Skip to content
2000
Volume 23, Issue 10
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

This review provides a comprehensive account of advances in the field of cholinesterase inhibitors isolated from the Buxaceae family. Naturally occurring anticholinesterases derived from plants are considered to be a potential source of new drug candidates for treating Alzheimer’s disease (AD). AD is now universally accepted as an irreversible, incurable, and progressive neurological disorder. Initiating with memory impairment, propagating with cognitive deficit, and ultimately leading to death is the general pathway of AD. Lower level of acetylcholine in the brain is characterized as one of the prominent reasons for AD. The cholinergic hypothesis states that elevated levels of acetylcholine in the brain can alleviate symptoms of AD. Steroidal and terpenoidal alkaloids isolated from plants of the Buxaceae family have been reviewed here for their anticholinesterase activity. Most of them have shown inhibition of horse serum butyrylcholinesterase (BuChE, EC 3.1.1.7) and electric eel acetylcholinesterase (AChE, EC 3.1.1.8). Although the general consensus has concluded that cholinesterase inhibitors may alleviate AD symptoms but cannot cure the disease, new drugs are still being sought to improve the quality of life of AD patients. Steroidal and terpenoidal anticholinesterase alkaloids can prove to be a promising group of AChE inhibitors.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666250326091016
2025-04-08
2025-10-24
Loading full text...

Full text loading...

References

  1. SharmaS. BanjareM.K. SinghN. KorábečnýJ. KučaK. GhoshK.K. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer’s drugs.RSC Advances20201064388733888310.1039/D0RA06323A 35518436
    [Google Scholar]
  2. ZhuQ. ZhangN. HuN. JiangR. LuH. XuanA. LongD. ChenY. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer’s disease.Mol. Med. Rep.20202131172118010.3892/mmr.2020.10918 31922229
    [Google Scholar]
  3. MarešováP. MohelskáH. DolejšJ. KučaK. Socio-economic aspects of Alzheimer’s disease.Curr. Alzheimer Res.201512990391110.2174/156720501209151019111448 26510983
    [Google Scholar]
  4. SharmaS. BanjareM.K. SinghN. KorábečnýJ. FišarZ. KučaK. GhoshK.K. Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer’s drugs within the hydrophobic pockets of β-cycloamylose.J. Mol. Liq.202031111326910.1016/j.molliq.2020.113269
    [Google Scholar]
  5. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules27061816 35335180
    [Google Scholar]
  6. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Advancements and challenges on the path to treatments.Science200229735335610.1126/science.1072994 12130773
    [Google Scholar]
  7. MohammadD. ChanP. BradleyJ. LanctôtK. HerrmannN. Acetylcholinesterase inhibitors for treating dementia symptoms - A safety evaluation.Expert Opin. Drug Saf.20171691009101910.1080/14740338.2017.1351540 28678552
    [Google Scholar]
  8. Sanabria-CastroA. Alvarado-EcheverríaI. Monge-BonillaC. Molecular pathogenesis of Alzheimer’s disease: An update.Ann. Neurosci.2017241465410.1159/000464422 28588356
    [Google Scholar]
  9. TaylorP. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease.Neurology199851Suppl. 1S30S3510.1212/WNL.51.1_Suppl_1.S30 9674760
    [Google Scholar]
  10. GreigN. SambamurtiK. YuQ. BrossiA. BruinsmaG. LahiriD. An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease.Curr. Alzheimer Res.20052328129010.2174/1567205054367829 15974893
    [Google Scholar]
  11. DarveshS. HopkinsD.A. GeulaC. Neurobiology of butyrylcholinesterase.Nat. Rev. Neurosci.20034213113810.1038/nrn1035 12563284
