Skip to content
2000
Volume 23, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Post-traumatic Stress Disorder (PTSD) is a psychiatric disease that arises in individuals who have experienced a traumatic event such as combat exposure, childhood physical abuse, sexual violence, physical assault, an accident, . Being difficult to diagnose and treat, PTSD is actively studied in areas of medicine, psychiatry, biochemistry, and rehabilitation. PTSD is characterized by significant comorbidity and is accompanied by depression and anxiety. Current treatment strategies for PTSD symptoms include psychotherapy and medications. Naturally derived compounds can offer therapeutic benefits for mood disorders without unpleasant side effects. Bioactive compounds found in food exhibit beneficial effects such as antioxidant, anti-inflammatory, and neuroprotective activities. Here, we describe the promising therapeutic benefits of a number of bioactive substances that have been evaluated in a variety of animal models and human experimental studies. Anxiolytic, antidepressant, and antidementia activities of bioactive compounds emphasize their potential for treating PTSD comorbidities. Hypothetical mechanisms of actions are also discussed, providing insights into their potential for human mental health.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X333438240927103741
2024-10-01
2025-10-24
Loading full text...

Full text loading...

/deliver/fulltext/cn/23/10/CN-23-10-1156.html?itemId=/content/journals/cn/10.2174/011570159X333438240927103741&mimeType=html&fmt=ahah

References

  1. LushchakO. StrilbytskaO. KoliadaA. StoreyK.B. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder.Front. Physiol.202313109407610.3389/fphys.2022.1094076 36703926
    [Google Scholar]
  2. PaiA. SurisA. NorthC. Posttraumatic stress disorder in the DSM-5: Controversy, change, and conceptual considerations.Behav. Sci. (Basel)201771710.3390/bs7010007 28208816
    [Google Scholar]
  3. De BerardisD. VellanteF. FornaroM. AnastasiaA. OlivieriL. RapiniG. SerroniN. OrsoliniL. ValcheraA. CaranoA. TomasettiC. VarasanoP.A. PressantiG.L. BustiniM. PompiliM. SerafiniG. PernaG. MartinottiG. Di GiannantonioM. Alexithymia, suicide ideation, affective temperaments and homocysteine levels in drug naïve patients with post-traumatic stress disorder: an exploratory study in the everyday ‘real world’ clinical practice.Int. J. Psychiatry Clin. Pract.2020241838710.1080/13651501.2019.1699575 31829763
    [Google Scholar]
  4. RahmanS. ZammitS. DalmanC. HollanderA.C. Epidemiology of posttraumatic stress disorder: A prospective cohort study based on multiple nationwide Swedish registers of 4.6 million people.Eur. Psychiatry2022651e6010.1192/j.eurpsy.2022.2311 36073092
    [Google Scholar]
  5. LushchakO. VelykodnaM. BolmanS. StrilbytskaO. BerezovskyiV. StoreyK.B. Prevalence of stress, anxiety, and symptoms of post-traumatic stress disorder among Ukrainians after the first year of Russian invasion: a nationwide cross-sectional study.Lancet Reg. Health Eur.20243610077310.1016/j.lanepe.2023.100773 38019977
    [Google Scholar]
  6. QassemT. Aly-ElGabryD. AlzarouniA. Abdel-AzizK. ArnoneD. Psychiatric co-morbidities in post-traumatic stress disorder: Detailed findings from the adult psychiatric morbidity survey in the English population.Psychiatr. Q.202192132133010.1007/s11126‑020‑09797‑4 32705407
    [Google Scholar]
