Skip to content
2000
Volume 23, Issue 9
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Since both serotonergic and dopaminergic afferents densely innervate many parts of the central nervous system, intact crosstalk between serotonin (5-HT) and dopamine (DA) transmission is essential for regulating synaptic plasticity in the striatum (STR), prefrontal cortex (PFC), and hippocampus (HPC). Experimental models have provided strong evidence of a synergistic action of DA and 5-HT convergent release in PFC, HPC, and STR to modulate motor control, learning, and memory processes. In this review, we will discuss the mechanisms underlying the actions of agonists and antagonists of 5-HT and DA receptors on striatal synaptic plasticity in physiological conditions and Parkinson's disease (PD), a movement disorder in which an imbalance of these two neurotransmitter systems has been hypothesized. This review will also discuss the interactions between 5-HT and DA in PFC and HPC, with particular regard to the influence of this crosstalk on synaptic plasticity and learning. Finally, we will provide an overview of how stimulation or inhibition of DA and 5-HT receptors affects these neurotransmitter expression levels in the three brain regions of interest.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X336597241217062042
2025-02-21
2025-11-06
Loading full text...

Full text loading...

References

  1. CummingsJ.L. Frontal-subcortical circuits and human behavior.Arch. Neurol.199350887388010.1001/archneur.1993.005400800760208352676
    [Google Scholar]
  2. DaleE. PehrsonA.L. JeyarajahT. LiY. LeiserS.C. SmaginG. OlsenC.K. SanchezC. Effects of serotonin in the hippocampus: how SSRIs and multimodal antidepressants might regulate pyramidal cell function.CNS Spectr.201621214316110.1017/S109285291500042526346726
    [Google Scholar]
  3. Gonzalez-IslasC. HablitzJ.J. Dopamine inhibition of evoked IPSCs in rat prefrontal cortex.J. Neurophysiol.20018662911291810.1152/jn.2001.86.6.291111731547
    [Google Scholar]
  4. SparksD.W. TianM.K. SarginD. VenkatesanS. IntsonK. LambeE.K. Opposing cholinergic and serotonergic modulation of layer 6 in prefrontal cortex.Front. Neural Circuits20181110710.3389/fncir.2017.0010729354034
    [Google Scholar]
  5. EdelmannE. LessmannV. Dopaminergic innervation and modulation of hippocampal networks.Cell Tissue Res.2018373371172710.1007/s00441‑018‑2800‑729470647
    [Google Scholar]
  6. NavaillesS. De DeurwaerdèreP. Presynaptic control of serotonin on striatal dopamine function.Psychopharmacology20112132-321324210.1007/s00213‑010‑2029‑y20953589
    [Google Scholar]
  7. MathurB.N. CapikN.A. AlvarezV.A. LovingerD.M. Serotonin induces long-term depression at corticostriatal synapses.J. Neurosci.201131207402741110.1523/JNEUROSCI.6250‑10.201121593324
    [Google Scholar]
  8. CalabresiP. PisaniA. MercuriN.B. BernardiG. Long‐term potentiation in the striatum is unmasked by removing the voltage‐dependent magnesium block of NMDA receptor channels.Eur. J. Neurosci.199241092993510.1111/j.1460‑9568.1992.tb00119.x12106428
    [Google Scholar]
  9. CalabresiP. MajR. PisaniA. MercuriN.B. BernardiG. Long-term synaptic depression in the striatum: physiological and pharmacological characterization.J. Neurosci.199212114224423310.1523/JNEUROSCI.12‑11‑04224.19921359031
    [Google Scholar]
  10. MalenkaR.C. BearM.F. LTP and LTD: An embarrassment of riches.Neuron200444152110.1016/j.neuron.2004.09.01215450156
    [Google Scholar]
  11. CalabresiP. PicconiB. TozziA. Di FilippoM. Dopamine-mediated regulation of corticostriatal synaptic plasticity.Trends Neurosci.200730521121910.1016/j.tins.2007.03.00117367873
    [Google Scholar]
  12. SteinbuschH.W. NieuwenhuysR. VerhofstadA.A. Van der KooyD. The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study.J. Physiol. (Paris)1981772-31571746169825
    [Google Scholar]
  13. EnnisC. KempJ.D. CoxB. Characterisation of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum.J. Neurochem.19813641515152010.1111/j.1471‑4159.1981.tb00594.x7264648
    [Google Scholar]
  14. SarhanH. Cloëz-TayaraniI. MassotO. FillionM.P. FillionG. 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes.Naunyn Schmiedebergs Arch. Pharmacol.19993591404710.1007/PL000053219933149
    [Google Scholar]
  15. SarhanH. FillionG. Differential sensitivity of 5-HT1B auto and heteroreceptors.Naunyn Schmiedebergs Arch. Pharmacol.1999360438239010.1007/s00210990006710551275
    [Google Scholar]
  16. MigliariniS. PaciniG. PelosiB. LunardiG. PasqualettiM. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation.Mol. Psychiatry201318101106111810.1038/mp.2012.12823007167
    [Google Scholar]
  17. LiuQ.Q. YaoX.X. GaoS.H. LiR. LiB.J. YangW. CuiR.J. Role of 5-HT receptors in neuropathic pain: potential therapeutic implications.Pharmacol. Res.202015910494910.1016/j.phrs.2020.10494932464329
    [Google Scholar]
  18. BerridgeK.C. RobinsonT.E. AldridgeJ.W. Dissecting components of reward: ‘liking’, ‘wanting’, and learning.Curr. Opin. Pharmacol.200991657310.1016/j.coph.2008.12.01419162544