    [Google Scholar]
  12. SpilovskaK. KorabecnyJ. KralJ. HorovaA. MusilekK. SoukupO. DrtinovaL. GazovaZ. SiposovaK. KucaK. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment-synthesis, biological evaluation and molecular modeling studies.Molecules20131822397241810.3390/molecules18022397 23429378
    [Google Scholar]
  13. JeřábekJ. UliassiE. GuidottiL. KorábečnýJ. SoukupO. SepsovaV. HrabinovaM. KučaK. BartoliniM. Peña-AltamiraL.E. PetrallaS. MontiB. RobertiM. BolognesiM.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease.Eur. J. Med. Chem.201712725026210.1016/j.ejmech.2016.12.048 28064079
    [Google Scholar]
  14. PinhoB.R. FerreresF. ValentãoP. AndradeP.B. Nature as a source of metabolites with cholinesterase-inhibitory activity: An approach to Alzheimer’s disease treatment.J. Pharm. Pharmacol.201365121681170010.1111/jphp.12081 24236980
    [Google Scholar]
  15. ShahA.A. DarT.A. DarP.A. GanieS.A. KamalM.A. A current perspective on the inhibition of cholinesterase by natural and synthetic inhibitors.Curr. Drug Metab.20171829611110.2174/1389200218666161123122734 27890007
    [Google Scholar]
  16. KlimovaB. KucaK. Alzheimer’s disease and Chinese medicine as a useful alternative intervention tool: A mini-review.Curr. Alzheimer Res.201714668068510.2174/1567205014666170117103656 28124587
    [Google Scholar]
  17. HoughtonP.J. RenY. HowesM.J. Acetylcholinesterase inhibitors from plants and fungi.Nat. Prod. Rep.200623218119910.1039/b508966m 16572227
    [Google Scholar]
  18. MukherjeeP.K. KumarV. MalM. HoughtonP.J. Acetylcholinesterase inhibitors from plants.Phytomedicine200714428930010.1016/j.phymed.2007.02.002 17346955
    [Google Scholar]
  19. OrhanG. OrhanI. Subutay-OztekinN. AkF. SenerB. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease.Recent Patents CNS Drug Discov.200941435110.2174/157488909787002582 19149713
    [Google Scholar]
  20. WilliamsP. SorribasA. HowesM.J.R. Natural products as a source of Alzheimer’s drug leads.Nat. Prod. Rep.2011281487710.1039/C0NP00027B 21072430
    [Google Scholar]
  21. PatočkaJ. Natural cholinesterase inhibitors from mushrooms.Vojen. Zdrav. Listy2012811404410.31482/mmsl.2012.005
    [Google Scholar]
  22. AhmedF. GhalibR. SasikalaP. Mueen AhmedK.K. Cholinesterase inhibitors from botanicals.Pharmacogn. Rev.201371412113010.4103/0973‑7847.120511 24347920
    [Google Scholar]
  23. KhanS.A. KhanS.B. ShahZ. AsiriA.M. Withanolides: Biologically active constituents in the treatment of Alzheimer’s disease.Med. Chem.201612323825610.2174/1573406411666151030112314 26527154
    [Google Scholar]
  24. KaufmannD. Kaur DograA. TahraniA. HerrmannF. WinkM. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target.Molecules2016219116110.3390/molecules21091161 27589716
    [Google Scholar]
  25. WangZ.Y. LiuJ.G. LiH. YangH.M. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: A review.Am. J. Chin. Med.20164481525154110.1142/S0192415X16500853 27848250
    [Google Scholar]
  26. von BalthazarM. EndressP.K. QiuY.L. Phylogenetic relationships in Buxaceae based on nuclear internal transcribed spacers and plastid ndhF sequences.Int. J. Plant Sci.2000161578579210.1086/314302
    [Google Scholar]
  27. StaffordG.I. PedersenM.E. van StadenJ. JägerA.K. Review on plants with CNS-effects used in traditional South African medicine against mental diseases.J. Ethnopharmacol.2008119351353710.1016/j.jep.2008.08.010 18775771
    [Google Scholar]
