6 338 343 3329872
    [Google Scholar]
  222. Dogali M. Fazzini E. Kolodny E. Eidelberg D. Sterio D. Devinsky O. Berić A. Stereotactic ventral pallidotomy for parkinson’s disease. Neurology 1995 45 4 753 761 10.1212/WNL.45.4.753 7723966
    [Google Scholar]
  223. Hutchison W.D. Allan R.J. Opitz H. Levy R. Dostrovsky J.O. Lang A.E. Lozano A.M. Neurophysiological identification of the subthalamic nucleus in surgery for parkinson’s disease. Ann. Neurol. 1998 44 4 622 628 10.1002/ana.410440407 9778260
    [Google Scholar]
  224. Ohye C. Narabayashi H. Physiological study of presumed ventralis intermedius neurons in the human thalamus. J. Neurosurg. 1979 50 3 290 297 10.3171/jns.1979.50.3.0290 370349
    [Google Scholar]
  225. Kolb R. Abosch A. Felsen G. Thompson J.A. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in parkinson’s disease patients. Physiol. Rep. 2017 5 12 e13322 10.14814/phy2.13322 28642341
    [Google Scholar]
  226. Holdefer R.N. Cohen B.A. Greene K.A. Intraoperative local field recording for deep brain stimulation in parkinson’s disease and essential tremor. Mov. Disord. 2010 25 13 2067 2075 10.1002/mds.23232 20721922
    [Google Scholar]
  227. Brown P. Oliviero A. Mazzone P. Insola A. Tonali P. Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in parkinson’s disease. J. Neurosci. 2001 21 3 1033 1038 10.1523/JNEUROSCI.21‑03‑01033.2001 11157088
    [Google Scholar]
  228. Chiken S. Nambu A. Disrupting neuronal transmission: Mechanism of DBS? Front. Syst. Neurosci. 2014 8 33 10.3389/fnsys.2014.00033 24672437
    [Google Scholar]
  229. Tawfik V.L. Chang S.Y. Hitti F.L. Roberts D.W. Leiter J.C. Jovanovic S. Lee K.H. Deep brain stimulation results in local glutamate and adenosine release: Investigation into the role of astrocytes. Neurosurgery 2010 67 2 367 375 10.1227/01.NEU.0000371988.73620.4C 20644423
    [Google Scholar]
  230. Fellin T. Pascual O. Haydon P.G. Astrocytes coordinate synaptic networks: Balanced excitation and inhibition. Physiology (Bethesda) 2006 21 3 208 215 10.1152/physiol.00161.2005 16714479
    [Google Scholar]
  231. Venkatraghavan L. Rakhman E. Krishna V. Sammartino F. Manninen P. Hutchison W. The effect of general anesthesia on the Microelectrode recordings from Pallidal neurons in patients with Dystonia. J. Neurosurg. Anesthesiol. 2016 28 3 256 261 10.1097/ANA.0000000000000200 26083425
    [Google Scholar]
  232. Bos M.J. Buhre W. Temel Y. Joosten E.A.J. Absalom A.R. Janssen M.L.F. Effect of anesthesia on Microelectrode recordings during deep brain stimulation surgery: A narrative review. J. Neurosurg. Anesthesiol. 2021 33 4 300 307 10.1097/ANA.0000000000000673 31913866
    [Google Scholar]
  233. Krishna V. Elias G. Sammartino F. Basha D. King N.K.K. Fasano A. Munhoz R. Kalia S.K. Hodaie M. Venkatraghavan L. Lozano A.M. Hutchison W.D. The effect of dexmedetomidine on the firing properties of STN neurons in parkinson’s disease. Eur. J. Neurosci. 2015 42 4 2070 2077 10.1111/ejn.13004 26108432
    [Google Scholar]
  234. Dinsmore M. Venkatraghavan L. Anesthesia for deep brain stimulation: An update. Curr. Opin. Anaesthesiol. 2021 34 5 563 568 10.1097/ACO.0000000000001038 34291750
    [Google Scholar]
  235. Gerritsen J.K.W. Zwarthoed R.H. Kilgallon J.L. Nawabi N.L. Jessurun C.A.C. Versyck G. Pruijn K.P. Fisher F.L. Larivière E. Solie L. Mekary R.A. Satoer D.D. Schouten J.W. Bos E.M. Kloet A. Nandoe Tewarie R. Smith T.R. Dirven C.M.F. De Vleeschouwer S. Broekman M.L.D. Vincent A.J.P.E. Effect of awake craniotomy in glioblastoma in eloquent areas (GLIOMAP): A propensity score-matched analysis of an international, multicentre, cohort study. Lancet Oncol. 2022 23 6 802 817 10.1016/S1470‑2045(22)00213‑3 35569489
    [Google Scholar]
  236. de Zwart B. Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir. (Wien) 2024 166 1 204 10.1007/s00701‑024‑06062‑6 38713405