    [Google Scholar]
  19. DaubertE.A. CondronB.G. Serotonin: A regulator of neuronal morphology and circuitry.Trends Neurosci.201033942443410.1016/j.tins.2010.05.00520561690
    [Google Scholar]
  20. DimatteoV. DigiovanniG. PierucciM. EspositoE. Serotonin control of central dopaminergic function: Focus on in vivo microdialysis studies.Prog. Brain Res.200817274410.1016/S0079‑6123(08)00902‑318772026
    [Google Scholar]
  21. FornalC.A. MetzlerC.W. MarrosuF. Ribiero-do-ValleL.E. JacobsB.L. A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements.Brain Res.19967161-212313310.1016/0006‑8993(96)00006‑68738228
    [Google Scholar]
  22. BurkeM.V. NocjarC. SonnebornA.J. McCrearyA.C. PehekE.A. Striatal serotonin 2C receptors decrease nigrostriatal dopamine release by increasing GABA ‐A receptor tone in the substantia nigra.J. Neurochem.2014131443244310.1111/jnc.1284225073477
    [Google Scholar]
  23. BaileyM.R. GoldmanO. BelloE.P. ChohanM.O. JeongN. WinigerV. ChunE. SchipaniE. KalmbachA. CheerJ.F. BalsamP.D. SimpsonE.H. An interaction between serotonin receptor signaling and dopamine enhances goal-directed vigor and persistence in mice.J. Neurosci.20183892149216210.1523/JNEUROSCI.2088‑17.201829367407
    [Google Scholar]
  24. EgertonA. AhmadR. HiraniE. GrasbyP.M. Modulation of striatal dopamine release by 5-HT2A and 5-HT2C receptor antagonists: [11C]raclopride PET studies in the rat.Psychopharmacology2008200448749610.1007/s00213‑008‑1226‑418597077
    [Google Scholar]
  25. AlexK.D. PehekE.A. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission.Pharmacol. Ther.2007113229632010.1016/j.pharmthera.2006.08.00417049611
    [Google Scholar]
  26. GallowayM.P. SuchowskiC.S. KeeganM.J. HjorthS. Local infusion of the selective 5HT‐1B agonist CP‐93,129 facilitates striatal dopamine release in vivo.Synapse1993151909210.1002/syn.8901501098310427
    [Google Scholar]
  27. BantickR.A. De VriesM.H. GrasbyP.M. The effect of a 5-HT1A receptor agonist on striatal dopamine release.Synapse2005572677510.1002/syn.2015615906386
    [Google Scholar]
  28. TohgeR. KanekoS. MoriseS. OkiM. TakenouchiN. MurakamiA. NakamuraM. KusakaH. YakushijiY. Zonisamide attenuates the severity of levodopa-induced dyskinesia via modulation of the striatal serotonergic system in a rat model of parkinson’s disease.Neuropharmacology202119810877110.1016/j.neuropharm.2021.10877134474045
    [Google Scholar]
  29. AuclairA. BlancG. GlowinskiJ. TassinJ.P. Role of serotonin 2A receptors in the d ‐amphetamine‐induced release of dopamine: Comparison with previous data on α1b‐adrenergic receptors.J. Neurochem.200491231832610.1111/j.1471‑4159.2004.02714.x15447665
    [Google Scholar]
  30. BlandinaP. GoldfarbJ. GreenJ.P. Activation of a 5-HT3 receptor releases dopamine from rat striatal slice.Eur. J. Pharmacol.1988155334935010.1016/0014‑2999(88)90528‑63234491
    [Google Scholar]
  31. BlandinaP. GoldfarbJ. Craddock-RoyalB. GreenJ.P. Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum.J. Pharmacol. Exp. Ther.198925138038092600815
    [Google Scholar]
  32. SantiagoM. MachadoA. CanoJ. 5‐HT 3 receptor agonist induced carrier‐mediated release of dopamine in rat striatum in vivo.Br. J. Pharmacol.199511611545155010.1111/j.1476‑5381.1995.tb16371.x8564217
    [Google Scholar]
  33. InvernizziR. PozziL. SamaninR. Selective reduction of extracellular dopamine in the rat nucleus accumbens following chronic treatment with DAU 6215, a 5-HT3 receptor antagonist.Neuropharmacology199534221121510.1016/0028‑3908(94)00150‑Q7617146
    [Google Scholar]
  34. KouloM. SjöholmB. LappalainenJ. VirtanenR. Effects of acute GR38032F (odansetron), a 5-HT3 receptor antagonist, on dopamine and serotonin metabolism in mesolimbic and nigrostriatal dopaminergic neurons.Eur. J. Pharmacol.19891692-332132410.1016/0014‑2999(89)90031‑92530097
    [Google Scholar]
  35. BockaertJ. ClaeysenS. CompanV. DumuisA. 5-HT4 receptors, a place in the sun: Act two.Curr. Opin. Pharmacol.2011111879310.1016/j.coph.2011.01.01221342787
    [Google Scholar]
  36. MurphyS.E. de CatesA.N. GillespieA.L. GodlewskaB.R. ScaifeJ.C. WrightL.C. CowenP.J. HarmerC.J. Translating the promise of 5HT 4 receptor agonists for the treatment of depression.Psychol. Med.20215171111112010.1017/S003329172000060432241310
    [Google Scholar]
  37. CompanV. DaszutaA. SalinP. SebbenM. BockaertJ. DumuisA. Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus.Eur. J. Neurosci.19968122591259810.1111/j.1460‑9568.1996.tb01553.x8996808
    [Google Scholar]
  38. PatelS. RobertsJ. MoormanJ. ReavillC. Localization of serotonin-4 receptors in the striatonigral pathway in rat brain.Neuroscience19956941159116710.1016/0306‑4522(95)00314‑98848104
    [Google Scholar]
  39. DeurwaerdèreP.D. L’hirondelM. BonhommeN. LucasG. CheramyA. SpampinatoU. Serotonin stimulation of 5-HT4 receptors indirectly enhances in vivo dopamine release in the rat striatum.J. Neurochem.199768119520310.1046/j.1471‑4159.1997.68010195.x8978726
    [Google Scholar]