  28. NatarajanS. ShunmugiahK.P. KasiP.D. Plants traditionally used in age-related brain disorders (dementia): An ethanopharmacological survey.Pharm. Biol.201351449252310.3109/13880209.2012.738423 23336528
    [Google Scholar]
  29. ChoudharyM.I. Atta-ur-Rahman FreyerA.J. ShammaM. Five new steroidal alkaloids from Buxus papilosa. Some relationships between structures and specific rotations.Tetrahedron198642205747575210.1016/S0040‑4020(01)88180‑1
    [Google Scholar]
  30. BabarZ.U. AtaA. MeshkatalsadatM.H. New bioactive steroidal alkaloids from Buxus hyrcana.Steroids20067113-141045105110.1016/j.steroids.2006.09.002 17049575
    [Google Scholar]
  31. KhalidA. AzimM.K. ParveenS. Atta-ur-Rahman ChoudharyM.I. Structural basis of acetylcholinesterase inhibition by Triterpenoidal alkaloids.Biochem. Biophys. Res. Commun.200533141528153210.1016/j.bbrc.2005.03.248 15959931
    [Google Scholar]
  32. Atta-ur-Rahman AhmedD. ErfanA.S. JamalA. ChoudharyM.I. SenerB. TurkozS. Steroidal alkaloids from leaves of Buxus sempervirens.Phytochemistry19913041295129810.1016/S0031‑9422(00)95219‑1
    [Google Scholar]
  33. Atta-ur-RahmanA. AtaA. NazS. ChoudharyM.I. SenerB. TurkozS. New steroidal alkaloids from the roots of Buxus sempervirens.J. Nat. Prod.199962566566910.1021/np980285h 10346940
    [Google Scholar]
  34. HeywoodV.H. BrummittR.K. CulhamA. SebergO. Flowering Plant Families of The World.OntarioFirefly Books200788
    [Google Scholar]
  35. Kubitzki, K., Ed.; The Families and Genera of Vascular Plants.BerlinSpringer19901
    [Google Scholar]
  36. ChristenhuszM.J.M. ByngJ.W. The number of known plants species in the world and its annual increase.Phytotaxa2016261320121710.11646/phytotaxa.261.3.1
    [Google Scholar]
  37. ByngJ.W. The Flowering Plants Handbook: A Practical Guide to Families and Genera of the World.Plant Gateway Ltd.2014
    [Google Scholar]
  38. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV.Bot. J. Linn. Soc.2016181112010.1111/boj.12385
    [Google Scholar]
  39. ChoudharyM.I. ShahnazS. ParveenS. KhalidA. Majeed AyatollahiS.A. Atta-ur-Rahman ParvezM. New triterpenoid alkaloid cholinesterase inhibitors from Buxus hyrcana.J. Nat. Prod.200366673974210.1021/np020446o 12828454
    [Google Scholar]
  40. LevE. Practical Materia Medica of the Medieval Eastern Mediterranean According to the Cairo Genizah.Leiden, The NetherlandsBrill2007
    [Google Scholar]
  41. KhanA. AliS. GilaniA.H. AhmedM. ChoudharyM.I. Antispasmodic, bronchodilator, vasorelaxant and cardiosuppressant effects of Buxus papillosa.BMC Complement. Altern. Med.20171715410.1186/s12906‑017‑1558‑x 28100216
    [Google Scholar]
  42. PalmerE. PitmanN. Trees of Southern Africa.Cape TownA.A. Balkema Publishers1972
    [Google Scholar]
  43. LamC.W. WakemanA. JamesA. AtaA. GenganR.M. RossS.A. Bioactive steroidal alkaloids from Buxus macowanii Oliv.Steroids201595737910.1016/j.steroids.2014.12.002 25528196
    [Google Scholar]
  44. MatochkoW.L. JamesA. LamC.W. KozeraD.J. AtaA. GenganR.M. Triterpenoidal alkaloids from Buxus natalensis and their acetylcholinesterase inhibitory activity.J. Nat. Prod.201073111858186210.1021/np100494u 20954721
    [Google Scholar]
  45. YanY.X. HuX.D. ChenJ.C. SunY. ZhangX.M. QingC. QiuM.H. Cytotoxic triterpenoid alkaloids from Buxus microphylla.J. Nat. Prod.200972230831110.1021/np800719h 19133780
    [Google Scholar]
  46. BaiS.T. ZhuG.L. PengX.R. DongJ.R. YuM.Y. ChenJ.C. WanL.S. QiuM.H. Cytotoxicity of triterpenoid alkaloids from Buxus microphylla against human tumor cell lines.Molecules2016219112510.3390/molecules21091125 27571056
    [Google Scholar]
