Skip to content
2000
Volume 23, Issue 9
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Epilepsy is a prevalent neurological disorder that presents with a diverse range of clinical manifestations and etiologies influenced by both genetic and environmental factors. However, traditional genetic mechanisms alone are insufficient to fully elucidate the pathogenesis of epilepsy, highlighting the increasing importance of epigenetics in epilepsy research. Several studies have demonstrated that epigenetic mechanism play a pivotal role in the development and progression of epilepsy. This review provides a comprehensive overview of epigenetic regulation and its role in epilepsy. We emphasize the specific role of epigenetic regulation, including DNA methylation, non-coding RNA, and histone modification in the epilepsy. Finally, we discuss the potential applications of epigenetic regulation in the etiology research, drug development, and personalized therapy of epilepsy, along with the technical and theoretical challenges that need to be addressed in epigenetic research. Epigenetic mechanisms have emerged as a promising avenue for understanding the pathogenesis and treatment of epilepsy. However, to thoroughly grasp its potential implications for the clinical management of this disease, a deeper understanding of the role of epigenetics in TLE is essential. Therefore, further research is required to elucidate the specific epigenetic mechanisms involved in epilepsy, their interactions with other disease-related factors, and their potential as therapeutic targets. Such research could ultimately lead to the development of novel epigenetic-based therapies for epilepsy and other related neurological disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241220163832
2025-02-19
2025-10-13
Loading full text...

Full text loading...

References

  1. Falco-WalterJ. Epilepsy—definition, classification, pathophysiology, and epidemiology.Semin. Neurol.202040661762310.1055/s‑0040‑1718719 33155183
    [Google Scholar]
  2. WhitneyR. JonesK.C. SharmaS. RamachandranNair, R. SUDEP counseling: Where do we stand?Epilepsia20236461424143110.1111/epi.17617 37039574
    [Google Scholar]
  3. EllisC.A. PetrovskiS. BerkovicS.F. Epilepsy genetics: Clinical impacts and biological insights.Lancet Neurol.20201919310010.1016/S1474‑4422(19)30269‑8 31494011
    [Google Scholar]
  4. AlhusainiS. WhelanC.D. SisodiyaS.M. ThompsonP.M. Quantitative magnetic resonance imaging traits as endophenotypes for genetic mapping in epilepsy.Neuroimage Clin.20161252653410.1016/j.nicl.2016.09.005 27672556
    [Google Scholar]
  5. ShevlyakovA.D. KolesnikovaT.O. de AbreuM.S. PetersenE.V. YenkoyanK.B. DeminK.A. KalueffA.V. Forward genetics-based approaches to understanding the systems biology and molecular mechanisms of epilepsy.Int. J. Mol. Sci.2023246528010.3390/ijms24065280 36982355
    [Google Scholar]
  6. SuvekbalaV. RamachandranH. VeluchamyA. MascarenhasM.A.B. RamprasathT. NairM.K.C. GarikipatiV.N.S. GundamarajuR. SubbiahR. The promising epigenetic regulators for refractory epilepsy: An adventurous road ahead.Neuromol. Med.202325214516210.1007/s12017‑022‑08723‑0 36153432
    [Google Scholar]
  7. Van LooK.M.J. CarvillG.L. BeckerA.J. ConboyK. GoldmanA.M. KobowK. Lopes-CendesI. ReidC.A. van VlietE.A. HenshallD.C. Epigenetic genes and epilepsy — emerging mechanisms and clinical applications.Nat. Rev. Neurol.202218953054310.1038/s41582‑022‑00693‑y 35859062
    [Google Scholar]
  8. DanJ. ChenT. Genetic studies on mammalian DNA methyltransferases.Adv. Exp. Med. Biol.2022138911113610.1007/978‑3‑031‑11454‑0_5 36350508
