Skip to content
2000
Volume 23, Issue 9
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various non-invasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts. A summary of the state-of-the-art in the field is provided to accelerate the development of emerging neuromodulation technologies for brain stimulation and recording for patients with mood, sleep, and cognitive disorders in our ageing population.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X340612241121072233
2025-01-14
2025-09-19
Loading full text...

Full text loading...

References

  1. SilvaniA. Calandra-BuonauraG. DampneyR.A.L. CortelliP. Brain–heart interactions: Physiology and clinical implications.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201637420672015018110.1098/rsta.2015.018127044998
    [Google Scholar]
  2. WangZ. LuoY. ZhangY. ChenL. ZouY. XiaoJ. MinW. YuanC. YeY. LiM. TuM. HuJ. ZouZ. Heart rate variability in generalized anxiety disorder, major depressive disorder and panic disorder: A network meta-analysis and systematic review.J. Affect. Disord.202333025926610.1016/j.jad.2023.03.01836914118
    [Google Scholar]
  3. EslerM. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: The transition from mechanisms to medical management.J. Appl. Physiol.2010108222723710.1152/japplphysiol.00832.200919940096
    [Google Scholar]
  4. HeringD. LachowskaK. SchlaichM. Role of the sympathetic nervous system in stress-mediated cardiovascular disease.Curr. Hypertens. Rep.201517108010.1007/s11906‑015‑0594‑526318888
    [Google Scholar]
  5. LeeH. LeeJ.H. HwangM.H. KangN. Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis.J. Affect. Disord.202333944345310.1016/j.jad.2023.07.03937459970
    [Google Scholar]
  6. KroesM.C.W. DunsmoorJ.E. HakimiM. OosterwaalS. MeagerM.R. PhelpsE.A. Patients with dorsolateral prefrontal cortex lesions are capable of discriminatory threat learning but appear impaired in cognitive regulation of subjective fear.Soc. Cogn. Affect. Neurosci.201914660161210.1093/scan/nsz03931119295
    [Google Scholar]
  7. DampneyR.A.L. Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviors: Description and conceptual model of central mechanisms.Front. Neurosci.20171146110.3389/fnins.2017.0046128860965
    [Google Scholar]
  8. MuellerP.J. CliffordP.S. CrandallC.G. SmithS.A. FadelP.J. Integration of central and peripheral regulation of the circulation during exercise: Acute and chronic adaptations.Compr. Physiol.20178110315110.1002/cphy.c16004029357126
    [Google Scholar]
  9. SmithR. ThayerJ.F. KhalsaS.S. LaneR.D. The hierarchical basis of neurovisceral integration.Neurosci. Biobehav. Rev.20177527429610.1016/j.neubiorev.2017.02.00328188890
    [Google Scholar]
  10. NovembreG. PawarV.M. KilintariM. BufacchiR.J. GuoY. RothwellJ.C. IannettiG.D. The effect of salient stimuli on neural oscillations, isometric force, and their coupling.Neuroimage201919822123010.1016/j.neuroimage.2019.05.03231085301
    [Google Scholar]
  11. NovembreG. IannettiG.D. Towards a unified neural mechanism for reactive adaptive behaviour.Prog. Neurobiol.202120410211510.1016/j.pneurobio.2021.10211534175406
    [Google Scholar]
  12. CisekP. Cortical mechanisms of action selection: The affordance competition hypothesis.Philos. Trans. R. Soc. Lond. B Biol. Sci.200736214851585159910.1098/rstb.2007.205417428779
