Skip to content
2000
image of Nanomaterials in Alzheimer’s Disease Treatment and Environmental Impression

Abstract

This study examines nanomaterials as therapeutics for Alzheimer’s treatment, their environmental footprints, or both, in an innovation-embedded, sustainability-balanced discussion that puts a spotlight on eco-friendly practices in advancing medical technologies. By reviewing recent advances in nanomaterials for Alzheimer’s treatments, this study aims to further evaluate the environmental implications of nanomaterial manufacturing and disposal, as well as alternative materials and processes that can mitigate these impacts. Researchers are creating a framework to assess the sustainability of nanomaterials for medical applications. The study claims that the other side of the coin is that, although nanomaterials have taken Alzheimer's disease therapy by storm, they have their environmental consequences. The study explains why adopting sustainable practices is necessary for keeping a wholesome balance between innovation and ecological accountability. The healthcare technologies are likely to benefit from minimizing their environmental impacts while making the most of the advances in nanotechnology through implementing sustainable materials and methods. Proposed recommendations clearly delineate a route toward integrating sustainability into the design and application of nanomaterials for medical therapies.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454386874250711102028
2025-07-24
2025-09-10
Loading full text...

Full text loading...

References

  1. Chandra P. Sharma H. Sachan N. Explainable and Responsible AI in neuroscience. In: Explainable and Responsible Artificial Intelligence in Healthcare. 2025 27 63 10.1002/9781394302444.ch2
    [Google Scholar]
  2. Sharma M. Pal P. Gupta S.K. The neurotransmitter puzzle of Alzheimer’s: Dissecting mechanisms and exploring therapeutic horizons. Brain Res. 2024 1829 148797 10.1016/j.brainres.2024.148797 38342422
    [Google Scholar]
  3. Goldman D.P. Fillit H. Neumann P. Accelerating Alzheimer’s disease drug innovations from the research pipeline to patients. Alzheimers Dement. 2018 14 6 833 836 10.1016/j.jalz.2018.02.007 29680407
    [Google Scholar]
  4. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  5. Lacosta A.M. Insua D. Badi H. Pesini P. Sarasa M. Neurofibrillary tangles of Aβ x-40 in Alzheimer’s disease brains. J. Alzheimers Dis. 2017 58 3 661 667 10.3233/JAD‑170163 28453491
    [Google Scholar]
  6. Rollo J. Crawford J. Hardy J. A dynamical systems approach for multiscale synthesis of Alzheimer’s pathogenesis. Neuron 2023 111 14 2126 2139 10.1016/j.neuron.2023.04.018 37172582
    [Google Scholar]
  7. Jönsson L. Wimo A. Handels R. Johansson G. Boada M. Engelborghs S. Frölich L. Jessen F. Kehoe P.G. Kramberger M. de Mendonςa A. Ousset P.J. Scarmeas N. Visser P.J. Waldemar G. Winblad B. The affordability of lecanemab, an amyloid-targeting therapy for Alzheimer’s disease: n EADC-EC viewpoint. Lancet Reg. Health Eur. 2023 29 100657 10.1016/j.lanepe.2023.100657 37251789
    [Google Scholar]
  8. Xu Y. Zhao M. Zhou D. Zheng T. Zhang H. The application of multifunctional nanomaterials in Alzheimer’s disease: A potential theranostics strategy. Biomed. Pharmacother. 2021 137 111360 10.1016/j.biopha.2021.111360 33582451
    [Google Scholar]
  9. Bilal M. Barani M. Sabir F. Rahdar A. Kyzas G.Z. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact 2020 20 100251 10.1016/j.impact.2020.100251
    [Google Scholar]
  10. Shao X. Yan C. Wang C. Wang C. Cao Y. Zhou Y. Guan P. Hu X. Zhu W. Ding S. Advanced nanomaterials for modulating Alzheimer’s related amyloid aggregation. Nanoscale Adv. 2022 5 1 46 80 10.1039/D2NA00625A 36605800
    [Google Scholar]
  11. Zeng H. Qi Y. Zhang Z. Liu C. Peng W. Zhang Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. Chin. Chem. Lett. 2021 32 6 1857 1868 10.1016/j.cclet.2021.01.014
