Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Early-life stress can severely impact brain health and neuronal plasticity, potentially leading to psychiatric disorders, with excitatory and inhibitory neurotransmission changes being key to understanding and mitigating these effects.

Objective

We investigated the effects of Perinatal Stress (PRS) on the balance of excitatory and inhibitory neurotransmission, particularly focusing on AMPA and GABA receptor protein levels and their relationship with cognition and risk-taking behavior in male and female Sprague-Dawley rats.

Methods

Adult PRS (3-4 months old) offspring of dams exposed to 10 days of gestational restraint stress, which led to reduced maternal care, were evaluated at 3-4 months for behavioral responses to novelty, adverse environments, and recognition memory, with biochemical analyses conducted in the prefrontal cortex and the ventral and dorsal hippocampus.

Results

PRS and sex notably affected behavior and AMPA/GABA receptor subunit expression. PRS males showed reduced risk-taking behavior when exposed to novel and adverse environments and impaired recognition memory, while PRS females demonstrated better behavioral performance compared to both PRS males and control females. In the dorsal hippocampus, PRS increased the GluA2:GluA1 ratio and GABAA-α1 subunit in females but reduced them in males, modulating the AMPA/GABAA balance to enhance synaptic GABAergic inhibition and behavioral resilience in PRS females and control males.

Conclusion

Our findings indicate that increased synaptic inhibition and reduced excitatory noise may underlie enhanced recognition memory and risk-taking behavior. The sex differences in PRS rats suggest that targeting AMPA or GABA receptors could help treat early-life stress-related disorders and underscore the need for developing gender-specific therapies.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X328731250104062122
2025-06-02
2025-09-24
Loading full text...

Full text loading...