  7. LushchakO. StrilbytskaO. KoliadaA. ZayachkivskaA. BurdyliukN. YurkevychI. StoreyK.B. VaisermanA. Nanodelivery of phytobioactive compounds for treating aging-associated disorders.Geroscience202042111713910.1007/s11357‑019‑00116‑9 31686375
    [Google Scholar]
  8. PiskovatskaV. StrilbytskaO. KoliadaA. VaisermanA. LushchakO. Health benefits of anti-aging drugs.Subcell. Biochem.20199133939210.1007/978‑981‑13‑3681‑2_13 30888659
    [Google Scholar]
  9. VaisermanA. KoliadaA. LushchakO. CastilloM.J. Repurposing drugs to fight aging: The difficult path from bench to bedside.Med. Res. Rev.20214131676170010.1002/med.21773 33314257
    [Google Scholar]
  10. MannS.K. MarwahaR. TorricoT.J. Posttraumatic Stress Disorder. StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  11. LushchakO. OrruM. StrilbytskaO. BerezovskyiV. CherkasA. StoreyK.B. BayliakM. Metabolic and immune dysfunctions in post-traumatic stress disorder: what can we learn from animal models?EXCLI J.20232292894510.17179/excli2023‑6391 38023568
    [Google Scholar]
  12. AsalgooS. JahromiG.P. MeftahiG.H. SahraeiH. Posttraumatic stress disorder (PTSD): Mechanisms and possible treatments.Neurophysiology201547648248910.1007/s11062‑016‑9559‑9
    [Google Scholar]
  13. KarlA. SchaeferM. MaltaL. DörfelD. RohlederN. WernerA. A meta-analysis of structural brain abnormalities in PTSD.Neurosci. Biobehav. Rev.20063071004103110.1016/j.neubiorev.2006.03.004 16730374
    [Google Scholar]
  14. SerhiyenkoV. HolzmannK. HolotaS. DerkachZ. NersesyanA. MelnykS. ChernyshO. YatskevychO. MišíkM. BubaloV. StrilbytskaO. VatsebaB. LushchakO. KnasmüllerS. CherkasA. An exploratory study of physiological and biochemical parameters to identify simple, robust and relevant biomarkers for therapeutic interventions for PTSD: Study rationale, key elements of design and a context of war in Ukraine.Proc Shevchenko Sci Soc Med Sci202269210.25040/ntsh2022.02.14
    [Google Scholar]
  15. DananD. TodderD. ZoharJ. CohenH. Is PTSD-phenotype associated with HPA-axis sensitivity? Feedback inhibition and other modulating factors of glucocorticoid signaling dynamics.Int. J. Mol. Sci.20212211605010.3390/ijms22116050 34205191
    [Google Scholar]
  16. LeistnerC. MenkeA. Hypothalamic-pituitary-adrenal axis and stress.Handb. Clin. Neurol.2020175556410.1016/B978‑0‑444‑64123‑6.00004‑7 33008543
    [Google Scholar]
  17. HadadN.A. SchwendtM. KnackstedtL.A. Hypothalamic-pituitary-adrenal axis activity in post-traumatic stress disorder and cocaine use disorder.Stress202023663865010.1080/10253890.2020.1803824 32835581
    [Google Scholar]
  18. DmytrivT.R. TsiumpalaS.A. SemchyshynH.M. StoreyK.B. LushchakV.I. Mitochondrial dysfunction as a possible trigger of neuroinflammation at post-traumatic stress disorder (PTSD).Front. Physiol.202314122282610.3389/fphys.2023.1222826 37942228
    [Google Scholar]
  19. YehudaR. Current status of cortisol findings in post-traumatic stress disorder.Psychiatr. Clin. North Am.2002252341368,vii10.1016/S0193‑953X(02)00002‑312136504
    [Google Scholar]
  20. KakehiR. HoriH. YoshidaF. ItohM. LinM. NiwaM. NaritaM. InoK. ImaiR. SasayamaD. KamoT. KunugiH. KimY. Hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system in adulthood PTSD and childhood maltreatment history.Front. Psychiatry20231396777910.3389/fpsyt.2022.967779 36699501
    [Google Scholar]
  21. D’EliaA.T.D. JuruenaM.F. CoimbraB.M. MelloM.F. MelloA.F. Posttraumatic stress disorder (PTSD) and depression severity in sexually assaulted women: hypothalamic-pituitary-adrenal (HPA) axis alterations.BMC Psychiatry202121117410.1186/s12888‑021‑03170‑w 33789596
    [Google Scholar]