    [Google Scholar]
  12. Liu J. Chi M. Li L. Zhang Y. Xie M. Erythrocyte membrane coated with nitrogen-doped quantum dots and polydopamine composite nano-system combined with photothermal treatment of Alzheimer’s disease. J. Colloid Interface Sci. 2024 663 856 868 10.1016/j.jcis.2024.02.219 38447400
    [Google Scholar]
  13. Bai Z. Ge K. Fu J. Yu D. Hua Z. Xue S. Li Z. Sheng W. Wu X. Gao F. Geng D. Gao F. Engineered urinary-derived extracellular vesicles loaded nanoenzymes as Trojan horses to regulate the inflammatory microenvironment for treatment of Alzheimer’s disease. Chem. Eng. J. 2023 465 142955 10.1016/j.cej.2023.142955
    [Google Scholar]
  14. Du J. Tian H. Fu M. Yan Y. Wang C. Ding C.F. Post-modified porous hollow nanospheres incorporating multiple strategies for comprehensive phosphoproteomics analysis of serum of Alzheimer’s disease. Microporous Mesoporous Mater. 2022 341 112066 10.1016/j.micromeso.2022.112066
    [Google Scholar]
  15. Chen J. Zhou Z. Luo S. Liu G. Xiang J. Tian Z. Progress of advanced nanomaterials in diagnosis of neurodegenerative diseases. Biosens. Bioelectron. 2022 217 114717 10.1016/j.bios.2022.114717 36179434
    [Google Scholar]
  16. Qu A. Xu L. Xu C. Kuang H. Chiral nanomaterials for biosensing, bioimaging, and disease therapies. Chem. Commun. (Camb.) 2022 58 92 12782 12802 10.1039/D2CC04420J 36317933
    [Google Scholar]
  17. Swallow J. Expectant futures and an early diagnosis of Alzheimer’s disease: Knowing and its consequences. Soc. Sci. Med. 2017 184 57 64 10.1016/j.socscimed.2017.05.017 28501754
    [Google Scholar]
  18. Arentshorst M.E. de Cock Buning T. Broerse J.E.W. Exploring responsible innovation: Dutch public perceptions of the future of medical neuroimaging technology. Technol. Soc. 2016 45 8 18 10.1016/j.techsoc.2016.01.003
    [Google Scholar]
  19. Yin T. Liu Y. He B. Gong B. Chu J. Gao C. Liang W. Hao M. Sun W. Zhuang J. Gao J. Yin Y. Cell primitive-based biomimetic nanomaterials for Alzheimer’s disease targeting and therapy. Mater. Today Bio 2023 22 100789 10.1016/j.mtbio.2023.100789 37706205
    [Google Scholar]
  20. Nguyen-Thi P.T. Nguyen T.T. Phan H.L. Ho T.T. Vo T.V. Vo G.V. Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem. Int. 2023 170 105612 10.1016/j.neuint.2023.105612 37714337
    [Google Scholar]
  21. Mirzaie A. Nasrollahpour H. Khalilzadeh B. Jamali A.A. Spiteri R.J. Yousefi H. Isildak I. Rahbarghazi R. Cerebrospinal fluid: A specific biofluid for the biosensing of Alzheimer’s diseases biomarkers. Trends Analyt. Chem. 2023 166 117174 10.1016/j.trac.2023.117174
    [Google Scholar]
  22. Gu Z. Zhao H. Song Y. Kou Y. Yang W. Li Y. Li X. Ding L. Sun Z. Lin J. Wang Q. Li X. Yang X. Huang X. Yang C. Tong Z. PEGylated-liposomal astaxanthin ameliorates Aβ neurotoxicity and Alzheimer-related phenotypes by scavenging formaldehyde. J. Control. Release 2024 366 783 797 10.1016/j.jconrel.2024.01.019 38242211
    [Google Scholar]
  23. Nayak V. Patra S. Rout S. Jena A.B. Sharma R. Pattanaik K.P. Singh J. Pandey S.S. Singh R.P. Majhi S. Singh K.R.B. Kerry R.G. Regulation of neuroinflammation in Alzheimer’s disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. Phytomedicine 2024 122 155150 10.1016/j.phymed.2023.155150 37944239
    [Google Scholar]
  24. Wang J. Wang Z. Li Y. Hou Y. Yin C. Yang E. Liao Z. Fan C. Martin L.L. Sun D. Blood brain barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer’s disease. Biomaterials 2023 302 122359 10.1016/j.biomaterials.2023.122359 39491374
    [Google Scholar]
  25. Wang L. Chen H. Ma S. Chang M. Zhang X. Ultra-sensitive SERS detection of Aβ 1–42 for Alzheimer’s disease using graphene oxide/gold nanohybrids. Vib. Spectrosc. 2023 129 103614 10.1016/j.vibspec.2023.103614
    [Google Scholar]
  26. Qi X. Ye P. Xie M. MoS2 quantum dots based on lipid drug delivery system for combined therapy against Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2023 82 104324 10.1016/j.jddst.2023.104324