    [Google Scholar]
  237. Surbeck W. Hildebrandt G. Duffau H. The evolution of brain surgery on awake patients. Acta Neurochir. (Wien) 2015 157 1 77 84 10.1007/s00701‑014‑2249‑8 25352088
    [Google Scholar]
  238. Saito T. Tamura M. Chernov M.F. Ikuta S. Muragaki Y. Maruyama T. Neurophysiological monitoring and awake Craniotomy for Resection of Intracranial Gliomas. Prog. Neurol. Surg. 2018 30 117 158 10.1159/000464387 29241172
    [Google Scholar]
  239. Saito T. Tamura M. Muragaki Y. Maruyama T. Kubota Y. Fukuchi S. Nitta M. Chernov M. Okamoto S. Sugiyama K. Kurisu K. Sakai K.L. Okada Y. Iseki H. Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: Initial experience with 13 cases. J. Neurosurg. 2014 121 4 827 838 10.3171/2014.4.JNS131195 24878290
    [Google Scholar]
  240. Suzuki Y. Enatsu R. Kanno A. Yokoyama R. Suzuki H. Tachibana S. Akiyama Y. Mikami T. Ochi S. Yamakage M. Mikuni N. The influence of anesthesia on corticocortical evoked potential monitoring network between frontal and temporoparietal Cortices. World Neurosurg. 2019 123 e685 e692 10.1016/j.wneu.2018.11.253 30576824
    [Google Scholar]
  241. Yamao Y. Matsumoto R. Kunieda T. Arakawa Y. Kobayashi K. Usami K. Shibata S. Kikuchi T. Sawamoto N. Mikuni N. Ikeda A. Fukuyama H. Miyamoto S. Intraoperative dorsal language network mapping by using single‐pulse electrical stimulation. Hum. Brain Mapp. 2014 35 9 4345 4361 10.1002/hbm.22479 24615889
    [Google Scholar]
  242. Knikou M. The H-reflex as a probe: Pathways and pitfalls. J. Neurosci. Methods 2008 171 1 1 12 10.1016/j.jneumeth.2008.02.012 18394711
    [Google Scholar]
  243. Pierrot-Deseilligny E. Morin C. Bergego C. Tankov N. Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Exp. Brain Res. 1981 42 42 337 350 10.1007/BF00237499 7238674
    [Google Scholar]
  244. Marchand-Pauvert V. Nicolas G. Burke D. Pierrot-Deseilligny E. Suppression of the H reflex in humans by disynaptic autogenetic inhibitory pathways activated by the test volley. J. Physiol. 2002 542 3 963 976 10.1113/jphysiol.2002.021683 12154193
    [Google Scholar]
  245. Misiaszek J.E. The H‐reflex as a tool in neurophysiology: Its limitations and uses in understanding nervous system function. Muscle Nerve 2003 28 2 144 160 10.1002/mus.10372 12872318
    [Google Scholar]
  246. Burke D. Clinical uses of H reflexes of upper and lower limb muscles. Clin. Neurophysiol. Pract. 2016 1 9 17 10.1016/j.cnp.2016.02.003 30214954
    [Google Scholar]
  247. Schimsheimer R.J. Ongerboer de Visser B.W. Kemp B. Bour L.J. The flexor carpi radialis H-reflex in polyneuropathy: Relations to conduction velocities of the median nerve and the soleus H-reflex latency. J. Neurol. Neurosurg. Psychiatry 1987 50 4 447 452 10.1136/jnnp.50.4.447 3035102
    [Google Scholar]
  248. Jerath N. Kimura J. F wave, A wave, H reflex, and blink reflex. Handb. Clin. Neurol. 2019 160 225 239 10.1016/B978‑0‑444‑64032‑1.00015‑1 31277850
    [Google Scholar]
  249. Kerz T. Hennes H.J. Fève A. Decq P. Filipetti P. Duvaldestin P. Effects of propofol on H-reflex in humans. Anesthesiology 2001 94 1 32 37 10.1097/00000542‑200101000‑00010 11135719
    [Google Scholar]
  250. Baars J.H. Dangel C. Herold K.F. Hadzidiakos D.A. Rehberg B. Suppression of the human spinal H‐reflex by propofol: A quantitative analysis. Acta Anaesthesiol. Scand. 2006 50 2 193 200 10.1111/j.1399‑6576.2006.00923.x 16430541
    [Google Scholar]
  251. Dincklage F. Reiche J. Rehberg B. Baars J. H-reflex depression by propofol and sevoflurane is dependent on stimulus intensity. Clin. Neurophysiol. 2006 117 12 2653 2660 10.1016/j.clinph.2006.08.006 17029952
    [Google Scholar]