  22. KeaneT.M. MarshallA.D. TaftC.T. Posttraumatic stress disorder: etiology, epidemiology, and treatment outcome.Annu. Rev. Clin. Psychol.20062116119710.1146/annurev.clinpsy.2.022305.095305 17716068
    [Google Scholar]
  23. KeaneT.M. FairbankJ.A. CaddellJ.M. ZimeringR.T. Implosive (flooding) therapy reduces symptoms of PTSD in Vietnam combat veterans.Behav. Ther.198920224526010.1016/S0005‑7894(89)80072‑3
    [Google Scholar]
  24. MenonS.B. JayanC. Eye movement desensitization and reprocessing: a conceptual framework.Indian J. Psychol. Med.201032213614010.4103/0253‑7176.78512 21716864
    [Google Scholar]
  25. de ArellanoM.A.R. LymanD.R. Jobe-ShieldsL. GeorgeP. DoughertyR.H. DanielsA.S. GhoseS.S. HuangL. Delphin-RittmonM.E. Trauma-focused cognitive-behavioral therapy for children and adolescents: assessing the evidence.Psychiatr. Serv.201465559160210.1176/appi.ps.201300255 24638076
    [Google Scholar]
  26. KarN. Cognitive behavioral therapy for the treatment of post-traumatic stress disorder: a review.Neuropsychiatr. Dis. Treat.2011716718110.2147/NDT.S10389 21552319
    [Google Scholar]
  27. ChardK.M. RickseckerE.G. HealyE.T. KarlinB.E. ResickP.A. Dissemination and experience with cognitive processing therapy.J. Rehabil. Res. Dev.201249566767810.1682/JRRD.2011.10.0198 23015578
    [Google Scholar]
  28. FoaE.B. HembreeE.A. RothbaumB. Prolonged exposure therapy for PTSD: Emotional processing of traumatic experiences: Therapist guide.New YorkOxfordUniversity Press200710.1093/med:psych/9780195308501.001.0001
    [Google Scholar]
  29. ZoellnerL.A. FeenyN.C. BittingerJ.N. Bedard-GilliganM.A. SlagleD.M. PostL.M. ChenJ.A. Teaching trauma-focused exposure therapy for PTSD: Critical clinical lessons for novice exposure therapists.Psychol. Trauma20113330030810.1037/a0024642 21984956
    [Google Scholar]
  30. BradyK.T. KilleenT.K. BrewertonT. LuceriniS. Comorbidity of psychiatric disorders and posttraumatic stress disorder.J. Clin. Psychiatry2000612232 10795606
    [Google Scholar]
  31. DeBattistaC. SofuogluM. SchatzbergA.F. Serotonergic synergism: the risks and benefits of combining the selective serotonin reuptake inhibitors with other serotonergic drugs.Biol. Psychiatry199844534134710.1016/S0006‑3223(98)00161‑9 9755356
    [Google Scholar]
  32. DavidsonJ.R.T. PayneV.M. ConnorK.M. FoaE.B. RothbaumB.O. HertzbergM.A. WeislerR.H. Trauma, resilience and saliostasis: Effects of treatment in post-traumatic stress disorder.Int. Clin. Psychopharmacol.2005201434810.1097/00004850‑200501000‑00009 15602116
    [Google Scholar]
  33. AlexanderW. Pharmacotherapy for post-traumatic stress disorder in combat veterans: Focus on antidepressants and atypical antipsychotic agents.P&T20123713238 22346334
    [Google Scholar]
  34. Clinician's Guide to Medications for PTSD.Available from: https://www.ptsd.va.gov/professional/treat/txessentials/clinician_guide_meds.asp
  35. MoraczewskiJ. AwosikaA.O. AedmaK.K. Tricyclic Antidepressants. StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  36. OstadkarampourM. PutninsE.E. Monoamine oxidase inhibitors: A review of their anti-inflammatory therapeutic potential and mechanisms of action.Front. Pharmacol.20211267623910.3389/fphar.2021.676239 33995107
    [Google Scholar]
  37. LeeK. Antianxiety Pharmacology. Encyclopedia of the Neurological Sciences. AminoffM.J. DaroffR.B. Academic Press200320620910.1016/B0‑12‑226870‑9/01549‑5
    [Google Scholar]
  38. PawarN. WiegandT.J. Monoamine oxidase inhibitors. Encyclopedia of Toxicology202449950210.1016/B978‑0‑12‑824315‑2.01123‑4