    [Google Scholar]
  13. MillerE.K. CohenJ.D. An integrative theory of prefrontal cortex function.Annu. Rev. Neurosci.200124116720210.1146/annurev.neuro.24.1.16711283309
    [Google Scholar]
  14. MukamelR. FriedI. Human intracranial recordings and cognitive neuroscience.Annu. Rev. Psychol.201263151153710.1146/annurev‑psych‑120709‑14540121943170
    [Google Scholar]
  15. AxmacherN. Intracranial EEG: A Guide for Cognitive Neuroscientists.Springer: Cham202310.1007/978‑3‑031‑20910‑9
    [Google Scholar]
  16. LhatooS.D. KahaneP. LüdersH.O. Invasive Studies of the Human Epileptic Brain: Principles and PracticeOxford Academic201810.1093/med/9780198714668.001.0001
    [Google Scholar]
  17. EhrssonH.H. FagergrenA. JonssonT. WestlingG. JohanssonR.S. ForssbergH. Cortical activity in precision- versus power-grip tasks: An fMRI study.J. Neurophysiol.200083152853610.1152/jn.2000.83.1.52810634893
    [Google Scholar]
  18. EhrssonH.H. FagergrenA. ForssbergH. Differential fronto-parietal activation depending on force used in a precision grip task: An fMRI study.J. Neurophysiol.20018562613262310.1152/jn.2001.85.6.261311387405
    [Google Scholar]
  19. VaillancourtD.E. YuH. MaykaM.A. CorcosD.M. Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses.Neuroimage200736379380310.1016/j.neuroimage.2007.03.00217451971
    [Google Scholar]
  20. NeelyK.A. CoombesS.A. PlanettaP.J. VaillancourtD.E. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force.Hum. Brain Mapp.201334369871210.1002/hbm.2146722109998
    [Google Scholar]
  21. NovembreG. LacalI. BenusiglioD. QuartaE. SchitoA. GrassoS. CaratelliL. CaminitiR. MayerA.B. IannettiG.D. A cortical mechanism linking saliency detection and motor reactivity in rhesus monkeys.J. Neurosci.2024441e042223202310.1523/JNEUROSCI.0422‑23.202337949654
    [Google Scholar]
  22. ScottS.H. The computational and neural basis of voluntary motor control and planning.Trends Cogn. Sci.2012161154154910.1016/j.tics.2012.09.00823031541
    [Google Scholar]
  23. WesselJ.R. AronA.R. On the globality of motor Suppression: Unexpected events and their influence on behavior and cognition.Neuron201793225928010.1016/j.neuron.2016.12.01328103476
    [Google Scholar]
  24. GraybielA.M. AosakiT. FlahertyA.W. KimuraM. The basal ganglia and adaptive motor control.Science199426551801826183110.1126/science.80912098091209
    [Google Scholar]
  25. WallisJ.D. AndersonK.C. MillerE.K. Single neurons in prefrontal cortex encode abstract rules.Nature2001411684095395610.1038/3508208111418860
    [Google Scholar]
  26. PesaranB. NelsonM.J. AndersenR.A. Free choice activates a decision circuit between frontal and parietal cortex.Nature2008453719340640910.1038/nature0684918418380
    [Google Scholar]
  27. KaeserM. WannierT. BrunetJ.F. WyssA. BlochJ. RouillerE.M. Representation of motor habit in a sequence of repetitive reach and grasp movements performed by macaque monkeys: Evidence for a contribution of the dorsolateral prefrontal cortex.Cortex20134951404141910.1016/j.cortex.2012.05.02522809698
    [Google Scholar]
  28. BadoudS. BorgognonS. CottetJ. ChatagnyP. MoretV. FregosiM. KaeserM. FortisE. SchmidlinE. BlochJ. BrunetJ.F. RouillerE.M. Effects of dorsolateral prefrontal cortex lesion on motor habit and performance assessed with manual grasping and control of force in macaque monkeys.Brain Struct. Funct.201722231193120610.1007/s00429‑016‑1268‑z27394722