  252. Zelmann R. Paulk A.C. Tian F. Balanza Villegas G.A. Dezha Peralta J. Crocker B. Cosgrove G.R. Richardson R.M. Williams Z.M. Dougherty D.D. Purdon P.L. Cash S.S. Differential cortical network engagement during states of un/consciousness in humans. Neuron 2023 111 21 3479 3495.e6 10.1016/j.neuron.2023.08.007 37659409
    [Google Scholar]
  253. Bastos A.M. Donoghue J.A. Brincat S.L. Mahnke M. Yanar J. Correa J. Waite A.S. Lundqvist M. Roy J. Brown E.N. Miller E.K. Neural effects of propofol-induced unconsciousness and its reversal using thalamic stimulation. eLife 2021 10 e60824 10.7554/eLife.60824 33904411
    [Google Scholar]
  254. Redinbaugh M.J. Phillips J.M. Kambi N.A. Mohanta S. Andryk S. Dooley G.L. Afrasiabi M. Raz A. Saalmann Y.B. Thalamus modulates consciousness via layer-specific control of Cortex. Neuron 2020 106 1 66 75.e12 10.1016/j.neuron.2020.01.005 32053769
    [Google Scholar]
  255. Crocker B. Ostrowski L. Williams Z.M. Dougherty D.D. Eskandar E.N. Widge A.S. Chu C.J. Cash S.S. Paulk A.C. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 2021 237 118094 10.1016/j.neuroimage.2021.118094 33940142
    [Google Scholar]
  256. Claar L.D. Rembado I. Kuyat J.R. Russo S. Marks L.C. Olsen S.R. Koch C. Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in mice. eLife 2023 12 RP84630 10.7554/eLife.84630.3 37358562
    [Google Scholar]
  257. Kroeger D. Amzica F. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci. 2007 27 39 10597 10607 10.1523/JNEUROSCI.3440‑07.2007 17898231
    [Google Scholar]
  258. Lewis L.D. Piantoni G. Peterfreund R.A. Eskandar E.N. Harrell P.G. Akeju O. Aglio L.S. Cash S.S. Brown E.N. Mukamel E.A. Purdon P.L. A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. eLife 2018 7 e33250 10.7554/eLife.33250 30095069
    [Google Scholar]
  259. Kelz M.B. Sun Y. Chen J. Cheng Meng Q. Moore J.T. Veasey S.C. Dixon S. Thornton M. Funato H. Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc. Natl. Acad. Sci. USA 2008 105 4 1309 1314 10.1073/pnas.0707146105 18195361
    [Google Scholar]
  260. Bayer L. Serafin M. Eggermann E. Saint-Mleux B. Machard D. Jones B.E. Mühlethaler M. Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J. Neurosci. 2004 24 30 6760 6764 10.1523/JNEUROSCI.1783‑04.2004 15282280
    [Google Scholar]
  261. Zolnik T.A. Bronec A. Ross A. Staab M. Sachdev R.N.S. Molnár Z. Eickholt B.J. Larkum M.E. Layer 6b controls brain state via apical dendrites and the higher-order thalamocortical system. Neuron 2024 112 5 805 820.e4 10.1016/j.neuron.2023.11.021 38101395
    [Google Scholar]
  262. Avila E.K. Elder J.B. Singh P. Chen X. Bilsky M.H. Intraoperative neurophysiologic monitoring and neurologic outcomes in patients with epidural spine tumors. Clin. Neurol. Neurosurg. 2013 115 10 2147 2152 10.1016/j.clineuro.2013.08.008 24012272
    [Google Scholar]
  263. Gruenbaum B.F. Gruenbaum S.E. Neurophysiological monitoring during neurosurgery. Curr. Opin. Anaesthesiol. 2019 32 5 580 584 10.1097/ACO.0000000000000753 31145200
    [Google Scholar]
  264. Liu Q. Wang Q. Liu H. Wu W.K.K. Chan M.T.V. Warning criteria for intraoperative neurophysiologic monitoring. Curr. Opin. Anaesthesiol. 2017 30 5 557 562 10.1097/ACO.0000000000000505 28719456
    [Google Scholar]
  265. Ryalino C. Sahinovic M.M. Drost G. Absalom A.R. Intraoperative monitoring of the central and peripheral nervous systems: A narrative review. Br. J. Anaesth. 2024 132 2 285 299 10.1016/j.bja.2023.11.032 38114354
    [Google Scholar]
  266. Sahinovic M.M. Gadella M.C. Shils J. Dulfer S.E. Drost G. Anesthesia and intraoperative neurophysiological spinal cord monitoring. Curr. Opin. Anaesthesiol. 2021 34 5 590 596 10.1097/ACO.0000000000001044 34435602
    [Google Scholar]
/content/journals/cn/10.2174/011570159X349119250127104107
Loading
/content/journals/cn/10.2174/011570159X349119250127104107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test