    [Google Scholar]
  39. PollastroF. MinassiA. FresuL.G. Cannabis phenolics and their bioactivities.Curr. Med. Chem.201825101160118510.2174/0929867324666170810164636 28799497
    [Google Scholar]
  40. HsiaoY.T. YiP.L. LiC.L. ChangF.C. Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats.Neuropharmacology201262137338410.1016/j.neuropharm.2011.08.013 21867717
    [Google Scholar]
  41. PangL. ZhuS. MaJ. ZhuL. LiuY. OuG. LiR. WangY. LiangY. JinX. DuL. JinY. Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder.Acta Pharm. Sin. B20211172031204710.1016/j.apsb.2021.01.014 34386336
    [Google Scholar]
  42. ElmsL. ShannonS. HughesS. LewisN. Cannabidiol in the treatment of post-traumatic stress disorder: A case series.J. Altern. Complement. Med.201925439239710.1089/acm.2018.0437 30543451
    [Google Scholar]
  43. ShannonS. Opila-LehmanJ. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: A Case Report.Perm. J.20162041600510.7812/TPP/16‑005 27768570
    [Google Scholar]
  44. TelchM.J. FischerC.M. ZaizarE.D. RubinM. PapiniS. Use of Cannabidiol (CBD) oil in the treatment of PTSD: Study design and rationale for a placebo-controlled randomized clinical trial.Contemp. Clin. Trials202212210693310.1016/j.cct.2022.106933 36154908
    [Google Scholar]
  45. GomesF.V. ResstelL.B.M. GuimarãesF.S. The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors.Psychopharmacology (Berl.)20112132-346547310.1007/s00213‑010‑2036‑z 20945065
    [Google Scholar]
  46. BitencourtR.M. TakahashiR.N. Cannabidiol as a therapeutic alternative for post-traumatic stress disorder: from bench research to confirmation in human trials.Front. Neurosci.20181250210.3389/fnins.2018.00502 30087591
    [Google Scholar]
  47. PassieT. EmrichH.M. KarstM. BrandtS.D. HalpernJ.H. Mitigation of post‐traumatic stress symptoms by Cannabis resin: A review of the clinical and neurobiological evidence.Drug Test. Anal.201247-864965910.1002/dta.1377 22736575
    [Google Scholar]
  48. MansourH.M.M. ZeitounA.A. Abd-RabouH.S. El EnshasyH.A. DailinD.J. ZeitounM.A.A. El-SohaimyS.A. Antioxidant and anti-diabetic properties of Olive (Olea europaea) leaf extracts: In vitro and in vivo evaluation.Antioxidants2023126127510.3390/antiox12061275 37372005
    [Google Scholar]
  49. LeeB. ShimI. LeeH. HahmD.H. Oleuropein reduces anxiety-like responses by activating of serotonergic and neuropeptide Y (NPY)-ergic systems in a rat model of post-traumatic stress disorder.Anim. Cells Syst.201822210911710.1080/19768354.2018.1426699 30460087
    [Google Scholar]
  50. RangseekajeeP. PiyavhatkulN. WattanathornJ. Thukham-meeW. PaholpakP. Positive effects of anthocyanin-rich mulberry milk on mental health problems in the working population: An open-label study.Nutr. Res. Pract.202418111011810.4162/nrp.2024.18.1.110 38352214
    [Google Scholar]
  51. FangJ.L. LuoY. JinS.H. YuanK. GuoY. Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression.J. Funct. Foods20206610375710.1016/j.jff.2019.103757
    [Google Scholar]
  52. VaisermanA. KoliadaA. ZayachkivskaA. LushchakO. Curcumin: A therapeutic potential in ageing-related disorders.PharmaNutrition20201410022610.1016/j.phanu.2020.100226
    [Google Scholar]
  53. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  54. LeeB. LeeH. Systemic administration of curcumin affect anxiety-related behaviors in a rat model of posttraumatic stress disorder via activation of serotonergic systems.Evid. Based Complement. Alternat. Med.201820181904130910.1155/2018/9041309 30018659
    [Google Scholar]