  40. BonhommeN. De DeurwaèrdereP. Le MoalM. SpampinatoU. Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat.Neuropharmacology199534326927910.1016/0028‑3908(94)00145‑I7543190
    [Google Scholar]
  41. StewardL.J. GeJ. StoweR.L. BrownD.C. BrutonR.K. StokesP.R.A. BarnesN.M. Ability of 5‐HT 4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo.Br. J. Pharmacol.19961171556210.1111/j.1476‑5381.1996.tb15154.x8825343
    [Google Scholar]
  42. TozziA. de IureA. Di FilippoM. TantucciM. CostaC. BorsiniF. GhiglieriV. GiampàC. FuscoF.R. PicconiB. CalabresiP. The distinct role of medium spiny neurons and cholinergic interneurons in the D₂/A₂A receptor interaction in the striatum: Implications for parkinson’s disease.J. Neurosci.20113151850186210.1523/JNEUROSCI.4082‑10.201121289195
    [Google Scholar]
  43. GerdemanG.L. RonesiJ. LovingerD.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum.Nat. Neurosci.20025544645110.1038/nn83211976704
    [Google Scholar]
  44. KreitzerA.C. MalenkaR.C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum.J. Neurosci.20052545105371054510.1523/JNEUROSCI.2959‑05.200516280591
    [Google Scholar]
  45. BreeseG.R. BaumeisterA.A. McCownT.J. EmerickS.G. FryeG.D. CrottyK. MuellerR.A. Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: Relevance to neurological symptoms in clinical syndromes with reduced brain dopamine.J. Pharmacol. Exp. Ther.198423123433546149306
    [Google Scholar]
  46. StachowiakM.K. BrunoJ.P. SnyderA.M. StrickerE.M. ZigmondM.J. Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats.Brain Res.1984291116416710.1016/0006‑8993(84)90665‑66199080
    [Google Scholar]
  47. CavacciniA. GrittiM. GiorgiA. LocarnoA. HeckN. MigliariniS. BerteroA. MereuM. MargianiG. TruselM. CatelaniT. MarottaR. De LucaM.A. CabocheJ. GozziA. PasqualettiM. ToniniR. Serotonergic signaling controls input-specific synaptic plasticity at striatal circuits.Neuron2018984801816.e710.1016/j.neuron.2018.04.00829706583
    [Google Scholar]
  48. GhiglieriV. MineoD. VannelliA. CacaceF. ManciniM. PendolinoV. NapolitanoF. di MaioA. MelloneM. StanicJ. TronciE. FidalgoC. StancampianoR. CartaM. CalabresiP. GardoniF. UsielloA. PicconiB. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms.Neurobiol. Dis.20168614015310.1016/j.nbd.2015.11.02226639853
    [Google Scholar]
  49. CampanelliF. MarinoG. BarsottiN. NataleG. CalabreseV. CardinaleA. GhiglieriV. MaddaloniG. UsielloA. CalabresiP. PasqualettiM. PicconiB. Serotonin drives striatal synaptic plasticity in a sex-related manner.Neurobiol. Dis.202115810544810.1016/j.nbd.2021.10544834280523
    [Google Scholar]
  50. CalabresiP. PicconiB. TozziA. GhiglieriV. Di FilippoM. Direct and indirect pathways of basal ganglia: A critical reappraisal.Nat. Neurosci.20141781022103010.1038/nn.374325065439
    [Google Scholar]
  51. PolitisM. WuK. LoaneC. BrooksD.J. KiferleL. TurkheimerF.E. BainP. MolloyS. PicciniP. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in parkinson’s disease patients.J. Clin. Invest.201412431340134910.1172/JCI7164024531549
    [Google Scholar]
  52. JellingerK.A. Pathology of parkinson’s disease.Mol. Chem. Neuropathol.199114315319710.1007/BF031599351958262
    [Google Scholar]
  53. LindgrenH.S. AnderssonD.R. LagerkvistS. NissbrandtH. CenciM.A. l‐DOPA‐induced dopamine efflux in the striatum and the substantia nigra in a rat model of parkinson’s disease: Temporal and quantitative relationship to the expression of dyskinesia.J. Neurochem.201011261465147610.1111/j.1471‑4159.2009.06556.x20050978
    [Google Scholar]
  54. NavaillesS. BioulacB. GrossC. De DeurwaerdèreP. Serotonergic neurons mediate ectopic release of dopamine induced by l-DOPA in a rat model of parkinson’s disease.Neurobiol. Dis.201038113614310.1016/j.nbd.2010.01.01220096781
    [Google Scholar]
  55. RylanderD. ParentM. O’SullivanS.S. DoveroS. LeesA.J. BezardE. DescarriesL. CenciM.A. Maladaptive plasticity of serotonin axon terminals in levodopa‐induced dyskinesia.Ann. Neurol.201068561962810.1002/ana.2209720882603
    [Google Scholar]
  56. CartaM. CarlssonT. KirikD. BjörklundA. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats.Brain200713071819183310.1093/brain/awm08217452372
    [Google Scholar]
  57. AraiR. KarasawaN. NagatsuI. Aromatic L-amino acid decarboxylase is present in serotonergic fibers of the striatum of the rat. A double-labeling immunofluorescence study.Brain Res.1996706117717910.1016/0006‑8993(95)01281‑88720509
    [Google Scholar]
  58. NavaillesS. BenazzouzA. BioulacB. GrossC. De DeurwaerdèreP. High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of parkinson’s disease.J. Neurosci.20103062356236410.1523/JNEUROSCI.5031‑09.201020147561
    [Google Scholar]
  59. TanakaH. KannariK. MaedaT. TomiyamaM. SudaT. MatsunagaM. Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats.Neuroreport199910363163410.1097/00001756‑199902250‑0003410208602
    [Google Scholar]
  60. ZhouF.C. BledsoeS. MurphyJ. Serotonergic sprouting is induced by dopamine-lesion in substantia nigra of adult rat brain.Brain Res.1991556110811610.1016/0006‑8993(91)90553‑81718555