    [Google Scholar]
  9. Sánchez-JiménezP. Elizalde-HorcadaM. Sanz-GarcíaA. Granero-CremadesI. De ToledoM. PulidoP. NavasM. Gago-VeigaA.B. Alonso-GuiradoL. Alonso-CerezoM.C. Nava-CedeñoD. Abad-SantosF. Torres-DíazC.V. Ovejero-BenitoM.C. DNA methylation description of hippocampus, cortex, amygdala, and blood of drug-resistant temporal lobe epilepsy.Mol. Neurobiol.20236042070208510.1007/s12035‑022‑03180‑z 36602701
    [Google Scholar]
  10. PedersenS. KvernelandM. NakkenK.O. RudiK. IversenP.O. GervinK. SelmerK.K. Genome‐wide decrease in DNA methylation in adults with epilepsy treated with modified ketogenic diet: A prospective study.Epilepsia20226392413242610.1111/epi.17351 35762681
    [Google Scholar]
  11. SrivastavaA. BanerjeeJ. DubeyV. TripathiM. ChandraP.S. SharmaM.C. LalwaniS. SirajF. DoddamaniR. DixitA.B. Role of altered expression, activity and sub-cellular distribution of various histone deacetylases (HDACs) in mesial temporal lobe epilepsy with hippocampal sclerosis.Cell. Mol. Neurobiol.20224241049106410.1007/s10571‑020‑00994‑0 33258018
    [Google Scholar]
  12. De CaroC. Di Cesare MannelliL. BrancaJ.J.V. MicheliL. CitraroR. RussoE. De SarroG. GhelardiniC. CalignanoA. RussoR. Pain modulation in WAG/Rij epileptic rats (a genetic model of absence epilepsy): Effects of biological and pharmacological histone deacetylase inhibitors.Front. Pharmacol.20201154919110.3389/fphar.2020.549191 33343343
    [Google Scholar]
  13. MannaI. FortunatoF. De BenedittisS. SammarraI. BertoliG. LabateA. GambardellaA. Non-coding rnas: New biomarkers and therapeutic targets for temporal lobe epilepsy.Int. J. Mol. Sci.2022236306310.3390/ijms23063063 35328484
    [Google Scholar]
  14. LeeW.J. MoonJ. JeonD. KimT.J. YooJ.S. ParkD.K. LeeS.T. JungK.H. ParkK.I. JungK.Y. KimM. LeeS.K. ChuK. Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy.PLoS One20181312e020982910.1371/journal.pone.0209829 30592747
    [Google Scholar]
  15. ChengY. SongH. MingG. WengY.L. Epigenetic and epitranscriptomic regulation of axon regeneration.Mol. Psychiatry20232841440145010.1038/s41380‑023‑02028‑9 36922674
    [Google Scholar]
  16. UrdinguioR.G. Sanchez-MutJ.V. EstellerM. Epigenetic mechanisms in neurological diseases: Genes, syndromes, and therapies.Lancet Neurol.20098111056107210.1016/S1474‑4422(09)70262‑5 19833297
    [Google Scholar]
  17. HauserR.M. HenshallD.C. LubinF.D. The epigenetics of epilepsy and its progression.Neuroscientist201824218620010.1177/1073858417705840 28468530
    [Google Scholar]
  18. YounesianS. YousefiA.M. MomenyM. GhaffariS.H. BashashD. The DNA methylation in neurological diseases.Cells20221121343910.3390/cells11213439 36359835
    [Google Scholar]
  19. KieseK. JablonskiJ. HackenbrachtJ. WroschJ.K. GroemerT.W. KornhuberJ. BlümckeI. KobowK. Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons.Acta Neuropathol. Commun.2017517910.1186/s40478‑017‑0485‑x 29089052
    [Google Scholar]
  20. ConboyK. HenshallD.C. BrennanG.P. Epigenetic principles underlying epileptogenesis and epilepsy syndromes.Neurobiol. Dis.202114810517910.1016/j.nbd.2020.105179 33181318
    [Google Scholar]
  21. CitraroR. LeoA. De CaroC. NesciV. Gallo CantafioM.E. AmodioN. Mattace RasoG. LamaA. RussoR. CalignanoA. TallaricoM. RussoE. De SarroG. Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats.Mol. Neurobiol.202057140842110.1007/s12035‑019‑01712‑8 31368023
    [Google Scholar]
  22. WangJ. YunF. SuiJ. LiangW. ShenD. ZhangQ. HAT- and HDAC-targeted protein acetylation in the occurrence and treatment of epilepsy.Biomedicines20221118810.3390/biomedicines11010088 36672596