References

  1. ToddN. ValleronA.J. BougnèresP. Prenatal loss of father during World War One is predictive of a reduced lifespan in adulthood.Proc. Natl. Acad. Sci. USA2017114164201420610.1073/pnas.1617911114 28377521
    [Google Scholar]
  2. WuY. De Asis-CruzJ. LimperopoulosC. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy.Mol. Psychiatry20242972223224010.1038/s41380‑024‑02449‑0 38418579
    [Google Scholar]
  3. ParkS. KimB.N. KimJ.W. ShinM.S. YooH.J. LeeJ. ChoS.C. Associations between maternal stress during pregnancy and offspring internalizing and externalizing problems in childhood.Int. J. Ment. Health Syst.2014814410.1186/1752‑4458‑8‑44 25926872
    [Google Scholar]
  4. ClassQ.A. AbelK.M. KhashanA.S. RickertM.E. DalmanC. LarssonH. HultmanC.M. LångströmN. LichtensteinP. D’OnofrioB.M. Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress.Psychol. Med.2014441718410.1017/S0033291713000780 23591021
    [Google Scholar]
  5. SmithK.E. PollakS.D. Early life stress and development: potential mechanisms for adverse outcomes.J. Neurodev. Disord.20201213410.1186/s11689‑020‑09337‑y 33327939
    [Google Scholar]
  6. ChenY. ZhengY. YanJ. ZhuC. ZengX. ZhengS. LiW. YaoL. XiaY. SuW. ChenY. Early life stress induces different behaviors in adolescence and adulthood may related with abnormal medial prefrontal cortex excitation/inhibition balance.Front. Neurosci.20221572028610.3389/fnins.2021.720286 35058738
    [Google Scholar]
  7. Di SegniM. AndolinaD. VenturaR. Long-term effects of early environment on the brain: Lesson from rodent models.Semin. Cell Dev. Biol.201877819210.1016/j.semcdb.2017.09.039 28982626
    [Google Scholar]
  8. MartisovaE. SolasM. HorrilloI. OrtegaJ.E. MeanaJ.J. TorderaR.M. RamírezM.J. Long lasting effects of early-life stress on glutamatergic/GABAergic circuitry in the rat hippocampus.Neuropharmacology2012625-61944195310.1016/j.neuropharm.2011.12.019 22245561
    [Google Scholar]
  9. JagtapA. JagtapB. JagtapR. LamtureY. GomaseK. Effects of prenatal stress on behavior, cognition, and psychopathology: A comprehensive review.Cureus20231510e4704410.7759/cureus.47044 38022302
    [Google Scholar]
  10. MaccariS. PoleseD. ReynaertM.L. AmiciT. Morley-FletcherS. FagioliF. Early-life experiences and the development of adult diseases with a focus on mental illness: The Human Birth Theory.Neuroscience201734223225110.1016/j.neuroscience.2016.05.042 27235745
    [Google Scholar]
  11. AcostaG.B. Early Life experience, maternal separation, and involvement of GABA and glutamate transporters.New Developments In Neurotransmission Research.GABA and Glutamate20177086810.5772/intechopen.70868
    [Google Scholar]
  12. GalloM. ShleiferD.G. GodoyL.D. OfrayD. OlaniyanA. CampbellT. BathK.G. Limited bedding and nesting induces maternal behavior resembling both hypervigilance and abuse.Front. Behav. Neurosci.20191316710.3389/fnbeh.2019.00167 31402857
    [Google Scholar]
  13. MahmoodkhaniM. AminiM. DerafshpourL. GhasemiM. MehranfardN. Negative relationship between brain α1A-AR neurotransmission and βArr2 levels in anxious adolescent rats subjected to early life stress.Exp. Brain Res.2020238122833284410.1007/s00221‑020‑05937‑1 33025031
    [Google Scholar]
  14. MahmoodkhaniM. GhasemiM. DerafshpourL. AminiM. MehranfardN. Developmental effects of early-life stress on dopamine D2 receptor and proteins involved in noncanonical D2 dopamine receptor signaling pathway in the prefrontal cortex of male rats.J. Complement. Integr. Med.202219369770310.1515/jcim‑2020‑0539 33962496
    [Google Scholar]
  15. TavaresG.A. TorresA. de SouzaJ.A. Early life stress and the onset of obesity: Proof of micrornas’ involvement through modulation of serotonin and dopamine systems’ homeostasis.Front. Physiol.20201192510.3389/fphys.2020.00925 32848865
    [Google Scholar]
  16. MarroccoJ. VerhaegheR. BucciD. Di MennaL. TraficanteA. BouwalerhH. Van CampG. GhiglieriV. PicconiB. CalabresiP. RavasiL. CisaniF. BagheriF. PittalugaA. BrunoV. BattagliaG. Morley-FletcherS. NicolettiF. MaccariS. Maternal stress programs accelerated aging of the basal ganglia motor system in offspring.Neurobiol. Stress20201310026510.1016/j.ynstr.2020.100265 33344718