    [Google Scholar]
  29. Alizadeh M.F. BuckleyM.J. TanakaK. Mapping causal links between prefrontal cortical regions and intra-individual behavioral variability.Nat. Commun.202415114010.1038/s41467‑023‑44341‑538168052
    [Google Scholar]
  30. PesaranB. PezarisJ.S. SahaniM. MitraP.P. AndersenR.A. Temporal structure in neuronal activity during working memory in macaque parietal cortex.Nat. Neurosci.20025880581110.1038/nn89012134152
    [Google Scholar]
  31. HowardM.W. RizzutoD.S. CaplanJ.B. MadsenJ.R. LismanJ. Aschenbrenner-ScheibeR. Schulze-BonhageA. KahanaM.J. Gamma oscillations correlate with working memory load in humans.Cereb. Cortex200313121369137410.1093/cercor/bhg08414615302
    [Google Scholar]
  32. RaghavachariS. LismanJ.E. TullyM. MadsenJ.R. BromfieldE.B. KahanaM.J. Theta oscillations in human cortex during a working-memory task: Evidence for local generators.J. Neurophysiol.20069531630163810.1152/jn.00409.200516207788
    [Google Scholar]
  33. RouxF. WibralM. MohrH.M. SingerW. UhlhaasP.J. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory.J. Neurosci.20123236124111242010.1523/JNEUROSCI.0421‑12.201222956832
    [Google Scholar]
  34. CorcoranA.W. MacefieldV.G. HohwyJ. Be still my heart: Cardiac regulation as a mode of uncertainty reduction.Psychon. Bull. Rev.20212841211122310.3758/s13423‑021‑01888‑y33755894
    [Google Scholar]
  35. RoelofsK. Freeze for action: Neurobiological mechanisms in animal and human freezing.Philos. Trans. R. Soc. Lond. B Biol. Sci.201737217182016020610.1098/rstb.2016.020628242739
    [Google Scholar]
  36. ColeM.W. SchneiderW. The cognitive control network: Integrated cortical regions with dissociable functions.Neuroimage200737134336010.1016/j.neuroimage.2007.03.07117553704
    [Google Scholar]
  37. AlexanderW.H. DeraeveJ. VassenaE. Dissociation and integration of outcome and state uncertainty signals in cognitive control.Cogn. Affect. Behav. Neurosci.202323369170410.3758/s13415‑023‑01091‑737058212
    [Google Scholar]
  38. GrosshagauerS. WoletzM. VasileiadiM. LinhardtD. NohavaL. SchulerA.L. WindischbergerC. WilliamsN. TikM. Chronometric TMS-fMRI of personalized left dorsolateral prefrontal target reveals state-dependency of subgenual anterior cingulate cortex effects.Mol. Psychiatry20242992678268810.1038/s41380‑024‑02535‑338532009
    [Google Scholar]
  39. CashR.F.H. WeigandA. ZaleskyA. SiddiqiS.H. DownarJ. FitzgeraldP.B. FoxM.D. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression.Biol. Psychiatry2021901068970010.1016/j.biopsych.2020.05.03332800379
    [Google Scholar]
  40. Molnar-SzakacsI. UddinL.Q. Anterior insula as a gatekeeper of executive control.Neurosci. Biobehav. Rev.202213910473610.1016/j.neubiorev.2022.10473635700753
    [Google Scholar]
  41. AlexanderW.H. BrownJ.W. The role of the anterior cingulate cortex in prediction error and signaling surprise.Top. Cogn. Sci.201911111913510.1111/tops.1230729131512
    [Google Scholar]
  42. AlexanderW.H. BrownJ.W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex.Neural Comput.201527112354241010.1162/NECO_a_0077926378874
    [Google Scholar]
  43. AlexanderW.H. BrownJ.W. Frontal cortex function as derived from hierarchical predictive coding.Sci Rep20188384310.1038/s41598‑018‑21407‑9
    [Google Scholar]