    [Google Scholar]
  27. Lin X. Liu W. Dong X. Sun Y. Epigallocatechin gallate-derived carbonized polymer dots: A multifunctional scavenger targeting Alzheimer’s β-amyloid plaques. Acta Biomater. 2023 157 524 537 10.1016/j.actbio.2022.11.063 36503076
    [Google Scholar]
  28. Saleh T.A. Trends in nanomaterial types, synthesis methods, properties and uses: Toxicity, environmental concerns and economic viability. Nano-Struct. Nano-Objects. 2024 37 101109 10.1016/j.nanoso.2024.101109
    [Google Scholar]
  29. Anjum A. Garg R. Kashif M. Eddy N.O. Nano-scale innovations in packaging: Properties, types, and applications of nanomaterials for the future. Food Chemistry Advances 2023 3 100560 10.1016/j.focha.2023.100560
    [Google Scholar]
  30. Kumar P. Pandey S. Ahmad F. Verma A. Sharma H. Ashique S. Carbon Nanotubes: A Targeted Drug Delivery against Cancer Cell. Curr. Nanosci. 2023 9 1 31
    [Google Scholar]
  31. Khare P. Edgecomb S.X. Hamadani C.M. Tanner E.E.L. S Manickam D. Lipid nanoparticle-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 2023 197 114861 10.1016/j.addr.2023.114861 37150326
    [Google Scholar]
  32. Guidi L. Cascone M.G. Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives. Heliyon 2024 10 5 e26616 10.1016/j.heliyon.2024.e26616 38434257
    [Google Scholar]
  33. Low L.E. Lim H.P. Ong Y.S. Siva S.P. Sia C.S. Goh B.H. Chan E.S. Tey B.T. Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J. Control. Release 2022 345 231 274 10.1016/j.jconrel.2022.03.024 35306119
    [Google Scholar]
  34. Adeli F. Abbasi F. Ghandforoushan P. Külahlı H.E. Meran M. Abedi F. Ghamkhari A. Afif S. Recent advances in formulation and application of molecular polymer brushes in biomedicine: Therapeutic, diagnostic, and theranostics capabilities. Nano Today 2023 53 102010 10.1016/j.nantod.2023.102010
    [Google Scholar]
  35. Beura S.K. Panigrahi A.R. Yadav P. Palacio I. Casero E. Quintana C. Singh J. Singh M.K. Martín Gago J.A. Singh S.K. Harnessing two-dimensional nanomaterials for diagnosis and therapy in neurodegenerative diseases: Advances, challenges and prospects. Ageing Res. Rev. 2024 94 102205 10.1016/j.arr.2024.102205 38272267
    [Google Scholar]
  36. Paramasivam G. Sanmugam A. Palem V.V. Sevanan M. Sairam A.B. Nachiappan N. Youn B. Lee J.S. Nallal M. Park K.H. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int. J. Biol. Macromol. 2024 254 Pt 2 127904 10.1016/j.ijbiomac.2023.127904 37939770
    [Google Scholar]
  37. Pratap Singh L. Gugulothu S. Perusomula R. Mishra A. Durga Bhavani P. Singh S. Synthesis of some tetrazole and thiazolidine-4-one derivatives of schiff base by using ionic liquids as catalyst and evaluation of their antifungal and antibacterial activity. Bull 2023 6247 6263
    [Google Scholar]
  38. Naser S.S. Singh D. Preetam S. Kishore S. Kumar L. Nandi A. Simnani F.Z. Choudhury A. Sinha A. Mishra Y.K. Suar M. Panda P.K. Malik S. Verma S.K. Posterity of nanoscience as lipid nanosystems for Alzheimer’s disease regression. Mater. Today Bio 2023 21 100701 10.1016/j.mtbio.2023.100701 37415846
    [Google Scholar]
  39. Yan R. Liu J. Dong Z. Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. Biomaterials Advances 2023 144 213218 10.1016/j.bioadv.2022.213218 36436431
    [Google Scholar]
  40. Nady D.S. Bakowsky U. Fahmy S.A. Recent advances in brain delivery of synthetic and natural nano therapeutics: Reviving hope for Alzheimer’s disease patients. J. Drug Deliv. Sci. Technol. 2023 89 105047 10.1016/j.jddst.2023.105047
    [Google Scholar]
  41. Chen X. Guo X. Hao S. Yang T. Wang J. Iron oxide nanoparticles-loaded hyaluronic acid nanogels for MRI-aided Alzheimer’s disease theranostics. Arab. J. Chem. 2022 15 6 103748 10.1016/j.arabjc.2022.103748
    [Google Scholar]