    [Google Scholar]
  61. PaganoG. NiccoliniF. PolitisM. The serotonergic system in Parkinson’s patients with dyskinesia: Evidence from imaging studies.J. Neural Transm. (Vienna)201812581217122310.1007/s00702‑017‑1823‑729264660
    [Google Scholar]
  62. AraiR. KarasawaN. GeffardM. NagatsuI. l-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: A double-labeling immunofluorescence study.Neurosci. Lett.1995195319519810.1016/0304‑3940(95)11817‑G8584208
    [Google Scholar]
  63. TronciE. NapolitanoF. MuñozA. FidalgoC. RossiF. BjörklundA. UsielloA. CartaM. BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats.Exp. Neurol.2017297738110.1016/j.expneurol.2017.07.01728757258
    [Google Scholar]
  64. de la Fuente-FernándezR. SossiV. HuangZ. FurtadoS. LuJ.Q. CalneD.B. RuthT.J. StoesslA.J. Levodopa-induced changes in synaptic dopamine levels increase with progression of parkinson’s disease: Implications for dyskinesias.Brain2004127122747275410.1093/brain/awh29015329355
    [Google Scholar]
  65. PaveseN. EvansA.H. TaiY.F. HottonG. BrooksD.J. LeesA.J. PicciniP. Clinical correlates of levodopa-induced dopamine release in parkinson disease.Neurology20066791612161710.1212/01.wnl.0000242888.30755.5d17101892
    [Google Scholar]
  66. MulasG. EspaE. FenuS. SpigaS. CossuG. PillaiE. CarboniE. SimbulaG. JadžićD. AngiusF. SpolituS. BatettaB. LeccaD. GiuffridaA. CartaA.R. Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous l -DOPA delivery in the 6-OHDA model of parkinson’s disease.Exp. Neurol.2016286839210.1016/j.expneurol.2016.09.01327697481
    [Google Scholar]
  67. BoiL. PisanuA. GreigN.H. ScerbaM.T. TweedieD. MulasG. FenuS. CarboniE. SpigaS. CartaA.R. Immunomodulatory drugs alleviate l ‐dopa‐induced dyskinesia in a rat model of parkinson’s disease.Mov. Disord.201934121818183010.1002/mds.2779931335998
    [Google Scholar]
  68. CartaM. CarlssonT. MuñozA. KirikD. BjörklundA. Serotonin–dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias.Prog. Brain Res.200817246547810.1016/S0079‑6123(08)00922‑918772046
    [Google Scholar]
  69. NataleG. PignataroA. MarinoG. CampanelliF. CalabreseV. CardinaleA. PelucchiS. MarcelloE. GardoniF. ViscomiM.T. PicconiB. Ammassari-TeuleM. CalabresiP. GhiglieriV. Transcranial magnetic stimulation exerts “Rejuvenation” effects on corticostriatal synapses after partial dopamine depletion.Mov. Disord.202136102254226310.1002/mds.2867134339069
    [Google Scholar]
  70. TozziA. SciaccalugaM. LoffredoV. MegaroA. LedonneA. CardinaleA. FedericiM. BellingacciL. PaciottiS. FerrariE. La RoccaA. MartiniA. MercuriN.B. GardoniF. PicconiB. GhiglieriV. De LeonibusE. CalabresiP. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit.Brain2021144113477349110.1093/brain/awab24234297092
    [Google Scholar]
  71. BézardE. MuñozA. TronciE. PioliE.Y. LiQ. PorrasG. BjörklundA. CartaM. Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia.Neurosci. Res.201377424224610.1016/j.neures.2013.10.00224135129
    [Google Scholar]
  72. MuñozA. LiQ. GardoniF. MarcelloE. QinC. CarlssonT. KirikD. Di LucaM. BjörklundA. BezardE. CartaM. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia.Brain2008131123380339410.1093/brain/awn23518952677
    [Google Scholar]
  73. MuñozA. CarlssonT. TronciE. KirikD. BjörklundA. CartaM. Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat parkinson model.Exp. Neurol.2009219129830710.1016/j.expneurol.2009.05.03319500572
    [Google Scholar]
  74. GardoniF. PicconiB. GhiglieriV. PolliF. BagettaV. BernardiG. CattabeniF. Di LucaM. CalabresiP. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia.J. Neurosci.200626112914292210.1523/JNEUROSCI.5326‑05.200616540568
    [Google Scholar]
  75. BishopC. KrolewskiD.M. EskowK.L. BarnumC.J. DupreK.B. DeakT. WalkerP.D. Contribution of the striatum to the effects of 5‐HT1A receptor stimulation in L‐DOPA‐treated hemiparkinsonian rats.J. Neurosci. Res.20098771645165810.1002/jnr.2197819115412
    [Google Scholar]
  76. SchipperJ. TulpM.T.M. SijbesmaH. Neurochemical profile of eltoprazine.Drug Metabol. Drug Interact.199081-28511410.1515/DMDI.1990.8.1‑2.851982626
    [Google Scholar]
  77. CirannaL. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology.Curr. Neuropharmacol.20064210111410.2174/15701590677635954018615128
    [Google Scholar]
  78. AntonelliT. FuxeK. TomasiniM.C. BartoszykG.D. SeyfriedC.A. TanganelliS. FerraroL. Effects of sarizotan on the corticostriatal glutamate pathways.Synapse200558319319910.1002/syn.2019516138317
    [Google Scholar]
  79. DupreK.B. OstockC.Y. Eskow JaunarajsK.L. ButtonT. SavageL.M. WolfW. BishopC. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats.Exp. Neurol.2011229228829910.1016/j.expneurol.2011.02.01221352823
    [Google Scholar]
  80. MignonL. WolfW.A. Postsynaptic 5-HT1A receptors mediate an increase in locomotor activity in the monoamine-depleted rat.Psychopharmacology20021631859410.1007/s00213‑002‑1121‑312185404
    [Google Scholar]