  44. CraigA.D. How do you feel? Interoception: The sense of the physiological condition of the body.Nat Rev Neurosci.2002386556610.1038/nrn894
    [Google Scholar]
  45. McMorrisT. Cognitive fatigue effects on physical performance: the role of interoception.Sports Med.202050101703170810.1007/s40279‑020‑01320‑w32661840
    [Google Scholar]
  46. CraigA.D.B. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey.J. Comp. Neurol.2004477211914810.1002/cne.2024015300785
    [Google Scholar]
  47. GuX. HofP.R. FristonK.J. FanJ. Anterior insular cortex and emotional awareness.J. Comp. Neurol.2013521153371338810.1002/cne.2336823749500
    [Google Scholar]
  48. FisherJ.P. YoungC.N. FadelP.J. Autonomic adjustments to exercise in humans.Compr. Physiol.20155247551210.1002/cphy.c14002225880502
    [Google Scholar]
  49. IbanezA. NorthoffG. Intrinsic timescales and predictive allostatic interoception in brain health and disease.Neurosci. Biobehav. Rev.202415710551010.1016/j.neubiorev.2023.10551038104789
    [Google Scholar]
  50. KroghA. LindhardJ. The regulation of respiration and circulation during the initial stages of muscular work.J. Physiol.1913471-211213610.1113/jphysiol.1913.sp00161616993229
    [Google Scholar]
  51. GoodwinG.M. McCloskeyD.I. MitchellJ.H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension.J. Physiol.1972226117319010.1113/jphysiol.1972.sp0099794263680
    [Google Scholar]
  52. WilliamsonJ.W. Autonomic responses to exercise: Where is central command?Auton. Neurosci.20151883410.1016/j.autneu.2014.10.01125458428
    [Google Scholar]
  53. AndreescuC. SheuL.K. TudorascuD. GrossJ.J. WalkerS. BanihashemiL. AizensteinH. Emotion reactivity and regulation in late-life generalized anxiety disorder: Functional connectivity at baseline and post-treatment.Am. J. Geriatr. Psychiatry201523220021410.1016/j.jagp.2014.05.00324996397
    [Google Scholar]
  54. WinklewskiP.J. RadkowskiM. Wszedybyl-WinklewskaM. DemkowU. Brain inflammation and hypertension: The chicken or the egg?J. Neuroinflammation20151218510.1186/s12974‑015‑0306‑825935397
    [Google Scholar]
  55. Wszedybyl-WinklewskaM. WolfJ. SzarmachA. WinklewskiP.J. SzurowskaE. NarkiewiczK. Central sympathetic nervous system reinforcement in obstructive sleep apnoea.Sleep Med. Rev.20183914315410.1016/j.smrv.2017.08.00629103945
    [Google Scholar]
  56. MacefieldV.G. HendersonL.A. Identifying increases in activity of the human RVLM through MSNA-coupled fMRI.Front. Neurosci.202013136910.3389/fnins.2019.0136932038124
    [Google Scholar]
  57. FerraroS. Klugah-BrownB. TenchC.R. BazinetV. BoreM.C. NigriA. DemichelisG. BruzzoneM.G. PalermoS. ZhaoW. YaoS. JiangX. KendrickK.M. BeckerB. The central autonomic system revisited – Convergent evidence for a regulatory role of the insular and midcingulate cortex from neuroimaging meta-analyses.Neurosci. Biobehav. Rev.202214210491510.1016/j.neubiorev.2022.10491536244505
    [Google Scholar]
  58. TayahT. SavardM. DesbiensR. NguyenD.K. Ictal bradycardia and asystole in an adult with a focal left insular lesion.Clin. Neurol. Neurosurg.201311591885188710.1016/j.clineuro.2013.04.01123643181
    [Google Scholar]
  59. de MorreeH.M. RuttenG.J. SzabóB.M. SitskoornM.M. KopW.J. Effects of insula resection on autonomic nervous system activity.J. Neurosurg. Anesthesiol.201628215315810.1097/ANA.000000000000020726192246