  55. XieP. KranzlerH.R. PolingJ. SteinM.B. AntonR.F. BradyK. WeissR.D. FarrerL. GelernterJ. Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations.Arch. Gen. Psychiatry200966111201120910.1001/archgenpsychiatry.2009.153 19884608
    [Google Scholar]
  56. SinghP. SharmaS. Kumar RathS. Genistein induces deleterious effects during its acute exposure in Swiss mice.BioMed. Res. Int.2014201411410.1155/2014/619617 24967385
    [Google Scholar]
  57. LeeB. ChoiG.M. ShimI. LeeH. Genistein prevents single prolonged stress-induced cognitive impairment in a post-traumatic stress disorder rat model via activation of the serotonergic system.J. Med. Food202023547648410.1089/jmf.2019.4519 32267780
    [Google Scholar]
  58. WuZ.M. NiG.L. ShaoA.M. CuiR. Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala.Psychiatry Res.201725528729110.1016/j.psychres.2017.05.051 28600997
    [Google Scholar]
  59. LeeB. ShimI. LeeH. HahmD.H. Berberine alleviates symptoms of anxiety by enhancing dopamine expression in rats with post-traumatic stress disorder.Korean J. Physiol. Pharmacol.201822218319210.4196/kjpp.2018.22.2.183 29520171
    [Google Scholar]
  60. LeeB. SurB. YeomM. ShimI. LeeH. HahmD.H. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats.Biomol. Ther. (Seoul)201422321322210.4062/biomolther.2014.032 25009702
    [Google Scholar]
  61. CeremugaT.E. ShellabargerP. PerssonT. FanningM. GaleyP. RobinsonD. BertschS. CeremugaG.A. BentleyM. Effects of tetrahydropalmatine on post-traumatic stress disorder-induced changes in rat brain gene expression.J. Integr. Neurosci.201312451352810.1142/S0219635213500313 24372069
    [Google Scholar]
  62. CeremugaT.E. AndersonR. FryeP. DuvallC. MaanJ. ManjarresC. PetscheJ. CeremugaG.A. BentleyM. Effects of tetrahydropalmatine (THP) on PTSD-induced changes in rat neurobehavior.Plant Sci. Today201411223210.14719/pst.2014.1.1.12
    [Google Scholar]
  63. LeeB. ShimI. LeeH. HahmD.H. Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder.Korean J. Physiol. Pharmacol.201822552553810.4196/kjpp.2018.22.5.525 30181699
    [Google Scholar]
  64. BhutadaP. MundhadaY. BansodK. UbgadeA. QuaziM. UmatheS. MundhadaD. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry201034695596010.1016/j.pnpbp.2010.04.025 20447436
    [Google Scholar]
  65. KumarA. GoyalR. Quercetin protects against acute immobilization stress-induced behaviors and biochemical alterations in mice.J. Med. Food200811346947310.1089/jmf.2006.0207 18800893
    [Google Scholar]
  66. FilhoA.W. FilhoV.C. OlingerL. de SouzaM.M. Quercetin: Further investigation of its antinociceptive properties and mechanisms of action.Arch. Pharm. Res.200831671372110.1007/s12272‑001‑1217‑2 18563352
    [Google Scholar]
  67. MaZ.X. ZhangR.Y. RuiW.J. WangZ.Q. FengX. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/BDNF signaling pathway.Behav. Brain Res.202140611324510.1016/j.bbr.2021.113245 33745981
    [Google Scholar]
  68. DighririI.M. AlsubaieA.M. HakamiF.M. HamithiD.M. AlshekhM.M. KhobraniF.A. DalakF.E. HakamiA.A. AlsueaadiE.H. AlsaawiL.S. AlshammariS.F. AlqahtaniA.S. AlawiI.A. AljuaidA.A. TawhariM.Q. Effects of omega-3 polyunsaturated fatty acids on brain functions: A Systematic Review.Cureus20221410e3009110.7759/cureus.30091 36381743
    [Google Scholar]
  69. AlquraanL. AlzoubiK.H. HammadH. Rababa’hS.Y. MayyasF. Omega-3 fatty acids prevent post-traumatic stress disorder-induced memory impairment.Biomolecules20199310010.3390/biom9030100 30871113
    [Google Scholar]