  81. HuangY.Y. SimpsonE. KellendonkC. KandelE.R. Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors.Proc. Natl. Acad. Sci. USA200410193236324110.1073/pnas.030828010114981263
    [Google Scholar]
  82. HospJ.A. LuftA.R. Dopaminergic meso-cortical projections to m1: role in motor learning and motor cortex plasticity.Front. Neurol.2013414510.3389/fneur.2013.0014524109472
    [Google Scholar]
  83. Van De WerdH.J.J.M. RajkowskaG. EversP. UylingsH.B.M. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse.Brain Struct. Funct.2010214433935310.1007/s00429‑010‑0247‑z20221886
    [Google Scholar]
  84. BhideP.G. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: A review of current concepts.Semin. Cell Dev. Biol.200920439540210.1016/j.semcdb.2009.01.00619560044
    [Google Scholar]
  85. LuH. LimB. PooM. Cocaine exposure in utero alters synaptic plasticity in the medial prefrontal cortex of postnatal rats.J. Neurosci.20092940126641267410.1523/JNEUROSCI.1984‑09.200919812341
    [Google Scholar]
  86. StanwoodG.D. ParlamanJ.P. LevittP. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D 1 receptor mutant mice.J. Comp. Neurol.2005487327028210.1002/cne.2054815892099
    [Google Scholar]
  87. ZhangL. BaiJ. UndieA.S. BergsonC. LidowM.S. D1 dopamine receptor regulation of the levels of the cell-cycle-controlling proteins, cyclin D, P27 and Raf-1, in cerebral cortical precursor cells is mediated through cAMP-independent pathways.Cereb. Cortex2004151748410.1093/cercor/bhh11015238444
    [Google Scholar]
  88. MoneyK.M. StanwoodG.D. Developmental origins of brain disorders: Roles for dopamine.Front. Cell. Neurosci.2013726010.3389/fncel.2013.0026024391541
    [Google Scholar]
  89. Goldman-RakicP. MulyE.C.III WilliamsG.V. D1 receptors in prefrontal cells and circuits.Brain Res. Brain Res. Rev.2000312-329530110.1016/S0165‑0173(99)00045‑410719156
    [Google Scholar]
  90. ZahrtJ. TaylorJ.R. MathewR.G. ArnstenA.F.T. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance.J. Neurosci.199717218528853510.1523/JNEUROSCI.17‑21‑08528.19979334425
    [Google Scholar]
  91. KiyasovaV. GasparP. Development of raphe serotonin neurons from specification to guidance.Eur. J. Neurosci.201134101553156210.1111/j.1460‑9568.2011.07910.x22103413
    [Google Scholar]
  92. LidovH.G.W. MolliverM.E. Immunohistochemical study of the development of serotonergic neurons in the rat CNS.Brain Res. Bull.198291-655960410.1016/0361‑9230(82)90164‑26756556
    [Google Scholar]
  93. CruzD.A. EgganS.M. AzmitiaE.C. LewisD.A. Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia.Am. J. Psychiatry2004161473974210.1176/appi.ajp.161.4.73915056522
    [Google Scholar]
  94. SantanaN. BortolozziA. SerratsJ. MengodG. ArtigasF. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex.Cereb. Cortex200414101100110910.1093/cercor/bhh07015115744
    [Google Scholar]
  95. KiaH.K. BrisorgueilM.J. HamonM. CalasA. VergéD. Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain.J. Neurosci. Res.199646669770810.1002/(SICI)1097‑4547(19961215)46:6<697::AID‑JNR7>3.0.CO;2‑A8978504
    [Google Scholar]
  96. RiadM. GarciaS. WatkinsK.C. JodoinN. Doucet LangloisX. El MestikawyS. HamonM. DescarriesL. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain.J. Comp. Neurol.2000417218119410.1002/(SICI)1096‑9861(20000207)417:2<181::AID‑CNE4>3.0.CO;2‑A10660896
    [Google Scholar]
  97. William MoreauA. AmarM. Le RouxN. MorelN. FossierP. Serotoninergic fine-tuning of the excitation-inhibition balance in rat visual cortical networks.Cereb. Cortex201020245646710.1093/cercor/bhp11419520765
    [Google Scholar]
  98. LindeforsN. BaratiS. O’ConnorW.T. Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex.Brain Res.1997759220521210.1016/S0006‑8993(97)00255‑29221938
    [Google Scholar]
  99. LidovH.G.W. GrzannaR. MolliverM.E. The serotonin innervation of the cerebral cortex in the rat—an immunohistochemical analysis.Neuroscience19805220722710.1016/0306‑4522(80)90099‑86990293
    [Google Scholar]
  100. ReaderT.A. Distribution of catecholamines and serotonin in the rat cerebral cortex: Absolute levels and relative proportions.J. Neural Transm. (Vienna)1981501132710.1007/BF012549107205246
    [Google Scholar]
  101. Goldman-RakicP.S. LeranthC. WilliamsS.M. MonsN. GeffardM. Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex.Proc. Natl. Acad. Sci. USA198986229015901910.1073/pnas.86.22.90152573073
    [Google Scholar]
  102. SéguélaP. WatkinsK.C. DescarriesL. Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat.Brain Res.19884421112210.1016/0006‑8993(88)91427‑83359247
    [Google Scholar]
  103. VerneyC. AlvarezC. GeffardM. BergerB. Ultrastructural double‐labelling study of dopamine terminals and GABA‐containing neurons in rat anteromedial cerebral cortex.Eur. J. Neurosci.199021196097210.1111/j.1460‑9568.1990.tb00008.x12106083
    [Google Scholar]
  104. VerneyC. ZecevicN. NikolicB. AlvarezC. BergerB. Early evidence of catecholaminergic cell groups in 5- and 6-week-old human embryos using tyrosine hydroxylase and dopamine-β-hydroxylase immunocytochemistry.Neurosci. Lett.1991131112112410.1016/0304‑3940(91)90351‑S1686476