    [Google Scholar]
  17. RodriguesA.J. LeãoP. CarvalhoM. AlmeidaO.F.X. SousaN. Potential programming of dopaminergic circuits by early life stress.Psychopharmacology (Berl.)2011214110712010.1007/s00213‑010‑2085‑3 21088961
    [Google Scholar]
  18. CrombieG.K. PalliserH.K. ShawJ.C. HodgsonD.M. WalkerD.W. HirstJ.J. Evaluating changes in GABAergic and glutamatergic pathways in early life following prenatal stress and postnatal neurosteroid supplementation.Psychoneuroendocrinology202213910570510.1016/j.psyneuen.2022.105705 35276552
    [Google Scholar]
  19. OhS.J. LeeN. NamK.R. KangK.J. LeeK.C. LeeY.J. SeokJ.H. ChoiJ.Y. Effect of developmental stress on the in vivo neuronal circuits related to excitation-inhibition balance and mood in adulthood.Front. Psychiatry2023141086370Epub ahead of print10.3389/fpsyt.2023.1086370 36846229
    [Google Scholar]
  20. OhtaK. SuzukiS. WaritaK. SumitaniK. TenkumoC. OzawaT. UjiharaH. KusakaT. MikiT. The effects of early life stress on the excitatory/inhibitory balance of the medial prefrontal cortex.Behav. Brain Res.202037911230610.1016/j.bbr.2019.112306 31629835
    [Google Scholar]
  21. VellucciL. De SimoneG. Morley-FletcherS. BuonaguroE.F. AvaglianoC. BaroneA. MaccariS. IasevoliF. de BartolomeisA. Perinatal stress modulates glutamatergic functional connectivity: A post-synaptic density immediate early gene-based network analysis.Prog. Neuropsychopharmacol. Biol. Psychiatry202413311103210.1016/j.pnpbp.2024.111032 38762163
    [Google Scholar]
  22. EnglundJ. HaikonenJ. ShteinikovV. AmarillaS.P. AtanasovaT. ShintyapinaA. RyazantsevaM. PartanenJ. VoikarV. LauriS.E. Downregulation of kainate receptors regulating GABAergic transmission in amygdala after early life stress is associated with anxiety-like behavior in rodents.Transl. Psychiatry202111153810.1038/s41398‑021‑01654‑7 34663781
    [Google Scholar]
  23. KarstH. DroogersW.J. van der WeerdN. DamsteegtR. van KronenburgN. SarabdjitsinghR.A. JoëlsM. Acceleration of GABA-switch after early life stress changes mouse prefrontal glutamatergic transmission.Neuropharmacology202323410954310.1016/j.neuropharm.2023.109543 37061088
    [Google Scholar]
  24. FurukawaM. TsukaharaT. TomitaK. IwaiH. SonomuraT. MiyawakiS. SatoT. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression.Biochem. Biophys. Res. Commun.201749331243124910.1016/j.bbrc.2017.09.143 28962859
    [Google Scholar]
  25. MarroccoJ. MairesseJ. NgombaR.T. SillettiV. Van CampG. BouwalerhH. SummaM. PittalugaA. NicolettiF. MaccariS. Morley-FletcherS. Anxiety-like behavior of prenatally stressed rats is associated with a selective reduction of glutamate release in the ventral hippocampus.J. Neurosci.20123248171431715410.1523/JNEUROSCI.1040‑12.2012 23197707
    [Google Scholar]
  26. MarroccoJ. ReynaertM.L. GattaE. GabrielC. MocaërE. Di PriscoS. MeregaE. PittalugaA. NicolettiF. MaccariS. Morley-FletcherS. MairesseJ. The effects of antidepressant treatment in prenatally stressed rats support the glutamatergic hypothesis of stress-related disorders.J. Neurosci.20143462015202410.1523/JNEUROSCI.4131‑13.2014 24501344
    [Google Scholar]
  27. MairesseJ. GattaE. ReynaertM.L. MarroccoJ. Morley-FletcherS. SoichotM. DeruyterL. CampG.V. BouwalerhH. FagioliF. PittalugaA. AllorgeD. NicolettiF. MaccariS. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.Psychoneuroendocrinology201562364610.1016/j.psyneuen.2015.07.005 26231445
    [Google Scholar]
  28. FanselowM.S. DongH.W. Are the dorsal and ventral hippocampus functionally distinct structures?Neuron201065171910.1016/j.neuron.2009.11.031 20152109
    [Google Scholar]
  29. Morley-FletcherS. ZuenaA.R. MairesseJ. GattaE. Van CampG. BouwalerhH. RiozziB. BattagliaG. PittalugaA. OliveroG. MocaerE. BretinS. NicolettiF. MaccariS. The reduction in glutamate release is predictive of cognitive and emotional alterations that are corrected by the positive modulator of AMPA receptors S 47445 in perinatal stressed rats.Neuropharmacology201813528429610.1016/j.neuropharm.2018.03.018 29578034
    [Google Scholar]