  70. VaisermanA. KoliadaA. ZayachkivskaA. LushchakO. Nanodelivery of natural antioxidants: An anti-aging perspective.Front. Bioeng. Biotechnol.2020744710.3389/fbioe.2019.00447 31998711
    [Google Scholar]
  71. SalehiB. MishraA.P. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP.V.T. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  72. TseilikmanV.E. FedotovaJ.O. TseilikmanO.B. NovakJ. KarpenkoM.N. MaistrenkoV.A. LazukoS.S. BelyevaL.E. KamelM. BuhlerA.V. KovalevaE.G. Resistance to resveratrol treatment in experimental PTSD is associated with abnormalities in hepatic metabolism of glucocorticoids.Int. J. Mol. Sci.20232411933310.3390/ijms24119333 37298287
    [Google Scholar]
  73. LiG. WangG. ShiJ. XieX. FeiN. ChenL. LiuN. YangM. PanJ. HuangW. XuY. trans-Resveratrol ameliorates anxiety-like behaviors and fear memory deficits in a rat model of post-traumatic stress disorder.Neuropharmacology201813318118810.1016/j.neuropharm.2017.12.035 29373817
    [Google Scholar]
  74. ZhangZ.S. QiuZ.K. HeJ.L. LiuX. ChenJ.S. WangY.L. Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder.Pharmacol. Biochem. Behav.2017161687610.1016/j.pbb.2017.09.004 28947177
    [Google Scholar]
  75. LiuH. ChenW. LuP. MaY. LiangX. LiuY. Ginsenoside Rg1 attenuates the inflammation and oxidative stress induced by diabetic nephropathy through regulating the PI3K/AKT/FOXO3 pathway.Ann. Transl. Med.2021924178910.21037/atm‑21‑6234 35071483
    [Google Scholar]
  76. ZhangZ. SongZ. ShenF. XieP. WangJ. ZhuA. ZhuG. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus.Mol. Neurobiol.20215841550156310.1007/s12035‑020‑02213‑9 33215390
    [Google Scholar]
  77. WangZ. ZhuK. ChenL. Ou YangL. HuangY. ZhaoY. Preventive effects of ginsenoside Rg1 on post-traumatic stress disorder (PTSD)-like behavior in male C57/B6 mice.Neurosci. Lett.2015605242810.1016/j.neulet.2015.08.017 26277823
    [Google Scholar]
  78. LeeB. SurB. ChoS.G. YeomM. ShimI. LeeH. HahmD.H. Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder.J. Nat. Med.201670213314410.1007/s11418‑015‑0943‑3 26611866
    [Google Scholar]
  79. PengZ. WangH. ZhangR. ChenY. XueF. NieH. ChenY. WuD. WangY. WangH. TanQ. Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1beta level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder.Physiol. Res.201362553754510.33549/physiolres.932507 24020812
    [Google Scholar]
  80. LeiX. YuanY. ZouQ. The role and mechanism of gastrodin in the medial prefrontal cortex autophagy of PTSD rats.Int. J. Clin. Exp. Pathol.2020135989994 32509070
    [Google Scholar]
  81. LeeB. ChoiG.M. SurB. Antidepressant-like effects of hesperidin in animal model of post-traumatic stress disorder.Chin. J. Integr. Med.2021271394610.1007/s11655‑020‑2724‑4 32445019
    [Google Scholar]
  82. LiX. HuangW. TanR. XuC. ChenX. LiS. LiuY. QiuH. CaoH. ChengQ. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect.Biomed. Pharmacother.202315911422210.1016/j.biopha.2023.114222 36628819
    [Google Scholar]
  83. Hajizadeh MoghaddamA. AhmadniaH. JelodarS.K. RanjbarM. Hesperetin nanoparticles attenuate anxiogenic-like behavior and cerebral oxidative stress through the upregulation of antioxidant enzyme expression in experimental dementia of Alzheimer’s type.Neurol. Res.202042647748610.1080/01616412.2020.1747716 32252616
    [Google Scholar]
  84. LeeB. ChoiG.M. SurB. Silibinin prevents depression-like behaviors in a single prolonged stress rat model: the possible role of serotonin.BMC Complement. Med. Ther.20202017010.1186/s12906‑020‑2868‑y 32143600
    [Google Scholar]