    [Google Scholar]
  105. VincentS.L. KhanY. BenesF.M. Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex.J. Neurosci.19931362551256410.1523/JNEUROSCI.13‑06‑02551.19938501521
    [Google Scholar]
  106. HuntleyG.W. MorrisonJ.H. PrikhozhanA. SealfonS.C. Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum.Brain Res. Mol. Brain Res.1992153-418118810.1016/0169‑328X(92)90107‑M1331674
    [Google Scholar]
  107. MeunierC.N.J. ChameauP. FossierP.M. Modulation of synaptic plasticity in the cortex needs to understand all the players.Front. Synaptic Neurosci.20179210.3389/fnsyn.2017.0000228203201
    [Google Scholar]
  108. Díaz-MataixL. ScorzaM.C. BortolozziA. TothM. CeladaP. ArtigasF. Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: Role in atypical antipsychotic action.J. Neurosci.20052547108311084310.1523/JNEUROSCI.2999‑05.200516306396
    [Google Scholar]
  109. IchikawaJ. IshiiH. BonaccorsoS. FowlerW.L. O’LaughlinI.A. MeltzerH.Y. 5‐HT 2A and D 2 receptor blockade increases cortical DA release via 5‐HT 1A receptor activation: A possible mechanism of atypical antipsychotic‐induced cortical dopamine release.J. Neurochem.20017651521153110.1046/j.1471‑4159.2001.00154.x11238736
    [Google Scholar]
  110. RollemaH. LuY. SchmidtA.W. ZornS.H. Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation.Eur. J. Pharmacol.19973382R3R510.1016/S0014‑2999(97)81951‑69456005
    [Google Scholar]
  111. BortolozziA. Díaz-MataixL. ScorzaM.C. CeladaP. ArtigasF. The activation of 5‐HT 2A receptors in prefrontal cortex enhances dopaminergic activity.J. Neurochem.20059561597160710.1111/j.1471‑4159.2005.03485.x16277612
    [Google Scholar]
  112. PehekE.A. NocjarC. RothB.L. ByrdT.A. MabroukO.S. Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex.Neuropsychopharmacology200631226527710.1038/sj.npp.130081915999145
    [Google Scholar]
  113. GobertA. RivetJ.M. LejeuneF. Newman-TancrediA. Adhumeau-AuclairA. NicolasJ.P. CistarelliL. MelonC. MillanM.J. Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: A combined dialysis and electrophysiological analysis in the rat.Synapse200036320522110.1002/(SICI)1098‑2396(20000601)36:3<205::AID‑SYN5>3.0.CO;2‑D10819900
    [Google Scholar]
  114. LambeE.K. Goldman-RakicP.S. AghajanianG.K. Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat.Cereb. Cortex2000101097498010.1093/cercor/10.10.97411007548
    [Google Scholar]
  115. ThurleyK. SennW. LüscherH.R. Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons.J. Neurophysiol.20089962985299710.1152/jn.01098.200718400958
    [Google Scholar]
  116. Di PietroN.C. SeamansJ.K. Dopamine and serotonin interactively modulate prefrontal cortex neurons in vitro.Biol. Psychiatry201169121204121110.1016/j.biopsych.2010.08.00720889141
    [Google Scholar]
  117. WangD.H. Wong-LinK. Comodulation of dopamine and serotonin on prefrontal cortical rhythms: A theoretical study.Front. Integr. Nuerosci.201375410.3389/fnint.2013.0005423935568
    [Google Scholar]
  118. RitzM.C. LambR.J. GoldbergS.R. KuharM.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine.Science198723748191219122310.1126/science.28200582820058
    [Google Scholar]
  119. SulzerD. SondersM.S. PoulsenN.W. GalliA. Mechanisms of neurotransmitter release by amphetamines: A review.Prog. Neurobiol.200575640643310.1016/j.pneurobio.2005.04.00315955613
    [Google Scholar]
  120. MairR.D. KauerJ.A. Amphetamine depresses excitatory synaptic transmission at prefrontal cortical layer V synapses.Neuropharmacology200752119319910.1016/j.neuropharm.2006.07.00416895728
    [Google Scholar]
  121. BorahA. MohanakumarK.P. Long-term L-DOPA treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats.Cell. Mol. Neurobiol.200727898599610.1007/s10571‑007‑9213‑617934805
    [Google Scholar]
  122. BolascoA. CarradoriS. FioravantiR. Focusing on new monoamine oxidase inhibitors.Expert Opin Ther Pat201020790993910.1517/13543776.2010.495716
    [Google Scholar]
  123. MeltzerH.Y. MasseyB.W. The role of serotonin receptors in the action of atypical antipsychotic drugs.Curr. Opin. Pharmacol.2011111596710.1016/j.coph.2011.02.00721420906
    [Google Scholar]
  124. PoeweW. AntoniniA. ZijlmansJ.C. BurkhardP.R. VingerhoetsF. Levodopa in the treatment of parkinson’s disease: An old drug still going strong.Clin. Interv. Aging2010522923820852670
    [Google Scholar]
  125. GothamA.M. BrownR.G. MarsdenC.D. ‘Frontal’ cognitive function in patients with parkinson’s disease ‘on’ and ‘off’ levodopa.Brain1988111229932110.1093/brain/111.2.2993378138
    [Google Scholar]
  126. LevinB.E. LlabreM.M. WeinerW.J. Cognitive impairments associated with early parkinson’s disease.Neurology198939455756110.1212/WNL.39.4.5572927680
    [Google Scholar]
  127. JahanshahiM. JenkinsI.H. BrownR.G. MarsdenC.D. PassinghamR.E. BrooksD.J. Self-initiated versus externally triggered movements.Brain1995118491393310.1093/brain/118.4.9137655888
    [Google Scholar]