    [Google Scholar]
  60. MarinsF.R. Limborço-FilhoM. IddingsJ.A. XavierC.H. BiancardiV.C. SternJ.E. Ramiro DiazJ. OppenheimerS.M. FilosaJ.A. Peliky FontesM.A. Tachycardia evoked from insular stroke in rats is dependent on glutamatergic neurotransmission in the dorsomedial hypothalamus.Eur. J. Neurol.202128113640364910.1111/ene.1498734152065
    [Google Scholar]
  61. OppenheimerS.M. GelbA. GirvinJ.P. HachinskiV.C. Cardiovascular effects of human insular cortex stimulation.Neurology19924291727173210.1212/WNL.42.9.17271513461
    [Google Scholar]
  62. UddinL.Q. NomiJ.S. Hébert-SeropianB. GhaziriJ. BoucherO. Structure and function of the human insula.J. Clin. Neurophysiol.201734430030610.1097/WNP.000000000000037728644199
    [Google Scholar]
  63. ChristakouA. BrammerM. GiampietroV. RubiaK. Right ventromedial and dorsolateral prefrontal cortices mediate adaptive decisions under ambiguity by integrating choice utility and outcome evaluation.J. Neurosci.20092935110201102810.1523/JNEUROSCI.1279‑09.200919726660
    [Google Scholar]
  64. BlankensteinN.E. SchreudersE. PeperJ.S. CroneE.A. van DuijvenvoordeA.C.K. Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence.Neuroimage201817266367310.1016/j.neuroimage.2018.01.08529408323
    [Google Scholar]
  65. HermanA.M. EspositoG. TsakirisM. Body in the face of uncertainty: The role of autonomic arousal and interoception in decision‐making under risk and ambiguity.Psychophysiology2021588e1384010.1111/psyp.1384033977533
    [Google Scholar]
  66. Iturria-MedinaY. SoteroR.C. ToussaintP.J. Mateos-PérezJ.M. EvansA.C. WeinerM.W. AisenP. PetersenR. JackC.R. JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. ShawL.M. KhachaturianZ. SorensenG. KullerL. RaichleM. PaulS. DaviesP. FillitH. HeftiF. HoltzmanD. MesulamM.M. PotterW. SnyderP. SchwartzA. MontineT. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. JiminezG. HarveyD. BernsteinM. FoxN. ThompsonP. SchuffN. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. CairnsN.J. HouseholderE. Taylor-ReinwaldL. LeeV. KoreckaM. FigurskiM. CrawfordK. NeuS. ForoudT.M. PotkinS. ShenL. FaberK. KimS. NhoK. ThalL. BuckholtzN. AlbertM. FrankR. HsiaoJ. KayeJ. QuinnJ. LindB. CarterR. DolenS. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. SpannB.M. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ.L. LordJ.L. MasonS.S. AlbersC.S. KnopmanD. JohnsonK. DoodyR.S. Villanueva-MeyerJ. ChowdhuryM. RountreeS. DangM. SternY. HonigL.S. BellK.L. AncesB. CarrollM. LeonS. MintunM.A. SchneiderS. OliverA. MarsonD. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. GrossmanH. MitsisE. de Toledo-MorrellL. ShahR.C. DuaraR. VaronD. GreigM.T. RobertsP. AlbertM. OnyikeC. D’AgostinoD. KielbS. GalvinJ.E. CerboneB. MichelC.A. RusinekH. de LeonM.J. GlodzikL. De SantiS. DoraiswamyP.M. PetrellaJ.R. WongT.Z. ArnoldS.E. KarlawishJ.H. WolkD. SmithC.D. JichaG. HardyP. SinhaP. OatesE. ConradG. LopezO.L. OakleyM.A. SimpsonD.M. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. IsmailM.S. BrandC. MulnardR.A. ThaiG. Mc-Adams-OrtizC. WomackK. MathewsD. QuicenoM. Diaz-ArrastiaR. KingR. WeinerM. Martin-CookK. DeVousM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. AndersonH.S. SwerdlowR.H. ApostolovaL. TingusK. WooE. SilvermanD.H.S. LuP.H. BartzokisG. Graff-RadfordN.R. ParfittF. KendallT. JohnsonH. FarlowM.R. HakeA.M. MatthewsB.R. HerringS. HuntC. van DyckC.H. CarsonR.E. MacAvoyM.G. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. HsiungG-Y.R. FeldmanH. MudgeB. AssalyM. KerteszA. RogersJ. BernickC. MunicD. KerwinD. MesulamM-M. LipowskiK. WuC-K. JohnsonN. SadowskyC. MartinezW. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. FreyM. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. AllardJ. LernerA. OgrockiP. HudsonL. FletcherE. CarmichaelO. OlichneyJ. DeCarliC. KitturS. BorrieM. LeeT-Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PotkinS.G. PredaA. NguyenD. TariotP. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. SantulliR.B. KitzmillerT.J. SchwartzE.S. SinkK.M. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. MintzerJ. SpicerK. BachmanD. FingerE. PasternakS. RachinskyI. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. PontoL.L.B. ShimH. SmithK.E. RelkinN. ChaingG. RaudinL. SmithA. FargherK. RajB.A. NeylanT. GrafmanJ. DavisM. MorrisonR. HayesJ. FinleyS. FriedlK. FleischmanD. ArfanakisK. JamesO. MassogliaD. FruehlingJ.J. HardingS. PeskindE.R. PetrieE.C. LiG. YesavageJ.A. TaylorJ.L. FurstA.J. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis.Nat. Commun.2016711193410.1038/ncomms1193427327500
    [Google Scholar]
  67. MacCormackJ.K. Armstrong-CarterE. HumphreysK.L. MuscatellK.A. Neurophysiological contributors to advantageous risk-taking: An experimental psychopharmacological investigation.Soc. Cogn. Affect. Neurosci.202116992693610.1093/scan/nsab04733860790
    [Google Scholar]
  68. SütterlinS. HerbertC. SchmittM. KüblerA. VögeleC. Frames, decisions, and cardiac–autonomic control.Soc. Neurosci.20116216917710.1080/17470919.2010.49588320661838
    [Google Scholar]
  69. PlousS. The Psychology of Judgment and Decision MakingMcGraw-Hill Education1993
    [Google Scholar]
  70. MocciaL. QuintiglianoM. JaniriD. De MartinV. RogierG. SaniG. JaniriL. VelottiP. GalleseV. SperanzaA.M. Di NicolaM. Heart rate variability and interoceptive accuracy predict impaired decision-making in gambling disorder.J. Behav. Addict.202110370171010.1556/2006.2021.0006734591785
    [Google Scholar]
  71. RoyA. AdinoffB. RoehrichL. LamparskiD. CusterR. LorenzV. BarbacciaM. GuidottiA. CostaE. LinnoilaM. Pathological gambling.Arch. Gen. Psychiatry198845436937310.1001/archpsyc.1988.018002800850112451490
    [Google Scholar]
  72. LagattaD.C. FassiniA. TerzianA.L. CorrêaF.M.A. ResstelL.B.M. The medial prefrontal cortex and the cardiac baroreflex activity: Physiological and pathological implications.Pflugers Arch.2023475329130710.1007/s00424‑022‑02786‑536695881
    [Google Scholar]
  73. KanR.L.D. PadbergF. GironC.G. LinT.T.Z. ZhangB.B.B. BrunoniA.R. KranzG.S. Effects of repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex on symptom domains in neuropsychiatric disorders: A systematic review and cross-diagnostic meta-analysis.Lancet Psychiatry202310425225910.1016/S2215‑0366(23)00026‑336898403
    [Google Scholar]
  74. IsegerT.A. PadbergF. KenemansJ.L. GevirtzR. ArnsM. Neuro-Cardiac-Guided TMS (NCG-TMS): Probing DLPFC-sgACC-vagus nerve connectivity using heart rate – First results.Brain Stimul.20171051006100810.1016/j.brs.2017.05.00228545770
    [Google Scholar]
  75. IsegerT.A. van BuerenN.E.R. KenemansJ.L. GevirtzR. ArnsM. A frontal-vagal network theory for Major Depressive Disorder: Implications for optimizing neuromodulation techniques.Brain Stimul.20201311910.1016/j.brs.2019.10.00631668983