  85. LeeB. YeomM. ShimI. LeeH. HahmD.H. Umbelliferone modulates depression-like symptoms by altering monoamines in a rat post-traumatic stress disorder model.J. Nat. Med.202074237738610.1007/s11418‑019‑01373‑w 31755013
    [Google Scholar]
  86. QinT. FangF. SongM. LiR. MaZ. MaS. Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced rats by attenuating neuronal apoptosis via regulating ROCK/Akt pathway.Behav. Brain Res.201731714715610.1016/j.bbr.2016.09.039 27646771
    [Google Scholar]
  87. MorissetteM. LitimN. Di PaoloT. Natural Phytoestrogens: A Class of Promising Neuroprotective Agents for Parkinson Disease. Discovery and Development of Neuroprotective Agents from Natural Products.Elsevier201896110.1016/B978‑0‑12‑809593‑5.00002‑1
    [Google Scholar]
  88. RuanL. GuanK. WangY. GuM. ChenY. CaiL. YeR. HuangZ. GuoA. SuZ. LiX. PanJ. Baicalein exerts anxiolytic and antinociceptive effects in a mouse model of posttraumatic stress disorder: Involvement of the serotonergic system and spinal delta-opioid receptors.Prog. Neuropsychopharmacol. Biol. Psychiatry202312211068910.1016/j.pnpbp.2022.110689 36462602
    [Google Scholar]
  89. CliffordM.N. JaganathI.B. LudwigI.A. CrozierA. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.Nat. Prod. Rep.201734121391142110.1039/C7NP00030H 29160894
    [Google Scholar]
  90. CropleyV. CroftR. SilberB. NealeC. ScholeyA. StoughC. SchmittJ. Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study.Psychopharmacology (Berl.)2012219373774910.1007/s00213‑011‑2395‑0 21773723
    [Google Scholar]
  91. BouayedJ. RammalH. DickoA. YounosC. SoulimaniR. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects.J. Neurol. Sci.20072621-2778410.1016/j.jns.2007.06.028 17698084
    [Google Scholar]
  92. SongJ. ZhouN. MaW. GuX. ChenB. ZengY. YangL. ZhouM. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior.Food Funct.20191052947295710.1039/C8FO02599A 31073553
    [Google Scholar]
  93. KwonS.H. LeeH.K. KimJ.A. HongS.I. KimH.C. JoT.H. ParkY.I. LeeC.K. KimY.B. LeeS.Y. JangC.G. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice.Eur. J. Pharmacol.20106491-321021710.1016/j.ejphar.2010.09.001 20854806
    [Google Scholar]
  94. SurB. LeeB. Luteolin reduces fear, anxiety, and depression in rats with post-traumatic stress disorder.Anim. Cells Syst.202226417418210.1080/19768354.2022.2104925 36046028
    [Google Scholar]
  95. QiuZ.K. HeJ.L. LiuX. ZengJ. ChenJ.S. NieH. Anti-PTSD-like effects of albiflorin extracted from Radix paeoniae Alba.J. Ethnopharmacol.201719832433010.1016/j.jep.2016.12.028 27993636
    [Google Scholar]
  96. HeD.Y. DaiS.M. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora pall., a traditional chinese herbal medicine.Front. Pharmacol.201121010.3389/fphar.2011.00010 21687505
    [Google Scholar]
  97. QiuZ.K. HeJ.L. LiuX. ZengJ. XiaoW. FanQ.H. ChaiX.M. YeW.H. ChenJ.S. Anxiolytic-like effects of paeoniflorin in an animal model of post traumatic stress disorder.Metab. Brain Dis.20183341175118510.1007/s11011‑018‑0216‑4 29633071
    [Google Scholar]
  98. TakanoH. OsakabeN. SanbongiC. YanagisawaR. InoueK. YasudaA. NatsumeM. BabaS. IchiishiE. YoshikawaT. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans.Exp. Biol. Med. (Maywood)2004229324725410.1177/153537020422900305 14988517
    [Google Scholar]
  99. NieH. PengZ. LaoN. WangH. ChenY. FangZ. HouW. GaoF. LiX. XiongL. TanQ. Rosmarinic acid ameliorates PTSD-like symptoms in a rat model and promotes cell proliferation in the hippocampus.Prog. Neuropsychopharmacol. Biol. Psychiatry201451162210.1016/j.pnpbp.2014.01.002 24418162