    [Google Scholar]
  23. VenøM.T. ReschkeC.R. MorrisG. ConnollyN.M.C. SuJ. YanY. EngelT. Jimenez-MateosE.M. HarderL.M. PultzD. HaunsbergerS.J. PalA. HellerJ.P. CampbellA. LangaE. BrennanG.P. ConboyK. RichardsonA. NorwoodB.A. CostardL.S. NeubertV. Del GalloF. SalvettiB. VangoorV.R. Sanz-RodriguezA. MuiluJ. FabeneP.F. PasterkampR.J. PrehnJ.H.M. SchorgeS. AndersenJ.S. RosenowF. BauerS. KjemsJ. HenshallD.C. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy.Proc. Natl. Acad. Sci. USA202011727159771598810.1073/pnas.1919313117 32581127
    [Google Scholar]
  24. De BenedittisS. FortunatoF. CavaC. GallivanoneF. IaccinoE. CaligiuriM.E. CastiglioniI. BertoliG. MannaI. LabateA. GambardellaA. Circulating microRNAs as potential novel diagnostic biomarkers to predict drug resistance in temporal lobe epilepsy: A pilot study.Int. J. Mol. Sci.202122270210.3390/ijms22020702 33445780
    [Google Scholar]
  25. SuchkovaI.O. BorisovaE.V. PatkinE.L. Length polymorphism and methylation status of UPS29 minisatellite of the ACAP3 gene as molecular biomarker of epilepsy. Sex differences in seizure types and symptoms.Int. J. Mol. Sci.20202123920610.3390/ijms21239206 33276684
    [Google Scholar]
  26. JonesP.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond.Nat. Rev. Genet.201213748449210.1038/nrg3230 22641018
    [Google Scholar]
  27. VuuY.M. RobertsC.T. RastegarM. MeCP2 is an epigenetic factor that links DNA methylation with brain metabolism.Int. J. Mol. Sci.2023244421810.3390/ijms24044218 36835623
    [Google Scholar]
  28. FengJ. ZhouY. CampbellS.L. LeT. LiE. SweattJ.D. SilvaA.J. FanG. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.Nat. Neurosci.201013442343010.1038/nn.2514 20228804
    [Google Scholar]
  29. KobowK. BlümckeI. The methylation hypothesis: Do epigenetic chromatin modifications play a role in epileptogenesis?Epilepsia201152s4Suppl. 4151910.1111/j.1528‑1167.2011.03145.x 21732935
    [Google Scholar]
  30. ZhuQ. WangL. ZhangY. ZhaoF. LuoJ. XiaoZ. ChenG. WangX. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy.J. Mol. Neurosci.201246242042610.1007/s12031‑011‑9602‑7 21826395
    [Google Scholar]
  31. de NijsL. ChoeK. SteinbuschH. SchijnsO.E.M.G. DingsJ. van den HoveD.L.A. RuttenB.P.F. HooglandG. DNA methyltransferase isoforms expression in the temporal lobe of epilepsy patients with a history of febrile seizures.Clin. Epigenetics201911111810.1186/s13148‑019‑0721‑2 31426844
    [Google Scholar]
  32. LinN. QinS. LuoS. CuiS. HuangG. ZhangX. Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro.FEBS J.201428182088209610.1111/febs.12764 24612628
    [Google Scholar]
  33. ZhouZ. HongE.J. CohenS. ZhaoW. HoH.H. SchmidtL. ChenW.G. LinY. SavnerE. GriffithE.C. HuL. SteenJ.A.J. WeitzC.J. GreenbergM.E. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation.Neuron200652225526910.1016/j.neuron.2006.09.037 17046689
    [Google Scholar]
  34. KobowK. JeskeI. HildebrandtM. HaukeJ. HahnenE. BusleiR. BuchfelderM. WeigelD. StefanH. KasperB. PauliE. BlümckeI. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy.J. Neuropathol. Exp. Neurol.200968435636410.1097/NEN.0b013e31819ba737 19287316
    [Google Scholar]
  35. BergerT.C. VigelandM.D. HjorthaugH.S. EtholmL. NomeC.G. TaubøllE. HeuserK. SelmerK.K. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis.PLoS One20191412e022657510.1371/journal.pone.0226575 31887157
    [Google Scholar]
  36. KobowK. ZiemannM. KaipananickalH. KhuranaI. MühlebnerA. FeuchtM. HainfellnerJ.A. CzechT. AronicaE. PieperT. HolthausenH. KudernatschM. HamerH. KasperB.S. RösslerK. ContiV. GuerriniR. CorasR. BlümckeI. El-OstaA. KaspiA. Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia.Epilepsia20196061091110310.1111/epi.14934 31074842