  42. Nyholm N. Espallargas N. Functionalized carbon nanostructures as lubricant additives: A review. Carbon 2023 201 1200 1228 10.1016/j.carbon.2022.10.035
    [Google Scholar]
  43. Capek I. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Adv. Colloid Interface Sci. 2009 150 2 63 89 10.1016/j.cis.2009.05.006 19573856
    [Google Scholar]
  44. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in brain development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  45. Qureshi A. Kang W.P. Davidson J.L. Gurbuz Y. Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamond Related Materials 2009 18 12 1401 1420 10.1016/j.diamond.2009.09.008
    [Google Scholar]
  46. Chitoria A.K. Mir A. Shah M.A. A review of ZrO2 nanoparticles applications and recent advancements. Ceram. Int. 2023 49 20 32343 32358 10.1016/j.ceramint.2023.06.296
    [Google Scholar]
  47. Sharma H. Pathak R. Kumar N. Nogai L. Mishra R. Bhandari M. Endocannabinoid system: Role in depression, recompense, and pain control. J Surv Fish Sci. 2023 10 4S 2743 2751 10.3892/mmr.2016.5585.
    [Google Scholar]
  48. Domonkos M. Jackivová R. Pathó A. Image analysis algorithm for the verification of hexagonal symmetry in spherical nanostructures. Microelectron. Eng. 2022 251 111635 10.1016/j.mee.2021.111635
    [Google Scholar]
  49. Sharma H. Rani T. Khan S. An insight into neuropathic pain: A systemic and up-to-date review. IJPSR 2023 14 2 607 621 10.13040/IJPSR.0975‑8232.
    [Google Scholar]
  50. Agrawal M. Prathyusha E. Ahmed H. Dubey S.K. Kesharwani P. Singhvi G. Naidu V.G.M. Alexander A. Biomaterials in treatment of Alzheimer’s disease. Neurochem. Int. 2021 145 105008 10.1016/j.neuint.2021.105008 33684545
    [Google Scholar]
  51. Kelleher RJ Evidence of endothelial dysfunction in the development of Alzheimer's disease: Is Alzheimer's a vascular disorder?. Am J Cardiovasc Dis. 2013 3 4 197 226 24224133
    [Google Scholar]
  52. Mc Donald J.M. Savva G.M. Brayne C. Welzel A.T. Forster G. Shankar G.M. Selkoe D.J. Ince P.G. Walsh D.M. Medical Research Council Cognitive Function and Ageing Study The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 2010 133 5 1328 1341 10.1093/brain/awq065 20403962
    [Google Scholar]
  53. Han H. Xing L. Chen B.T. Liu Y. Zhou T.J. Wang Y. Zhang L.F. Li L. Cho C.S. Jiang H.L. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv. Drug Deliv. Rev. 2023 200 115051 10.1016/j.addr.2023.115051 37549848
    [Google Scholar]
  54. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention. Curr. Pharm. Biotechnol. 2024 25 1 17 38638042
    [Google Scholar]
  55. Kaur A. Singh N. Kaur H. Kakoty V. Sharma D.S. Khursheed R. Babu M.R. Harish V. Gupta G. Gulati M. Kumar P. Dureja H. Alharthi N.S. Khan F.R. Rehman Z. Hakami M.A. Patel M. Patel R. Zandi M. Vishwas S. Dua K. Singh S.K. Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers. J. Drug Deliv. Sci. Technol. 2023 87 104868 10.1016/j.jddst.2023.104868
    [Google Scholar]
  56. Yadav S. Kumar B. Kaushik S. Emergent 2D materials beyond graphene: Plausible role in biomedical applications. Applied Surface Sci. Adv. 2023 18 100512 10.1016/j.apsadv.2023.100512
    [Google Scholar]
  57. Shi S. Ren H. Xie Y. Yu M. Chen Y. Yang L. Engineering advanced nanomedicines against central nervous system diseases. Mater. Today 2023 69 355 392 10.1016/j.mattod.2023.08.005
    [Google Scholar]
  58. Huang Y. Guo X. Wu Y. Chen X. Feng L. Xie N. Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 34 10.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  59. Lim J. Lee Y.Y. Choy Y.B. Park W. Park C.G. Sepsis diagnosis and treatment using nanomaterials. Biomed. Eng. Lett. 2021 11 3 197 210 10.1007/s13534‑021‑00200‑0 34277115
    [Google Scholar]
  60. Vallet-Regí M. González B. Izquierdo-Barba I. Nanomaterials as promising alternative in the infection treatment. Int. J. Mol. Sci. 2019 20 15 3806 10.3390/ijms20153806 31382674
    [Google Scholar]