    [Google Scholar]
  76. DijkstraE. van DijkH. Vila-RodriguezF. ZwienenbergL. RouwhorstR. CoetzeeJ.P. BlumbergerD.M. DownarJ. WilliamsN. SackA.T. ArnsM. Transcranial magnetic stimulationinduced heart-brain coupling: Implications for site selection and frontal thresholding-preliminary findings.Biol. Psy. Global. Open Sci.20233493994710.1016/j.bpsgos.2023.01.00337881544
    [Google Scholar]
  77. MishraR. ThrasherA.T. Transcranial direct current stimulation of dorsolateral prefrontal cortex improves dual-task gait performance in patients with Parkinson’s disease: A double blind, sham-controlled study.Gait Posture202184111610.1016/j.gaitpost.2020.11.01233260076
    [Google Scholar]
  78. Montero-OdassoM. VergheseJ. BeauchetO. HausdorffJ.M. Gait and cognition: A complementary approach to understanding brain function and the risk of falling.J. Am. Geriatr. Soc.201260112127213610.1111/j.1532‑5415.2012.04209.x23110433
    [Google Scholar]
  79. ZhouJ. HaoY. WangY. Jor’danA. Pascual-LeoneA. ZhangJ. FangJ. ManorB. Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control.Eur. J. Neurosci.20143981343134810.1111/ejn.1249224443958
    [Google Scholar]
  80. SwankC. MehtaJ. CrimingerC. Transcranial direct current stimulation lessens dual task cost in people with Parkinson’s disease.Neurosci. Lett.20166261510.1016/j.neulet.2016.05.01027181509
    [Google Scholar]
  81. PallantiS. Di RolloA. AntoniniS. CauliG. HollanderE. QuercioliL. Low-frequency rTMS over right dorsolateral prefrontal cortex in the treatment of resistant depression: Cognitive improvement is independent from clinical response, resting motor threshold is related to clinical response.Neuropsychobiology201265422723510.1159/00033699922653158
    [Google Scholar]
  82. ZiemannU. SteinhoffB.J. TergauF. PaulusW. Transcranial magnetic stimulation: Its current role in epilepsy research.Epilepsy Res.1998301113010.1016/S0920‑1211(97)00079‑X9551841
    [Google Scholar]
  83. CantoneM. BramantiA. LanzaG. PennisiM. BramantiP. PennisiG. BellaR. Cortical Plasticity in Depression.A neurochemical perspective from transcranial magnetic simulation.ASN Neuro201793175909141771151210.1177/175909141771151228629225
    [Google Scholar]
  84. UrquhartE.L. WanniarachchiH. WangX. LiuH. FadelP.J. AlexandrakisG. Mapping cortical network effects of fatigue during a handgrip task by functional near-infrared spectroscopy in physically active and inactive subjects.Neurophotonics201964110.1117/1.NPh.6.4.04501131853458
    [Google Scholar]
  85. HongS. ChenL. HouW. ZhangS. FengS. ZhangX. ZhouJ. Effects of motor fatigue on cortical activation level and functional connectivity during upper limb resistance training.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf.20231510.1109/EMBC40787.2023.10340325
    [Google Scholar]
  86. TeoW.P. TanC.X. GoodwillA.M. MohammadS. AngY.X. LatellaC. Brain activation associated with low‐ and high‐intensity concentric versus eccentric isokinetic contractions of the biceps brachii: An fNIRS study.Scand. J. Med. Sci. Sports2024341e1449910.1111/sms.1449937732821
    [Google Scholar]
  87. PaquolaC. HongS.J. The potential of myelin-sensitive Imaging: Redefining spatiotemporal patterns of myeloarchitecture.Biol. Psychiatry202393544245410.1016/j.biopsych.2022.08.03136481065