    [Google Scholar]
  37. OzdemirO. EgemenE. Ugur IseriS.A. SezermanO.U. BebekN. BaykanB. OzbekU. Identification of epilepsy related pathways using genome-wide DNA methylation measures: A trio-based approach.PLoS One2019142e021191710.1371/journal.pone.0211917 30735541
    [Google Scholar]
  38. SenK. GadkariR. AgarwalR. SundaramS. Differential DNA methylation patterns in patients with epilepsy due to malformations of cortical development: A pilot study.Neurol. India20196761469147110.4103/0028‑3886.273638 31857537
    [Google Scholar]
  39. ZhangW. WangH. LiuB. JiangM. GuY. YanS. HanX. HouA.Y. TangC. JiangZ. ShenH. NaM. LinZ. Differential DNA methylation profiles in patients with temporal lobe epilepsy and hippocampal sclerosis ILAE type I.J. Mol. Neurosci.20217191951196610.1007/s12031‑020‑01780‑9 33403589
    [Google Scholar]
  40. Martins-FerreiraR. LealB. ChavesJ. LiT. CiudadL. RangelR. SantosA. Martins da SilvaA. Pinho CostaP. BallestarE. Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genes.Prog. Neurobiol.202220910220710.1016/j.pneurobio.2021.102207 34923048
    [Google Scholar]
  41. XiaoW. LiuC. ZhongK. NingS. HouR. DengN. XuY. LuoZ. FuY. ZengY. XiaoB. LongH. LongL. CpG methylation signature defines human temporal lobe epilepsy and predicts drug‐resistant.CNS Neurosci. Ther.202026101021103010.1111/cns.13394 32519815
    [Google Scholar]
  42. TremolizzoL. DiFrancescoJ.C. Rodriguez-MenendezV. RivaC. ContiE. GalimbertiG. RuffmannC. FerrareseC. Valproate induces epigenetic modifications in lymphomonocytes from epileptic patients.Prog. Neuropsychopharmacol. Biol. Psychiatry2012391475110.1016/j.pnpbp.2012.04.016 22584634
    [Google Scholar]
  43. BraunP.R. HanS. HingB. NagahamaY. GaulL.N. HeinzmanJ.T. GrossbachA.J. CloseL. DlouhyB.J. HowardM.A.III KawasakiH. PotashJ.B. ShinozakiG. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals.Transl. Psychiatry2019914710.1038/s41398‑019‑0376‑y 30705257
    [Google Scholar]
  44. KobowK. KaspiA. HarikrishnanK.N. KieseK. ZiemannM. KhuranaI. FritzscheI. HaukeJ. HahnenE. CorasR. MühlebnerA. El-OstaA. BlümckeI. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy.Acta Neuropathol.2013126574175610.1007/s00401‑013‑1168‑8 24005891
    [Google Scholar]
  45. Miller-DelaneyS.F.C. BryanK. DasS. McKiernanR.C. BrayI.M. ReynoldsJ.P. GwinnR. StallingsR.L. HenshallD.C. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy.Brain2015138361663110.1093/brain/awu373 25552301
    [Google Scholar]
  46. BrennanG.P. HenshallD.C. microRNAs in the pathophysiology of epilepsy.Neurosci. Lett.2018667475210.1016/j.neulet.2017.01.017 28104433
    [Google Scholar]
  47. KaikkonenM.U. AdelmanK. Emerging roles of non-coding RNA transcription.Trends Biochem. Sci.201843965466710.1016/j.tibs.2018.06.002 30145998
    [Google Scholar]
  48. ShaoY. ChenY. Pathophysiology and clinical utility of non-coding RNAs in epilepsy.Front. Mol. Neurosci.20171024910.3389/fnmol.2017.00249 28848386
    [Google Scholar]
  49. HeL. HannonG.J. MicroRNAs: Small RNAs with a big role in gene regulation.Nat. Rev. Genet.20045752253110.1038/nrg1379 15211354
    [Google Scholar]
  50. KimV.N. HanJ. SiomiM.C. Biogenesis of small RNAs in animals.Nat. Rev. Mol. Cell Biol.200910212613910.1038/nrm2632 19165215
    [Google Scholar]
  51. Giorgi SilveiraR. Perelló FerrúaC. do AmaralC.C. Fernandez GarciaT. de SouzaK.B. NedelF. MicroRNAs expressed in neuronal differentiation and their associated pathways: Systematic review and bioinformatics analysis.Brain Res. Bull.202015714014810.1016/j.brainresbull.2020.01.009 31945407