  61. Khaledian S. Dayani M. Fatahian A. Fatahian R. Martinez F. Efficiency of lipid-based nano drug delivery systems in crossing the blood–brain barrier: A review. J. Mol. Liq. 2022 346 118278 10.1016/j.molliq.2021.118278
    [Google Scholar]
  62. Huang Q. Chen Y. Zhang W. Xia X. Li H. Qin M. Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J. Control. Release 2024 366 519 534 10.1016/j.jconrel.2023.12.054 38182059
    [Google Scholar]
  63. Poustforoosh A. Nematollahi M.H. Hashemipour H. Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. J. Control. Release 2022 343 777 797 10.1016/j.jconrel.2022.02.015 35183653
    [Google Scholar]
  64. Bahadur S. Jha M.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. J. Drug Deliv. Sci. Technol. 2022 78 103932 10.1016/j.jddst.2022.103932
    [Google Scholar]
  65. Sethi B. Kumar V. Mahato K. Coulter D.W. Mahato R.I. Recent advances in drug delivery and targeting to the brain. J. Control. Release 2022 350 668 687 10.1016/j.jconrel.2022.08.051 36057395
    [Google Scholar]
  66. Pathak R. Sharma S. Bhandari M. Nogai L. Mishra R. Saxena A. Reena Km S.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461 10.59467/jez.2024.27.2.2447
    [Google Scholar]
  67. Pinto M. Silva V. Barreiro S. Silva R. Remião F. Borges F. Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res. Rev. 2022 79 101658 10.1016/j.arr.2022.101658 35660114
    [Google Scholar]
  68. Sharma H.C.P. Effects of natural remedies on memory loss and Alzheimer’s disease. AfrJBioSc. 2024 6 7 187 211
    [Google Scholar]
  69. Singh D.P. Herrera C.E. Singh B. Singh S. Singh R.K. Kumar R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C 2018 86 173 197 10.1016/j.msec.2018.01.004 29525091
    [Google Scholar]
  70. Xu Y. Xiong H. Zhang B. Lee I. Xie J. Li M. Zhang H. Seung Kim J. Photodynamic Alzheimer’s disease therapy: From molecular catalysis to photo-nanomedicine. Coord. Chem. Rev. 2022 470 214726 10.1016/j.ccr.2022.214726
    [Google Scholar]
  71. Tan Q. Zhao S. Xu T. Wang Q. Zhang M. Yan L. Chen X. Lan M. Inorganic nano-drug delivery systems for crossing the blood–brain barrier: Advances and challenges. Coord. Chem. Rev. 2023 494 215344 10.1016/j.ccr.2023.215344
    [Google Scholar]
  72. Farokhzad O.C. Alexis F. Kuo T.T. Pridgen E. Radovic-Moreno A.F. Langer R.S. Drug delivery systems using fc fragments. US Patent 20180311377A1 2018
  73. Farokhzad O. Mahmoudi M. Corbo C. System and method for protein corona sensor array for early detection of diseases. US Patent 10866242B2 2023
  74. Howard N. Biological co-processor (bcp). US Patent 20220008719A1 2018
  75. Sun N.X. Emam S. Ekenseair A.K. Molecularly-imprinted electrochemical sensors. US Patent 11701031B2 2022
  76. Shin J.W. Mao A.S. Utech S. Weitz D.A. Mooney D.J. Uzun O. Hydrogel compositions comprising encapsulated cells and methods of use thereof. US patent 20220202727A1 2022
  77. Massefski W.W. Lowery T.J. Skewis L.R. Methods for monitoring tight clot formation. EP patent 2929047A1 2014
  78. Wiles J.A. Phadke A. Quinazoline and indole compounds to treat medical disorders. WO patent 2018005552 2021
  79. Varadan V.K. Rai P. Kumar P.S. Mathur G.N. Agarwal M.P. Smart materials, dry textile sensors, and electronics integration in clothing, bed sheets, and pillow cases for neurological, cardiac and/or pulmonary monitoring. US Patent 20170354372A1 2013
  80. Joyce J. Taylor D. Taylor C. Brain specific exosome based diagnostics and extracorporeal therapies. US Patent 20200171084A1 2017
  81. Shapiro M.G. Szablowski J.O. Methods and systems for noninvasive control of brain cells and related vectors and compositions. WO Patent 2019113538 2022
  82. Kramer J. Imran M.A. Directed delivery of agents to neural anatomy. CA Patent 2819635A1 2012
  83. Biffi A. Peviani M. Moscatelli D. Compositions and methods for treating diseases and disorders of the central nervous system. AU Patent 2017342555A1 2018