    [Google Scholar]
  100. SurB. KwonS. HahmD.H. LeeB. The anxiolytic-like effects of protocatechuic acid in an animal model of post-traumatic stress disorder.J. Med. Food202225549550210.1089/jmf.2021.K.0172 35561272
    [Google Scholar]
  101. SuA. ZhangJ. ZouJ. The anxiolytic-like effects of puerarin on an animal model of PTSD.Biomed. Pharmacother.201911510897810.1016/j.biopha.2019.108978 31102911
    [Google Scholar]
  102. RizviS. RazaS.T. AhmedF. AhmadA. AbbasS. MahdiF. The role of vitamin E in human health and some diseases.Sultan Qaboos Univ. Med. J.2014142e157e165 24790736
    [Google Scholar]
  103. AhmedM. AlzoubiK.H. KhabourO.F. Vitamin E prevents the cognitive impairments in post-traumatic stress disorder rat model: behavioral and molecular study.Psychopharmacology (Berl.)2020237259960710.1007/s00213‑019‑05395‑w 31734707
    [Google Scholar]
  104. LeeB. ShimI. LeeH. HahmD.H. Effects of epigallocatechin gallate on behavioral and cognitive impairments, hypothalamic-pituitary-adrenal axis dysfunction, and alternations in hippocampal BDNF expression under single prolonged stress.J. Med. Food2018211097998910.1089/jmf.2017.4161 30273101
    [Google Scholar]
  105. AndersonG. Polycystic ovary syndrome pathophysiology: Integrating systemic, CNS and circadian processes.Frontiers in Bioscience-Landmark20242912410.31083/j.fbl2901024 38287831
    [Google Scholar]
  106. FrijlingJ.L. van ZuidenM. NawijnL. KochS.B.J. NeumannI.D. VeltmanD.J. OlffM. Salivary oxytocin and vasopressin levels in police officers with and without post-traumatic stress disorder.J. Neuroendocrinol.2015271074375110.1111/jne.12300 26184739
    [Google Scholar]
  107. ZhangS. ZhangY.D. ShiD.D. WangZ. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders.Cell Biosci.202313121610.1186/s13578‑023‑01173‑6 38017588
    [Google Scholar]
  108. BourassaK.J. GarrettM.E. CaspiA. DennisM. HallK.S. MoffittT.E. TaylorG.A. BeckhamJ.C. CalhounP.S. DedertE. ElbogenE.B. HurleyR.A. KiltsJ.D. KimbrelN.A. KirbyA. MartindaleS.L. MarxC.E. McDonaldS.D. MooreS.D. MoreyR.A. NaylorJ.C. RowlandJ.A. ShuraR. SwinkelsC. Van VoorheesE.E. WagnerH.R. MagnanteA.T. O’ConnorV.L. AuroraP. MartinezB.S. HalversonT.F. Ashley-KochA.E. BeckhamJ.C. KimbrelN.A. Posttraumatic stress disorder, trauma, and accelerated biological aging among post-9/11 veterans.Transl. Psychiatry2024141410.1038/s41398‑023‑02704‑y 38184702
    [Google Scholar]
  109. AndersonG. A More Holistic Perspective of Alzheimer’s disease: Roles of gut microbiome, adipocytes, HPA axis, melatonergic pathway and astrocyte mitochondria in the emergence of autoimmunity.Front. Biosci.2023281235510.31083/j.fbl2812355
    [Google Scholar]
  110. AndersonG. Why are aging and stress associated with dementia, cancer, and other diverse medical conditions? Role of pineal melatonin interactions with gut microbiome butyrate in HPA axis and cortisol awakening response regulation. Possible role of BAG-1.Melatonin. Res.2023634537110.32794/mr112500158
    [Google Scholar]
  111. LakeE.P. MitchellB.G. ShorterD.I. KostenT. DomingoC.B. WalderA.M. Buprenorphine for the treatment of posttraumatic stress disorder.Am. J. Addict.2019282869110.1111/ajad.12860 30664299
    [Google Scholar]
/content/journals/cn/10.2174/011570159X333438240927103741
Loading
/content/journals/cn/10.2174/011570159X333438240927103741
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; anxiety; depression; psychotherapy; PTSD; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test