    [Google Scholar]
  52. QiY. QianR. JiaL. FeiX. ZhangD. ZhangY. JiangS. FuX. Overexpressed microRNA-494 represses RIPK1 to attenuate hippocampal neuron injury in epilepsy rats by inactivating the NF-κB signaling pathway.Cell Cycle202019111298131310.1080/15384101.2020.1749472 32308116
    [Google Scholar]
  53. BielefeldP. SchoutenM. MeijerG.M. BreukM.J. GeijtenbeekK. KarayelS. TiaglikA. VuureggeA.H. WillemsR.A.L. WitkampD. LucassenP.J. EncinasJ.M. FitzsimonsC.P. Co-administration of anti microRNA-124 and -137 oligonucleotides prevents hippocampal neural stem cell loss upon non-convulsive seizures.Front. Mol. Neurosci.2019123110.3389/fnmol.2019.00031 30837840
    [Google Scholar]
  54. RajmanM. MetgeF. FioreR. KhudayberdievS. Aksoy-AkselA. BickerS. Ruedell ReschkeC. RaoofR. BrennanG.P. DelantyN. FarrellM.A. O’BrienD.F. BauerS. NorwoodB. VenoM.T. KrügerM. BraunT. KjemsJ. RosenowF. HenshallD.C. DieterichC. SchrattG. A microRNA‐129‐5p/] Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses.EMBO J.201736121770178710.15252/embj.201695748 28487411
    [Google Scholar]
  55. CuiH. ZhangW. The neuroprotective effect of miR-136 on pilocarpine-induced temporal lobe epilepsy rats by inhibiting Wnt/β-catenin signaling pathway.Comput. Math. Methods Med.202220221710.1155/2022/1938205 35256888
    [Google Scholar]
  56. ZhengP. BinH. ChenW. Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF.Cancer Cell Int.201919110910.1186/s12935‑019‑0821‑2 31049031
    [Google Scholar]
  57. LiuD. LiS. GongL. YangY. HanY. XieM. ZhangC. Suppression of microRNA‐141 suppressed p53 to protect against neural apoptosis in epilepsy by SIRT1 expression.J. Cell. Biochem.201912069409942010.1002/jcb.28216 30548678
    [Google Scholar]
  58. LiR. WenY. WuB. HeM. ZhangP. ZhangQ. ChenY. MicroRNA-25-3p suppresses epileptiform discharges through inhibiting oxidative stress and apoptosis via targeting OXSR1 in neurons.Biochem. Biophys. Res. Commun.2020523485986610.1016/j.bbrc.2020.01.050 31954517
    [Google Scholar]
  59. JuH. YangZ. H19 silencing decreases kainic acid-induced hippocampus neuron injury via activating the PI3K/AKT pathway via the H19/miR-206 axis.Exp. Brain Res.20222407-82109212010.1007/s00221‑022‑06392‑w 35781830
    [Google Scholar]
  60. WangY. YangZ. ZhangK. WanY. ZhouY. YangZ. miR 135a 5p inhibitor protects glial cells against apoptosis via targeting SIRT1 in epilepsy.Exp. Ther. Med.202121543110.3892/etm.2021.9848 33747170
    [Google Scholar]
  61. LiR. HuJ. CaoS. The clinical significance of miR-135b-5p and its role in the proliferation and apoptosis of hippocampus neurons in children with temporal lobe epilepsy.Dev. Neurosci.2020425-618719410.1159/000512949 33596573
    [Google Scholar]
  62. FanY. WangW. LiW. LiX. miR 15a inhibits cell apoptosis and inflammation in a temporal lobe epilepsy model by downregulating GFAP.Mol. Med. Rep.20202243504351210.3892/mmr.2020.11388 32945401
    [Google Scholar]
  63. PracucciE. PillaiV. LamersD. ParraR. LandiS. Neuroinflammation: A signature or a cause of epilepsy?Int. J. Mol. Sci.20212213698110.3390/ijms22136981 34209535
    [Google Scholar]
  64. HuangH. CuiG. TangH. KongL. WangX. CuiC. XiaoQ. JiH. Silencing of microRNA-146a alleviates the neural damage in temporal lobe epilepsy by down-regulating Notch-1.Mol. Brain201912110210.1186/s13041‑019‑0523‑7 31796120
    [Google Scholar]