    [Google Scholar]
  88. ByunK. HyodoK. SuwabeK. OchiG. SakairiY. KatoM. DanI. SoyaH. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: An fNIRS study.Neuroimage20149833634510.1016/j.neuroimage.2014.04.06724799137
    [Google Scholar]
  89. KuwamizuR. YamazakiY. AoikeN. HiragaT. HataT. YassaM.A. SoyaH. Pupil dynamics during very light exercise predict benefits to prefrontal cognition.Neuroimage202327712024410.1016/j.neuroimage.2023.12024437353097
    [Google Scholar]
  90. KuwamizuR. YamadaY. Physiological mechanism of acute exercise benefits for human cognition: Possible involvement of dopamine release and central command.J. Physiol.2024602699799910.1113/JP28623438412050
    [Google Scholar]
  91. KujachS. ByunK. HyodoK. SuwabeK. FukuieT. LaskowskiR. DanI. SoyaH. A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults.Neuroimage201816911712510.1016/j.neuroimage.2017.12.00329203453
    [Google Scholar]
  92. Sesa-AshtonG. WongR. McCarthyB. DattaS. HendersonL.A. DawoodT. MacefieldV.G. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans.Cerebral Cortex Commun.202232tgac01710.1093/texcom/tgac01735559424
    [Google Scholar]
  93. WongR. Sesa-AshtonG. DattaS. McCarthyB. HendersonL.A. DawoodT. MacefieldV.G. The role of the dorsolateral prefrontal cortex in control of skin sympathetic nerve activity in humans.Cereb. Cortex202333138265827210.1093/cercor/bhad11237143172
    [Google Scholar]
  94. SasakiA. AisawaA. TakeuchiN. Transcranial direct current stimulation facilitates backward walking training.Exp. Brain Res.20242421677710.1007/s00221‑023‑06728‑037955707
    [Google Scholar]
  95. PashlerH. Dual-task interference in simple tasks: Data and theory.Psychol. Bull.1994116222024410.1037/0033‑2909.116.2.2207972591
    [Google Scholar]
  96. RedfernM.S. JenningsJ.R. MartinC. FurmanJ.M. Attention influences sensory integration for postural control in older adults.Gait Posture200114321121610.1016/S0966‑6362(01)00144‑811600324
    [Google Scholar]
  97. MoscatelliF. TotoG.A. ValenzanoA. CibelliG. MondaV. LimoneP. ManciniN. MessinaA. MarsalaG. MessinaG. PolitoR. High frequencies (HF) repetitive transcranial magnetic stimulation (rTMS) increase motor coordination performances in volleyball players.BMC Neurosci.20232413010.1186/s12868‑023‑00796‑237161411
    [Google Scholar]
  98. Muir-HunterS.W. WittwerJ.E. Dual-task testing to predict falls in community-dwelling older adults: A systematic review.Physiotherapy20161021294010.1016/j.physio.2015.04.01126390824
    [Google Scholar]
  99. Montero-OdassoM.M. Sarquis-AdamsonY. SpeechleyM. BorrieM.J. HachinskiV.C. WellsJ. RiccioP.M. SchapiraM. SejdicE. CamicioliR.M. BarthaR. McIlroyW.E. Muir-HunterS. Association of dual-task gait with incident dementia in mild cognitive impairment.JAMA Neurol.201774785786510.1001/jamaneurol.2017.064328505243
    [Google Scholar]
  100. ZhouJ. ManorB. YuW. LoO.Y. GouskovaN. SalvadorR. KatzR. Cornejo ThummP. BrozgolM. RuffiniG. Pascual-LeoneA. LipsitzL.A. HausdorffJ.M. Targeted TDCS mitigates dual‐task costs to gait and balance in older adults.Ann. Neurol.202190342843910.1002/ana.2615634216034
    [Google Scholar]
/content/journals/cn/10.2174/011570159X340612241121072233
Loading
/content/journals/cn/10.2174/011570159X340612241121072233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test