  30. VerhaegheR. GaoV. Morley-FletcherS. BouwalerhH. Van CampG. CisaniF. NicolettiF. MaccariS. Maternal stress programs a demasculinization of glutamatergic transmission in stress-related brain regions of aged rats.Geroscience20224421047106910.1007/s11357‑021‑00375‑5 33983623
    [Google Scholar]
  31. CollingridgeG.L. IsaacJ.T.R. WangY.T. Receptor trafficking and synaptic plasticity.Nat. Rev. Neurosci.200451295296210.1038/nrn1556 15550950
    [Google Scholar]
  32. HenleyJ.M. WilkinsonK.A. Synaptic AMPA receptor composition in development, plasticity and disease.Nat. Rev. Neurosci.201617633735010.1038/nrn.2016.37 27080385
    [Google Scholar]
  33. PurkeyA.M. Dell’AcquaM.L. Phosphorylation-dependent regulation of Ca2+-permeable AMPA receptors during hippocampal synaptic plasticity.Front. Synaptic Neurosci.202012810.3389/fnsyn.2020.00008 32292336
    [Google Scholar]
  34. LuJ. KaradshehM. DelpireE. Developmental regulation of the neuronal-specific isoform of K-CL cotransporter KCC2 in postnatal rat brains.J. Neurobiol.199939455856810.1002/(SICI)1097‑4695(19990615)39:4<558::AID‑NEU9>3.0.CO;2‑5 10380077
    [Google Scholar]
  35. RiveraC. VoipioJ. PayneJ.A. RuusuvuoriE. LahtinenH. LamsaK. PirvolaU. SaarmaM. KailaK. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation.Nature1999397671625125510.1038/16697 9930699
    [Google Scholar]
  36. RiveraC. LiH. Thomas-CrusellsJ. LahtinenH. ViitanenT. NanobashviliA. KokaiaZ. AiraksinenM.S. VoipioJ. KailaK. SaarmaM. BDNF-induced TrkB activation down-regulates the K+-Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion.J. Cell Biol.2002159574775210.1083/jcb.200209011 12473684
    [Google Scholar]
  37. DelpireE. Cation-chloride cotransporters in neuronal communication.News Physiol. Sci.200015309312 11390932
    [Google Scholar]
  38. HuberfeldG. WittnerL. ClemenceauS. BaulacM. KailaK. MilesR. RiveraC. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy.J. Neurosci.200727379866987310.1523/JNEUROSCI.2761‑07.2007 17855601
    [Google Scholar]
  39. LiH. KhirugS. CaiC. LudwigA. BlaesseP. KolikovaJ. AfzalovR. ColemanS.K. LauriS. AiraksinenM.S. KeinänenK. KhirougL. SaarmaM. KailaK. RiveraC. KCC2 interacts with the dendritic cytoskeleton to promote spine development.Neuron20075661019103310.1016/j.neuron.2007.10.039 18093524
    [Google Scholar]
  40. Ben-AriY. The GABA excitatory/inhibitory developmental sequence: A personal journey.Neuroscience201427918721910.1016/j.neuroscience.2014.08.001 25168736
    [Google Scholar]
  41. FarrantM. NusserZ. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors.Nat. Rev. Neurosci.20056321522910.1038/nrn1625 15738957
    [Google Scholar]
  42. Percie du SertN. AhluwaliaA. HurstV. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.PLoS Biol.202018e300041010.1186/s12917‑020‑02451‑y
    [Google Scholar]
  43. MaccariS. PiazzaP.V. KabbajM. BarbazangesA. SimonH. Le MoalM. Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress.J. Neurosci.199515111011610.1523/JNEUROSCI.15‑01‑00110.1995 7823121
    [Google Scholar]
  44. GattaE. MairesseJ. DeruyterL. MarroccoJ. Van CampG. BouwalerhH. Lo GuidiceJ.M. Morley-FletcherS. NicolettiF. MaccariS. Reduced maternal behavior caused by gestational stress is predictive of life span changes in risk-taking behavior and gene expression due to altering of the stress/anti-stress balance.Neurotoxicology20186613814910.1016/j.neuro.2018.04.005 29630914
    [Google Scholar]
  45. DarnaudéryM. BouyerJ.J. PallarésM. Le MoalM. MayoW. The promnesic neurosteroid pregnenolone sulfate increases paradoxical sleep in rats.Brain Res.1999818249249810.1016/S0006‑8993(98)01338‑9 10082836
    [Google Scholar]
  46. DarnaudéryM. PallarèsM. PiazzaP.V. Le MoalM. MayoW. The neurosteroid pregnenolone sulfate infused into the medial septum nucleus increases hippocampal acetylcholine and spatial memory in rats.Brain Res.2002951223724210.1016/S0006‑8993(02)03166‑9 12270502
    [Google Scholar]
  47. PellowS. ChopinP. FileS.E. BrileyM. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.J. Neurosci. Methods198514314916710.1016/0165‑0270(85)90031‑7 2864480
    [Google Scholar]
  48. HoggS. A review of the validity and variability of the Elevated Plus-Maze as an animal model of anxiety.Pharmacol. Biochem. Behav.1996541213010.1016/0091‑3057(95)02126‑4 8728535