  65. MucenskiC.M. CrossJ.H. WattG. WallikerD. MajamO.R. TuazonM. QuakyiI. ScheibelL.W. TrosperJ. BuesingM. RanoaC.P. PerineP.L. SangalangR. GuerryP. SzarfmanA. Evaluation of a synthetic oligonucleotide probe for diagnosis of Plasmodium falciparum infections.Am. J. Trop. Med. Hyg.198635591292010.4269/ajtmh.1986.35.912 3532848
    [Google Scholar]
  66. BrennanG.P. HenshallD.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy.Nat. Rev. Neurol.202016950651910.1038/s41582‑020‑0369‑8 32546757
    [Google Scholar]
  67. MorrisG. ReschkeC.R. HenshallD.C. Targeting microRNA-134 for seizure control and disease modification in epilepsy.EBioMedicine20194564665410.1016/j.ebiom.2019.07.008 31300345
    [Google Scholar]
  68. YaoR.W. WangY. ChenL.L. Cellular functions of long noncoding RNAs.Nat. Cell Biol.201921554255110.1038/s41556‑019‑0311‑8 31048766
    [Google Scholar]
  69. XuanC. YangE. ZhaoS. XuJ. LiP. ZhangY. JiangZ. DingX. Regulation of LncRNAs and microRNAs in neuronal development and disease.PeerJ202311e1519710.7717/peerj.1519737038472
    [Google Scholar]
  70. BarryG. BriggsJ.A. HwangD.W. NaylerS.P. FortunaP.R.J. JonkhoutN. DachetF. MaagJ.L.V. MestdaghP. SinghE.M. AvessonL. KaczorowskiD.C. OzturkE. JonesN.C. VetterI. Arriola-MartinezL. HuJ. FrancoG.R. WarnV.M. GongA. DingerM.E. RigoF. LipovichL. MorrisM.J. O’BrienT.J. LeeD.S. LoebJ.A. BlackshawS. MattickJ.S. WolvetangE.J. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states.Sci. Rep.2017714012710.1038/srep40127 28054653
    [Google Scholar]
  71. CajigasI. ChakrabortyA. SwyterK.R. LuoH. BastidasM. NigroM. MorrisE.R. ChenS. VanGompelM.J.W. LeibD. KohtzS.J. MartinaM. KohS. AyF. KohtzJ.D. The Evf2 ultraconserved enhancer lncRNA functionally and spatially organizes megabase distant genes in the developing forebrain.Mol. Cell2018716956972.e910.1016/j.molcel.2018.07.024 30146317
    [Google Scholar]
  72. GaoX. SmithG.M. ChenJ. Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling.Exp. Neurol.2009215117819010.1016/j.expneurol.2008.10.009 19014937
    [Google Scholar]
  73. Ghafouri-FardS HussenBM JamaliE BranickiW TaheriM Akbari DilmaghaniN Role of lncRNAs and circRNAs in epilepsy.Ageing Res Rev20228210174910.1016/j.arr.2022.101749 36216292
    [Google Scholar]
  74. ZhangX. HamblinM.H. YinK.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions.RNA Biol.201714121705171410.1080/15476286.2017.1358347 28837398
    [Google Scholar]
  75. WuQ. YiX. Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy.J. Mol. Neurosci.201865223424510.1007/s12031‑018‑1093‑3 29858824
    [Google Scholar]
  76. ZhangG. GaoY. JiangL. ZhangY. LncRNA FTX inhibits ferroptosis of hippocampal neurons displaying epileptiform discharges in vitro through the miR-142-5p/GABPB1 axis.Neuroscience2023526486010.1016/j.neuroscience.2023.04.001 37121382
    [Google Scholar]
  77. HanC.L. GeM. LiuY.P. ZhaoX.M. WangK.L. ChenN. MengW.J. HuW. ZhangJ.G. LiL. MengF.G. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy.J. Neuroinflammation201815110310.1186/s12974‑018‑1139‑z 29636074
    [Google Scholar]
  78. WanY. YangZ.Q. LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy.Cell Cycle202019441943110.1080/15384101.2020.1711578 31948324
    [Google Scholar]
  79. YuQ. ZhaoM.W. YangP. LncRNA UCA1 suppresses the inflammation via modulating miR-203-mediated regulation of MEF2C/NF-κB signaling pathway in epilepsy.Neurochem. Res.202045478379510.1007/s11064‑019‑02952‑9 32056051
    [Google Scholar]
  80. WenF. TanZ. HuangD. JiangY. XiangJ. LncRNA PVT1 promotes neuronal cell apoptosis and neuroinflammation by regulating miR-488-3p/FOXD3/SCN2A axis in epilepsy.Neurochem. Res.202348389590810.1007/s11064‑022‑03801‑y 36378391
    [Google Scholar]