  47. LázaroA. TravesetA. Reproductive success of the endangered shrub Buxus balearica Lam. (Buxaceae): Pollen limitation, and inbreeding and outbreeding depression.Plant Syst. Evol.20062611-411712810.1007/s00606‑005‑0404‑7
    [Google Scholar]
  48. MatinA. MuhammedA. AshrafM. QureshiR.A. Traditional use of herbs, shrubs and trees of Shogran valley, Mansehra, Pakistan.Pak. J. Biol. Sci.2001491101110710.3923/pjbs.2001.1101.1107
    [Google Scholar]
  49. AhmadB. AzamS. BashirS. Biological screening of the aerial parts of the Sarcococca saligna.J. Med. Plants Res.201042224042410
    [Google Scholar]
  50. HaraH. StearnW.T. WilliamsL.H.J. An enumeration of the flowering plants of Nepal. A Joint project of British Museum (Nepal History) and the University of TokyoTrustees of British MuseumLondon1978
    [Google Scholar]
  51. KalauniS.K. ChoudharyM.I. KhalidA. ManandharM.D. ShaheenF. Atta-ur-Rahman GewaliM.B. New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin.Chem. Pharm. Bull.200250111423142610.1248/cpb.50.1423 12419902
    [Google Scholar]
  52. DevkotaK.P. LentaB.N. ChoudharyM.I. NazQ. FekamF.B. RosenthalP.J. SewaldN. Cholinesterase inhibiting and antiplasmodial steroidal alkaloids from Sarcococca hookeriana.Chem. Pharm. Bull.20075591397140110.1248/cpb.55.1397 17827771
    [Google Scholar]
  53. HeK. DuJ. Two new steroidal alkaloids from the roots of Sarcococca ruscifolia.J. Asian Nat. Prod. Res.201012323323810.1080/10286021003610136 20390771
    [Google Scholar]
  54. ZhangP. ShaoL. ShiZ. ZhangY. DuJ. ChengK. YuP. Pregnane alkaloids from Sarcococca ruscifolia and their cytotoxic activity.Phytochem. Lett.201514313410.1016/j.phytol.2015.08.010
    [Google Scholar]
  55. Zhong-MeiZ. Li-JunL. MoY. Shi-ShanY. Pu-ZhuC. De-QuanY. Steroidal alkaloids from roots of Sarcococca vagans.Phytochemistry19974661091109310.1016/S0031‑9422(97)00385‑3
    [Google Scholar]
  56. FunayamaS. NoshitaT. ShinodaK. HagaN. NozoeS. HayashiM. KomiyamaK. Cytotoxic alkaloids of Pachysandra terminalis.Biol. Pharm. Bull.200023226226410.1248/bpb.23.262 10706399
    [Google Scholar]
  57. ZhaiH.Y. ZhaoC. ZhangN. JinM.N. TangS.A. QinN. KongD.X. DuanH.Q. Alkaloids from Pachysandra terminalis inhibit breast cancer invasion and have potential for development as antimetastasis therapeutic agents.J. Nat. Prod.20127571305131110.1021/np300207c 22804108
    [Google Scholar]
  58. LinD. XiaoM. ZhaoJ. LiZ. XingB. LiX. KongM. LiL. ZhangQ. LiuY. ChenH. QinW. WuH. ChenS. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes.Molecules20162110137410.3390/molecules21101374 27754463
    [Google Scholar]
  59. ChangL.C. BhatK.P.L. PishaE. KennellyE.J. FongH.H.S. PezzutoJ.M. KinghornA.D. Activity-guided isolation of steroidal alkaloid antiestrogen-binding site inhibitors from Pachysandra procumbens.J. Nat. Prod.199861101257126210.1021/np980162x 9784163
    [Google Scholar]
  60. JiaoZ. LiJ. Phylogenetics and biogeography of eastern Asian–North American disjunct genus Pachysandra (Buxaceae) inferred from nucleotide sequences.J. Syst. Evol.200947319120110.1111/j.1759‑6831.2009.00021.x
    [Google Scholar]
  61. SunY. YanY.X. ChenJ.C. LuL. ZhangX.M. LiY. QiuM.H. Pregnane alkaloids from Pachysandra axillaris.Steroids2010751281882410.1016/j.steroids.2010.05.005 20478323
    [Google Scholar]
  62. (a Atta-ur-Rahman FerozF. NaeemI. Zaheer-ul-Haq, NawazS.A. KhanN. KhanM.R. ChoudharyM.I. New pregnane-type steroidal alkaloids from Sarcococca saligna and their cholinesterase inhibitory activity.Steroids20046911-1273574110.1016/j.steroids.2004.03.01615685740
    [Google Scholar]