    [Google Scholar]
  49. FernandesC. FileS.E. The influence of open arm ledges and maze experience in the elevated plus-maze.Pharmacol. Biochem. Behav.1996541314010.1016/0091‑3057(95)02171‑X 8728536
    [Google Scholar]
  50. BertoglioL.J. JocaS.R.L. GuimarãesF.S. Further evidence that anxiety and memory are regionally dissociated within the hippocampus.Behav. Brain Res.2006175118318810.1016/j.bbr.2006.08.021 16996146
    [Google Scholar]
  51. KorteS.M. De BoerS.F. BohusB. Fear-potentiation in the elevated plus-maze test depends on stressor controllability and fear conditioning.Stress199931274010.3109/10253899909001110 19016191
    [Google Scholar]
  52. ShenK. ZeppilloT. LimonA. Regional transcriptome analysis of AMPA and GABAA receptor subunit expression generates E/I signatures of the human brain.Sci. Rep.20201011135210.1038/s41598‑020‑68165‑1 32647210
    [Google Scholar]
  53. OrdK. Outliers in statistical dataInternational Journal of Forecasting3rd Ed. BarnettV. LewisT. John Wiley & Sons: Chichester, UK199612175176
    [Google Scholar]
  54. AndersonM.J. Permutational Multivariate Analysis of Variance (PERMANOVA).Wiley StatsRef: Statistics Reference Online115
    [Google Scholar]
  55. WarburtonE.C. BrownM.W. Neural circuitry for rat recognition memory.Behav. Brain Res.201528513113910.1016/j.bbr.2014.09.050 25315129
    [Google Scholar]
  56. PlantK. PelkeyK.A. BortolottoZ.A. MoritaD. TerashimaA. McBainC.J. CollingridgeG.L. IsaacJ.T.R. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation.Nat. Neurosci.20069560260410.1038/nn1678 16582904
    [Google Scholar]
  57. ParkP. SandersonT.M. AmiciM. ChoiS.L. BortolottoZ.A. ZhuoM. KaangB.K. CollingridgeG.L. Calcium-permeable AMPA receptors mediate the induction of the protein kinase a-dependent component of long-term potentiation in the hippocampus.J. Neurosci.201636262263110.1523/JNEUROSCI.3625‑15.2016 26758849
    [Google Scholar]
  58. ParkP. KangH. SandersonT.M. BortolottoZ.A. GeorgiouJ. ZhuoM. KaangB.K. CollingridgeG.L. The role of calcium-permeable AMPARs in long-term potentiation at principal neurons in the rodent hippocampus.Front. Synaptic Neurosci.2018104210.3389/fnsyn.2018.00042 30524263
    [Google Scholar]
  59. NassarM.R. ScottD. BhandariA. Noise correlations for faster and more robust learning.J. Neurosci.202141316740675210.1523/JNEUROSCI.3045‑20.2021 34193556
    [Google Scholar]
  60. BarkerG.R.I. WarburtonE.C. When is the hippocampus involved in recognition memory?J. Neurosci.20113129107211073110.1523/JNEUROSCI.6413‑10.2011 21775615
    [Google Scholar]
  61. YakaR. SalomonS. MatznerH. WeinstockM. Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats.Behav. Brain Res.2007179112613210.1016/j.bbr.2007.01.018 17320196
    [Google Scholar]
  62. YaoD. MuY. LuY. LiL. ShaoS. ZhouJ. LiJ. ChenS. ZhangD. ZhangY. ZhuZ. LiH. Hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring rats.J. Psychiatr. Res.2022151172410.1016/j.jpsychires.2022.03.032 35427874
    [Google Scholar]
  63. ArdiZ. Richter-LevinA. XuL. CaoX. VolkmerH. StorkO. Richter-LevinG. The role of the GABAA receptor Alpha 1 subunit in the ventral hippocampus in stress resilience.Sci. Rep.2019911351310.1038/s41598‑019‑49824‑4 31534228
    [Google Scholar]
  64. SakimotoY. OoP.M.T. GoshimaM. KanehisaI. TsukadaY. MitsushimaD. Significance of GABAA receptor for cognitive function and hippocampal pathology.Int. J. Mol. Sci.202122221245610.3390/ijms222212456 34830337
    [Google Scholar]
  65. ZhengG. ZhangX. ChenY. ZhangY. LuoW. ChenJ. Evidence for a role of GABAA receptor in the acute restraint stress-induced enhancement of spatial memory.Brain Res.20071181617310.1016/j.brainres.2007.08.077 17916335
    [Google Scholar]
  66. ShangY. ChenR. LiF. ZhangH. WangH. ZhangT. Prenatal stress impairs memory function in the early development of male-offspring associated with the GABA function.Physiol. Behav.202122811318410.1016/j.physbeh.2020.113184 32979340
    [Google Scholar]
  67. SuwalukA. ChutabhakdikulN. Altered development of prefrontal GABAergic functions and anxiety-like behavior in adolescent offspring induced by prenatal stress.Brain Sci.2022128101510.3390/brainsci12081015 36009078