  81. HsiaoJ. YuanT.Y. TsaiM.S. LuC.Y. LinY.C. LeeM.L. LinS.W. ChangF.C. Liu PimentelH. OliveC. CoitoC. ShenG. YoungM. ThorneT. LawrenceM. MagistriM. FaghihiM.A. KhorkovaO. WahlestedtC. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of dravet syndrome.EBioMedicine2016925727710.1016/j.ebiom.2016.05.011 27333023
    [Google Scholar]
  82. IkedaY. MorikawaS. NakashimaM. YoshikawaS. TaniguchiK. SawamuraH. SugaN. TsujiA. MatsudaS. CircRNAs and RNA-binding proteins involved in the pathogenesis of cancers or central nervous system disorders.Noncoding RNA2023922310.3390/ncrna9020023 37104005
    [Google Scholar]
  83. NajafiS. Aghaei ZarchS.M. MajidpoorJ. PordelS. AghamiriS. Fatih RasulM. AsemaniY. VakiliO. MohammadiV. MovahedpourA. ArghianiN. Recent insights into the roles of circular RNAs in human brain development and neurologic diseases.Int. J. Biol. Macromol.20232251038104810.1016/j.ijbiomac.2022.11.166 36410538
    [Google Scholar]
  84. KristensenL.S. AndersenM.S. StagstedL.V.W. EbbesenK.K. HansenT.B. KjemsJ. The biogenesis, biology and characterization of circular RNAs.Nat. Rev. Genet.2019201167569110.1038/s41576‑019‑0158‑7 31395983
    [Google Scholar]
  85. LiaoX.Q. YuH.C. DiaoL.M. LuL. LiH. ZhouY.Y. QinH.L. HuangQ.L. LvT.T. HuangX.M. Differentially expressed CIRCRNA and functional pathways in the hippocampus of epileptic mice based on next‐generation sequencing.Kaohsiung J. Med. Sci.202137980381110.1002/kjm2.12404 34110683
    [Google Scholar]
  86. GongG.H. AnF.M. WangY. BianM. WangD. WeiC.X. Comprehensive circular RNA profiling reveals the regulatory role of the CircRNA-0067835/miR-155 pathway in temporal lobe epilepsy.Cell. Physiol. Biochem.20185131399140910.1159/000495589 30485839
    [Google Scholar]
  87. HuY. MengB. YinS. YangM. LiY. LiuN. LiS. LiuY. SunD. WangS. WangY. FuZ. WuY. PangA. SunJ. WangY. YangX. Scorpion venom peptide HsTx2 suppressed PTZ-induced seizures in mice via the circ_0001293/miR-8114/] TGF-β2 axis.J. Neuroinflammation202219128410.1186/s12974‑022‑02647‑z 36457055
    [Google Scholar]
  88. IzzoA. SchneiderR. Chatting histone modifications in mammals.Brief. Funct. Genomics201095-642944310.1093/bfgp/elq024 21266346
    [Google Scholar]
  89. ReddyS.D. ClossenB.L. ReddyD.S. Epigenetic histone deacetylation inhibition prevents the development and persistence of temporal lobe epilepsy.J. Pharmacol. Exp. Ther.201836419710910.1124/jpet.117.244939 29101217
    [Google Scholar]
  90. KumarS. AttrishD. SrivastavaA. BanerjeeJ. TripathiM. ChandraP.S. DixitA.B. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy.Expert Opin. Ther. Targets2021251758510.1080/14728222.2021.1860016 33275850
    [Google Scholar]
  91. CitraroR. LeoA. SantoroM. D’agostinoG. ConstantiA. RussoE. Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis.Curr. Pharm. Des.201823375546556210.2174/1381612823666171024130001 29076408
    [Google Scholar]
  92. HuangY. DohertyJ.J. DingledineR. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus.J. Neurosci.200222198422842810.1523/JNEUROSCI.22‑19‑08422.2002 12351716
    [Google Scholar]
  93. TsankovaN.M. KumarA. NestlerE.J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures.J. Neurosci.200424245603561010.1523/JNEUROSCI.0589‑04.2004 15201333
    [Google Scholar]
  94. CrosioC. HeitzE. AllisC.D. BorrelliE. Sassone-CorsiP. Chromatin remodeling and neuronal response: Multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons.J. Cell Sci.2003116244905491410.1242/jcs.00804 14625384
    [Google Scholar]
  95. SngJ.C.G. TaniuraH. YonedaY. Histone modifications in kainate‐induced status epilepticus.Eur. J. Neurosci.20062351269128210.1111/j.1460‑9568.2006.04641.x 16553789