  63. (b Atta-ur-Rahman Zaheer-ul-Haq KhalidA. AnjumS. KhanM.R. ChoudharyM.I. Pregnane-type steroidal alkaloids of Sarcococca saligna: A new class of cholinesterase inhibitors.Helv. Chim. Acta200285267868810.1002/1522‑2675(200202)85:2<678::AID‑HLCA678>3.0.CO;2‑2
    [Google Scholar]
  64. KhalidA. Zaheer-ul-Haq AnjumS. Riaz KhanM. Atta-ur-Rahman Iqbal ChoudharyM. Kinetics and structure-activity relationship studies on pregnane-type steroidal alkaloids that inhibit cholinesterases.Bioorg. Med. Chem.20041291995200310.1016/j.bmc.2004.03.002 15080903
    [Google Scholar]
  65. VorbrueggenH. PakrashiS.C. DjerassiC. Terpenoids. LIV. Studies on Indian medicinal plants. Arborinol, a newtriterpene type.Justus Liebigs Ann. Chem.19636685776
    [Google Scholar]
  66. MokrýP. VotickýZ. Buxus alkaloids. XX. Alkaloids of Buxus arborescens Mill.Chem. Pap.1984381101109
    [Google Scholar]
  67. VassovaA. VotickýZ. ČerníkJ. TomkoJ. Buxus alkaloids. XVIII. Alkaloids of Buxus harlandi Hance.Chem. Pap.1980345706711
    [Google Scholar]
  68. AtaA. IversonC.D. KalhariK.S. AkhterS. BetteridgeJ. MeshkatalsadatM.H. OrhanI. SenerB. Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities.Phytochemistry20107114-151780178610.1016/j.phytochem.2010.06.017 20655557
    [Google Scholar]
  69. GuoH. CaiX.H. Triterpenoid alkaloids from Buxus rugulosa.Chem. Nat. Compd.200844220620710.1007/s10600‑008‑9015‑1
    [Google Scholar]
  70. ChoudharyM.I. ShahnazS. ParveenS. KhalidA. MesaikM.A. AyatollahiS.A.M. Atta-ur-Rahman New cholinesterase-inhibiting triterpenoid alkaloids from Buxus hyrcana.Chem. Biodivers.2006391039105210.1002/cbdv.200690102 17193337
    [Google Scholar]
  71. LoruF. DuvalD. AumelasA. AkebF. GuédonD. GuedjR. Four steroidal alkaloids from the leaves of Buxus sempervirens.Phytochemistry200054895195710.1016/S0031‑9422(00)00036‑4 11014296
    [Google Scholar]
  72. RahmanA. NisaM. FarhiS. The isolation and structure of “Moenjodaramine” and “Harappamine” — Two new alkaloids from Buxus papilosa.Z. Naturforsch. B. J. Chem. Sci.198439452452710.1515/znb‑1984‑0418
    [Google Scholar]
  73. Atta-ur-Rahman AlamM. NasirH. DagneE. YenesewA. Three steroidal alkaloids from Buxus hildebrandtii.Phytochemistry19902941293129610.1016/0031‑9422(90)85445‑L
    [Google Scholar]
  74. FourneauC. HocquemillerR. GuédonD. CavéA. Spirofornabuxine, a novel type of Buxus alkaloid.Tetrahedron Lett.199738172965296810.1016/S0040‑4039(97)00534‑0
    [Google Scholar]
  75. Atta-ur-Rahman ParveenS. KhalidA. FarooqA. ChoudharyM.I. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa.Phytochemistry200158696396810.1016/S0031‑9422(01)00332‑6 11684196
    [Google Scholar]
  76. Atta-ur-Rahman ChoudharyM.I. Bioactive natural products as a potential source of new pharmacophores. A theory of memory.Pure Appl. Chem.200173355556010.1351/pac200173030555
    [Google Scholar]
  77. KhalidA. Zaheer-ul-Haq GhayurM.N. FerozF. Atta-ur-Rahman GilaniA.H. ChoudharyM.I. Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids.J. Steroid Biochem. Mol. Biol.200492547748410.1016/j.jsbmb.2004.08.003 15795993
    [Google Scholar]
  78. Atta-ur-Rahman FerozF. Zaheer-ul-Haq NawazS.A. KhanM.R. ChoudharyM.I. New steroidal alkaloids from Sarcococca saligna.Nat. Prod. Res.200317423524110.1080/1057563021000051086 12822900
    [Google Scholar]
  79. Atta-ur-Rahman ShaziaA. AfganF. MR.K. MI.C. Two new pregnane-type steroidal alkaloids from Sarcococca saligna.Phytochemistry199746477177510.1016/S0031‑9422(97)00347‑6 9366098
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666250326091016
Loading
/content/journals/cn/10.2174/1570159X23666250326091016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test