    [Google Scholar]
  68. Nascimento HäcklL.P. CarobrezA.P. Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task in rats.Neurobiol. Learn. Mem.200788217718510.1016/j.nlm.2007.04.007 17540583
    [Google Scholar]
  69. BertagnaN.B. dos SantosP.G.C. QueirozR.M. FernandesG.J.D. CruzF.C. MiguelT.T. Involvement of the ventral, but not dorsal, hippocampus in anxiety-like behaviors in mice exposed to the elevated plus maze: Participation of CRF1 receptor and PKA pathway.Pharmacol. Rep.2021731577210.1007/s43440‑020‑00182‑3 33175366
    [Google Scholar]
  70. KiselycznykC. ZhangX. HuganirR.L. HolmesA. SvenningssonP. Reduced phosphorylation of GluA1 subunits relates to anxiety-like behaviours in mice.Int. J. Neuropsychopharmacol.201316491992410.1017/S1461145712001174 23360771
    [Google Scholar]
  71. XiangK. TietzE.I. Benzodiazepine-induced hippocampal CA1 neuron α-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-D-aspartic acid receptors.Behav. Pharmacol.2007185-644746010.1097/FBP.0b013e3282d28f2b 17762513
    [Google Scholar]
  72. EstanislauC. MoratoS. Prenatal stress produces more behavioral alterations than maternal separation in the elevated plus-maze and in the elevated T-maze.Behav. Brain Res.20051631707710.1016/j.bbr.2005.04.003 15941599
    [Google Scholar]
  73. EstanislauC. MoratoS. Behavior ontogeny in the elevated plus‐maze: prenatal stress effects.Int. J. Dev. Neurosci.200624425526210.1016/j.ijdevneu.2006.03.001 16698220
    [Google Scholar]
  74. FuchsT. JeffersonS.J. HooperA. YeeP-H.P. MaguireJ. LuscherB. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state.Mol. Psychiatry201722692093010.1038/mp.2016.188 27821870
    [Google Scholar]
  75. BagheriM. SabooryE. NejatbakhshM. Roshan-MilaniS. DerafshpourL. SayyadiH. RasmiY. Prenatal stress increased γ2 GABAA receptor subunit gene expression in hippocampus and potentiated pentylenetetrazol-induced seizure in rats.Iran. J. Basic Med. Sci.2020236724729 32695287
    [Google Scholar]
  76. WallnerM. HancharH.J. OlsenR.W. Ethanol enhances α4β3δ and α6β3δγ-aminobutyric acid type A receptors at low concentrations known to affect humans.Proc. Natl. Acad. Sci. USA200310025152181522310.1073/pnas.2435171100 14625373
    [Google Scholar]
  77. Van WaesV. EnacheM. DutriezI. LesageJ. Morley-FletcherS. VinnerE. LhermitteM. VieauD. MaccariS. DarnaudéryM. Hypo‐response of the hypothalamic‐pituitary‐adrenocortical axis after an ethanol challenge in prenatally stressed adolescent male rats.Eur. J. Neurosci.20062441193120010.1111/j.1460‑9568.2006.04973.x 16925589
    [Google Scholar]
  78. Van WaesV. EnacheM. ZuenaA. MairesseJ. NicolettiF. VinnerE. LhermitteM. MaccariS. DarnaudéryM. Ethanol attenuates spatial memory deficits and increases mGlu1a receptor expression in the hippocampus of rats exposed to prenatal stress.Alcohol. Clin. Exp. Res.20093381346135410.1111/j.1530‑0277.2009.00964.x 19413649
    [Google Scholar]
  79. Van WaesV. DarnaudéryM. MarroccoJ. GruberS.H. TalaveraE. MairesseJ. Van CampG. CasollaB. NicolettiF. MathéA.A. MaccariS. Morley-FletcherS. Impact of early life stress on alcohol consumption and on the short- and long-term responses to alcohol in adolescent female rats.Behav. Brain Res.20112211434910.1016/j.bbr.2011.02.033 21376087
    [Google Scholar]
  80. PandyaM. PalpagamaT.H. TurnerC. WaldvogelH.J. FaullR.L. KwakowskyA. Sex- and age-related changes in GABA signaling components in the human cortex.Biol. Sex Differ.2019101510.1186/s13293‑018‑0214‑6 30642393
    [Google Scholar]
  81. HammettS.T. CookE. HassanO. HughesC.A. RooslienH. TizkarR. LarssonJ. GABA, noise and gain in human visual cortex.Neurosci. Lett.202073613529410.1016/j.neulet.2020.135294 32777347
    [Google Scholar]
  82. ParkJ. MoghaddamB. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility.Neuroscience201734519320210.1016/j.neuroscience.2016.06.013 27316551
    [Google Scholar]
/content/journals/cn/10.2174/011570159X328731250104062122
Loading
/content/journals/cn/10.2174/011570159X328731250104062122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test