    [Google Scholar]
  96. JagirdarR. DrexelM. KirchmairE. TasanR.O. SperkG. Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy.Exp. Neurol.20152739210410.1016/j.expneurol.2015.07.026 26238735
    [Google Scholar]
  97. ZhangY. DongH.T. DuanL. NiuL. YuanG.Q. DaiJ.Q. HouB.R. PanY.W. HDAC4 gene silencing alleviates epilepsy by inhibition of GABA in a rat model.Neuropsychiatr. Dis. Treat.20191540541610.2147/NDT.S181669 30787615
    [Google Scholar]
  98. ParkH.G. YuH.S. ParkS. AhnY.M. KimY.S. KimS.H. Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex.Int. J. Neuropsychopharmacol.20141791487150010.1017/S1461145714000248 24606669
    [Google Scholar]
  99. EyalS. YagenB. SobolE. AltschulerY. ShmuelM. BialerM. The activity of antiepileptic drugs as histone deacetylase inhibitors.Epilepsia200445773774410.1111/j.0013‑9580.2004.00104.x 15230695
    [Google Scholar]
  100. KobowK. BlümckeI. Epigenetic mechanisms in epilepsy.Prog. Brain Res.201421327931610.1016/B978‑0‑444‑63326‑2.00014‑4 25194494
    [Google Scholar]
  101. KleefstraT. BrunnerH.G. AmielJ. OudakkerA.R. NillesenW.M. MageeA. GenevièveD. Cormier-DaireV. van EschH. FrynsJ.P. HamelB.C.J. SistermansE.A. de VriesB.B.A. van BokhovenH. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome.Am. J. Hum. Genet.200679237037710.1086/505693 16826528
    [Google Scholar]
  102. KleefstraT. KramerJ.M. NevelingK. WillemsenM.H. KoemansT.S. VissersL.E.L.M. Wissink-LindhoutW. FenckovaM. van den AkkerW.M.R. KasriN.N. NillesenW.M. PrescottT. ClarkR.D. DevriendtK. van ReeuwijkJ. de BrouwerA.P.M. GilissenC. ZhouH. BrunnerH.G. VeltmanJ.A. SchenckA. van BokhovenH. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability.Am. J. Hum. Genet.2012911738210.1016/j.ajhg.2012.05.003 22726846
    [Google Scholar]
  103. IwaseS. LanF. BaylissP. de la Torre-UbietaL. HuarteM. QiH.H. WhetstineJ.R. BonniA. RobertsT.M. ShiY. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases.Cell200712861077108810.1016/j.cell.2007.02.017 17320160
    [Google Scholar]
  104. ShoubridgeC. FullstonT. GéczJ. ARX spectrum disorders: Making inroads into the molecular pathology.Hum. Mutat.201031888990010.1002/humu.21288 20506206
    [Google Scholar]
  105. PoetaL. FuscoF. DrongitisD. ShoubridgeC. ManganelliG. FilosaS. PaciollaM. CourtneyM. CollombatP. LioiM.B. GeczJ. UrsiniM.V. MianoM.G. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX.Am. J. Hum. Genet.201392111412510.1016/j.ajhg.2012.11.008 23246292
    [Google Scholar]
  106. TürkmenS. Gillessen-KaesbachG. MeineckeP. AlbrechtB. NeumannL.M. HesseV. PalanduzS. BalgS. MajewskiF. FuchsS. ZschieschangP. GreiweM. MennickeK. KreuzF.R. DehmelH.J. RodeckB. KunzeJ. TinschertS. MundlosS. HornD. Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes.Eur. J. Hum. Genet.2003111185886510.1038/sj.ejhg.5201050 14571271
    [Google Scholar]
  107. ZhangS.P. ZhangM. TaoH. LuoY. HeT. WangC.H. LiX.C. ChenL. ZhangL.N. SunT. HuQ.K. Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats.Mol. Med. Rep.201817113681374 29115470
    [Google Scholar]
  108. ChenA.Y. OwensM.C. LiuK.F. Coordination of RNA modifications in the brain and beyond.Mol. Psychiatry20232872737274910.1038/s41380‑023‑02083‑2 37138184
    [Google Scholar]
  109. RowlesJ. WongM. PowersR. OlsenM. FTO, RNA epigenetics and epilepsy.Epigenetics20127101094109710.4161/epi.21977 22948233
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241220163832
Loading
/content/journals/cn/10.2174/1570159X23666241220163832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test