  84. Oray S. Sur M. Majewska A.K. Teng Y. Compositions and methods for enhancing structural and functional nervous system reorganization and recovery. WO Patent 2006023530A3Patent 2006
  85. Dao P.A.N. Targeted delivery of proteins across the blood brain barrier. WO Patent2012159052A2 2012
  86. Bonmassar G. Eskandar E. MRI compatible leads for a deep brain stimulation system. US Patent 10335590B2 2014
  87. Halagali P. Nayak D. Tippavajhala V.K. Rathnanand M. Biswas D. Sharma H. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. The Neurodegeneration Revolution. Koduru T.S. Osmani R.A.M. Singh E. Dutta S.B. Academic Press. 2025 399 420 10.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  88. Halagali P. Nayak D. Rathnanand M. Tippavajhala V.K. Sharma H. Biswas D. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. The Neurodegeneration Revolution. Koduru T.S. Osmani R.A.M. Singh E. Dutta S.B.T.T.N.R. Academic Press. 2025 373 397 10.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  89. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Introduction to exosome and its role in brain disorders BT - Exosomes based drug delivery strategies for brain disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  90. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Role of exosomes in parkinson’s and alzheimer’s diseases BT: Exosomes based drug delivery strategies for brain disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  91. Inamdar A. Gurupadayya B. Halagali P. Nandakumar S. Pathak R. Sharma H. Cutting-Edge strategies for overcoming therapeutic barriers in alzheimer ’ s disease. Curr. Pharm. Des. 2024 31 598 618 10.2174/0113816128344571241018154506.
    [Google Scholar]
  92. Inamdar A. Gurupadayya B. Gautam M. Sharma A. Pathak R. Sharma H. AI-driven innovations in assessing stress, anxiety, and mental health. Curr. Psychiat. Research. Reviews 2025 21 1 28 10.2174/0126660822334997241216062002
    [Google Scholar]
  93. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2024 26 1 24 39513304
    [Google Scholar]
  94. Chandra P. Ali Z. Fatima N. Sharma H. Sachan N. Sharma K.K. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders. Curr. Bioact. Compd. 2024 20 1 14
    [Google Scholar]
  95. Sharma H. Pathak R. Biswas D. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: a comprehensive exploration, review and future perspectives on intervention strategies. Curr. Psychiat. Research. Review. 2024 20 1 10 10.2174/0126660822304321240520075036
    [Google Scholar]
  96. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation between exosomes and neuro-inflammation in various brain disorders BT - Exosomes based drug delivery strategies for brain disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  97. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. INDIAN DRUGS 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  98. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Correlation between cognitive impairment and peripheral biomarkers - Significance of phosphorylated tau and amyloid-β in alzheimer ’ s disease: A new insight. Curr. Psychiatry Res. Rev. 2024 2024 1 25
    [Google Scholar]
  99. Sharma H. Chandra P. Challenges and future prospects: A Benefaction of phytoconstituents on molecular targets pertaining to alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  100. Al Noman A. Dev Sharma P. Jahin Mim T. Al Azad M. Sharma H. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease. Aging Pathobiol. Therapeutics 2024 6 4 1 13 10.31491/APT.2024.12.155
    [Google Scholar]
  101. Sharma H. Chandra P. Verma A. Pandey S.N. Kumar P. Sigh A. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. Eur. Chem. Bull. 2023 12 5 1575 1596
    [Google Scholar]
/content/journals/cms/10.2174/0126661454386874250711102028
Loading
/content/journals/cms/10.2174/0126661454386874250711102028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test