  128. BallangerB. StrafellaA.P. van EimerenT. ZurowskiM. RusjanP.M. HouleS. FoxS.H. Serotonin 2A receptors and visual hallucinations in parkinson disease.Arch. Neurol.201067441642110.1001/archneurol.2010.3520385906
    [Google Scholar]
  129. HuotP. JohnstonT.H. DarrT. HazratiL.N. VisanjiN.P. PiresD. BrotchieJ.M. FoxS.H. Increased 5‐HT 2A receptors in the temporal cortex of parkinsonian patients with visual hallucinations.Mov. Disord.201025101399140810.1002/mds.2308320629135
    [Google Scholar]
  130. StahlS.M. Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome.CNS Spectr.201621535535910.1017/S109285291600060227686027
    [Google Scholar]
  131. MatheusF.C. RialD. RealJ.I. LemosC. BenJ. GuaitaG.O. PitaI.R. SequeiraA.C. PereiraF.C. WalzR. TakahashiR.N. BertoglioL.J. CunhaC.D. CunhaR.A. PredigerR.D. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.Behav. Brain Res.2016301435410.1016/j.bbr.2015.12.01126707254
    [Google Scholar]
  132. MiguelezC. BenazzouzA. UgedoL. De DeurwaerdèreP. Impairment of serotonergic transmission by the antiparkinsonian drug L-DOPA: Mechanisms and clinical implications.Front. Cell. Neurosci.20171127410.3389/fncel.2017.0027428955204
    [Google Scholar]
  133. DhikavV. AnandK.S. Hippocampus in health and disease: An overview.Ann. Indian Acad. Neurol.201215423924610.4103/0972‑2327.10432323349586
    [Google Scholar]
  134. GilbertP.E. BrushfieldA.M. The role of the CA3 hippocampal subregion in spatial memory: A process oriented behavioral assessment.Prog. Neuropsychopharmacol. Biol. Psychiatry200933577478110.1016/j.pnpbp.2009.03.03719375477
    [Google Scholar]
  135. GonzálezburgosI. FeriavelascoA. Serotonin/dopamine interaction in memory formation.Prog. Brain Res.200817260362310.1016/S0079‑6123(08)00928‑X18772052
    [Google Scholar]
  136. BearM.F. AbrahamW.C. Long-term depression in hippocampus.Annu. Rev. Neurosci.199619143746210.1146/annurev.ne.19.030196.0022538833450
    [Google Scholar]
  137. BlissT.V.P. CollingridgeG.L. A synaptic model of memory: Long-term potentiation in the hippocampus.Nature19933616407313910.1038/361031a08421494
    [Google Scholar]
  138. NicollR.A. OlietS.H.R. MalenkaR.C. NMDA receptor-dependent and metabotropic glutamate receptor-dependent forms of long-term depression coexist in CA1 hippocampal pyramidal cells.Neurobiol. Learn. Mem.1998701-2627210.1006/nlme.1998.38389753587
    [Google Scholar]
  139. LiS. CullenW.K. AnwylR. RowanM.J. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty.Nat. Neurosci.20036552653110.1038/nn104912704392
    [Google Scholar]
  140. FreyU. HuangY.Y. KandelE.R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons.Science199326051141661166410.1126/science.83890578389057
    [Google Scholar]
  141. SchultzW. Multiple reward signals in the brain.Nat. Rev. Neurosci.20001319920710.1038/3504456311257908
    [Google Scholar]
  142. KarunakaranS. ChowdhuryA. DonatoF. QuairiauxC. MichelC.M. CaroniP. PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.Nat. Neurosci.201619345446410.1038/nn.423126807952
    [Google Scholar]
  143. Palacios-FilardoJ. MellorJ.R. Neuromodulation of hippocampal long-term synaptic plasticity.Curr. Opin. Neurobiol.201954374310.1016/j.conb.2018.08.00930212713
    [Google Scholar]
  144. DigiovanniG. DimatteoV. PierucciM. EspositoE. Serotonin–dopamine interaction: electrophysiological evidence.Prog. Brain Res.2008172457110.1016/S0079‑6123(08)00903‑518772027
    [Google Scholar]
  145. De DeurwaerdèreP. ChagraouiA. Di GiovanniG. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence.Prog. Brain Res.202126116126410.1016/bs.pbr.2021.02.00133785130
    [Google Scholar]
  146. BurnetP.W.J. EastwoodS.L. LaceyK. HarrisonP.J. The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain.Brain Res.1995676115716810.1016/0006‑8993(95)00104‑X7796165
    [Google Scholar]
  147. AssiéM.B. RavailheV. FaucillonV. Newman-TancrediA. Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain.J. Pharmacol. Exp. Ther.2005315126527210.1124/jpet.105.08716315987834
    [Google Scholar]
  148. LiZ. HuangM. PrusA.J. DaiJ. MeltzerH.Y. 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus.Brain Res.200711341707810.1016/j.brainres.2006.11.06017207474
    [Google Scholar]
  149. CeladaP. PuigM.V. ArtigasF. Serotonin modulation of cortical neurons and networks.Front. Integr. Nuerosci.201372510.3389/fnint.2013.0002523626526
    [Google Scholar]
  150. CaiX. KallarackalA.J. KvartaM.D. GoluskinS. GaylorK. BaileyA.M. LeeH.K. HuganirR.L. ThompsonS.M. Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression.Nat. Neurosci.201316446447210.1038/nn.335523502536
    [Google Scholar]
  151. KempA. Manahan-VaughanD. The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo.Cereb. Cortex20051571037104310.1093/cercor/bhh20415537670
    [Google Scholar]
  152. TeixeiraC.M. RosenZ.B. SuriD. SunQ. HershM. SarginD. DinchevaI. MorganA.A. SpivackS. KrokA.C. Hirschfeld-StolerT. LambeE.K. SiegelbaumS.A. AnsorgeM.S. Hippocampal 5-HT input regulates memory formation and schaffer collateral excitation.Neuron20189859921004.e410.1016/j.neuron.2018.04.03029754752
    [Google Scholar]
  153. MlinarB. StoccaG. CorradettiR. Endogenous serotonin facilitates hippocampal long-term potentiation at CA3/CA1 synapses.J. Neural Transm. (Vienna)2015122217718510.1007/s00702‑014‑1246‑724872079
    [Google Scholar]
  154. TwarkowskiH. HagenaH. Manahan-VaughanD. The 5‐hydroxytryptamine 4 receptor enables differentiation of informational content and encoding in the hippocampus.Hippocampus201626787589110.1002/hipo.2256926800645
    [Google Scholar]
  155. CorradettiR. BalleriniL. PuglieseA.M. PepeuG. Serotonin blocks the long-term potentiation induced by primed burst stimulation in the CA1 region of rat hippocampal slices.Neuroscience199246351151810.1016/0306‑4522(92)90140‑W1545909
    [Google Scholar]
  156. ShakesbyA.C. AnwylR. RowanM.J. Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents.J. Neurosci.20022293638364410.1523/JNEUROSCI.22‑09‑03638.200211978839
    [Google Scholar]
  157. StaubliU. OtakyN. Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses.Brain Res.19946431-2101610.1016/0006‑8993(94)90003‑57913394
    [Google Scholar]
  158. VillaniF. JohnstonD. Serotonin inhibits induction of long-term potentiation at commissural synapses in hippocampus.Brain Res.1993606230430810.1016/0006‑8993(93)90998‑38387861
    [Google Scholar]
  159. HagenaH. Manahan-VaughanD. The serotonergic 5-HT4 receptor: A unique modulator of hippocampal synaptic information processing and cognition.Neurobiol. Learn. Mem.201713814515310.1016/j.nlm.2016.06.01427317942
    [Google Scholar]
  160. KullaA. Manahan-VaughanD. Modulation by serotonin 5-HT(4) receptors of long-term potentiation and depotentiation in the dentate gyrus of freely moving rats.Cereb. Cortex200212215016210.1093/cercor/12.2.15011739263
    [Google Scholar]
  161. FallonS. ShearmanE. SershenH. LajthaA. Food reward-induced neurotransmitter changes in cognitive brain regions.Neurochem. Res.200732101772178210.1007/s11064‑007‑9343‑817721820
    [Google Scholar]
  162. TangW. ShinJ.D. JadhavS.P. Multiple time-scales of decision-making in the hippocampus and prefrontal cortex.eLife202110e6622710.7554/eLife.6622733683201
    [Google Scholar]
  163. CohenJ.Y. AmorosoM.W. UchidaN. Serotonergic neurons signal reward and punishment on multiple timescales.eLife20154e0634610.7554/eLife.0634625714923
    [Google Scholar]
  164. CrockettM.J. ClarkL. Apergis-SchouteA.M. Morein-ZamirS. RobbinsT.W. Serotonin modulates the effects of pavlovian aversive predictions on response vigor.Neuropsychopharmacology201237102244225210.1038/npp.2012.7522643930
    [Google Scholar]
  165. MatiasS. LottemE. DuguéG.P. MainenZ.F. Activity patterns of serotonin neurons underlying cognitive flexibility.eLife20176e2055210.7554/eLife.2055228322190
    [Google Scholar]
  166. BrzoskoZ. SchultzW. PaulsenO. Retroactive modulation of spike timing-dependent plasticity by dopamine.eLife20154e0968510.7554/eLife.0968526516682
    [Google Scholar]
  167. BerumenL.C. RodríguezA. MilediR. García-AlcocerG. Serotonin receptors in hippocampus.ScientificWorldJournal2012201211510.1100/2012/82349322629209
    [Google Scholar]
  168. Esmaeili-MahaniS. HaghparastE. NezhadiA. AbbasnejadM. SheibaniV. Apelin-13 prevents hippocampal synaptic plasticity impairment in Parkinsonism rats.J. Chem. Neuroanat.202111110188410.1016/j.jchemneu.2020.10188433161074
    [Google Scholar]
  169. Madadi AslM. VahabieA.H. ValizadehA. Dopaminergic modulation of synaptic plasticity, its role in neuropsychiatric disorders, and its computational modeling.Basic Clin. Neurosci.201910111231031889
    [Google Scholar]
  170. HuotP. FoxS.H. BrotchieJ.M. The serotonergic system in parkinson’s disease.Prog. Neurobiol.201195216321210.1016/j.pneurobio.2011.08.00421878363
    [Google Scholar]
  171. IshiiT. KinoshitaK. MuroiY. Serotonin 5-HT.Int. J. Mol. Sci.20192021534010.3390/ijms2021534031717815
    [Google Scholar]
  172. MurphyS.E. WrightL.C. BrowningM. CowenP.J. HarmerC.J. A role for 5-HT 4 receptors in human learning and memory.Psychol. Med.202050162722273010.1017/S003329171900283631615585
    [Google Scholar]
  173. AzmitiaE.C. NixonR. Dystrophic serotonergic axons in neurodegenerative diseases.Brain Res.2008121718519410.1016/j.brainres.2008.03.06018502405
    [Google Scholar]
  174. HuotP. FoxS.H. The serotonergic system in motor and non-motor manifestations of parkinson’s disease.Exp. Brain Res.2013230446347610.1007/s00221‑013‑3621‑223811734
    [Google Scholar]
  175. BurkeR.E. O’MalleyK. Axon degeneration in parkinson’s disease.Exp. Neurol.2013246728310.1016/j.expneurol.2012.01.01122285449
    [Google Scholar]
  176. LambertsJ.T. HildebrandtE.N. BrundinP. Spreading of α-synuclein in the face of axonal transport deficits in parkinson’s disease: A speculative synthesis.Neurobiol. Dis.20157727628310.1016/j.nbd.2014.07.00225046996
    [Google Scholar]
/content/journals/cn/10.2174/011570159X336597241217062042
Loading
/content/journals/cn/10.2174/011570159X336597241217062042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test