Skip to content
2000
image of Study on Nanotechnology based Detection and Removal of Heavy Metal Nanoparticles from Utensils Through Leaching - A Review

Abstract

Introduction

Nanotechnology utilizes principles and techniques from various fields of science that fabricate materials on the nanoscale to detect and provide alternate solutions. Heavy metal contamination of food and water is a major public health issue. The heavy metal nanoparticles are prominently seen in cooked food and stored in utensils that are recycled and manufactured from metal scraps. Utensils carry heavy metals like Pb, Ni, Cr, Cd, and Cu due to their deposition, which enhances their durability and corrosive resistivity. These heavy metal nanoparticles migrate from utensils to food over time; also, the temperature of food and pH can lead to the leaching of the utensils. The heavy metals accumulate in the body, causing adverse effects like disrupting metabolism, including cell mutations, and carcinogenic outcomes.

Methods

The contamination of food by these heavy metals can be significantly reduced using nanotechnology. Techniques like Raman Spectroscopy, Spectro fluorimetry, Atomic Absorption Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and fluorescent sensors are employed in quantifying heavy metals present even in traceable amounts.

Results

Analysis and removal of these heavy metal contaminations can be carried out using nano sensors, magnetic nanoparticles, graphene, carbon nanotubes, and nanocomposite films. Target heavy metal traces are adsorbed by functionalized nanomaterials.

Conclusion

This study provides insight into the toxicity produced by the leaching of utensils and explores emerging nanotechnology methods to analyse and remove harmful heavy metals.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454375148250713135855
2025-07-28
2025-11-16
Loading full text...

Full text loading...

References

  1. Dabonne S. Koffi B. Kouadio E. Koffi A. Due E. Kouame L. Traditional utensils: Potential sources of poisoning by heavy metals. Br. J. Pharmacol. Toxicol. 2010 1 2 90 92
    [Google Scholar]
  2. Habimaana S. Gumisiriza H. Birungi G. Trace metal leaching from cookware locally fabricated from scrap metal: A case study of Ntungamo District, Uganda. Am. J. Anal. Chem. 2022 13 9 314 330 10.4236/ajac.2022.139022
    [Google Scholar]
  3. Çiftçi T.D. Henden E. Leaching of arsenic from glazed and nonglazed potteries into foods. Sci. Total Environ. 2016 569-570 1530 1535 27392578
    [Google Scholar]
  4. Koo Y.J. Pack E.C. Lee Y.J. Kim H.S. Jang D.Y. Lee S.H. Kim Y.S. Lim K.M. Choi D.W. Determination of toxic metal release from metallic kitchen utensils and their health risks. Food Chem. Toxicol. 2020 145 111651 10.1016/j.fct.2020.111651 32763438
    [Google Scholar]
  5. Gupta Y. Meenu M. Peshin S. Aluminium utensils: Is it a concern? Natl. Med. J. India 2019 32 1 38 40 10.4103/0970‑258X.272116 31823940
    [Google Scholar]
  6. Ali Q. Zia M.A. Kamran M. Shabaan M. Zulfiqar U. Ahmad M. Iqbal R. Maqsood M.F. Nanoremediation for heavy metal contamination: A review. Hybrid Advances 2023 4 100091 10.1016/j.hybadv.2023.100091
    [Google Scholar]
  7. Mazinanian N. Odnevall Wallinder I. Hedberg Y. Comparison of the influence of citric acid and acetic acid as simulant for acidic food on the release of alloy constituents from stainless steel AISI 201. J. Food Eng. 2015 145 51 63 10.1016/j.jfoodeng.2014.08.006
    [Google Scholar]
  8. Tchounwou PB Yedjou CG Patlolla AK Sutton DJ Heavy metal toxicity and the environment. 2012 10.1007/978‑3‑7643‑8340‑4_6
    [Google Scholar]
  9. Gana B.M. Garba S. The effects of food additives on leaching of aluminium, cadmium, chromium, and lead from aluminium pot (locally and industrially made). Int. J. Sci. Acad. Res. 2022 3 7 4141 4144
    [Google Scholar]
  10. Kanyamumba L. Ujah C.O. Kallon D.V. Dumbuya M. Review report—corrosion of household utensils: causes, effects and remedies. Int J Home Econ Hosp Allied Res. 2024 3 1 54 67
    [Google Scholar]
  11. Etim AN Asuquo EO Madaki AA Impact of cooking utensils on trace metal levels in raw and heat processed beans. Equat J Agric Earth Sci. 2022 3 1
    [Google Scholar]
  12. Bhateria R. Singh R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J. Water Process Eng. 2019 31 100845 10.1016/j.jwpe.2019.100845
    [Google Scholar]
  13. Mahesh R. Vora K. Hanumanthaiah M. Shroff A. Kulkarni P. Makuteswaran S. Ramdas S. Ramachandraih H.L. Raghu A.V. Removal of pollutants from wastewater using alumina based nanomaterials: A review. Korean J. Chem. Eng. 2023 40 9 2035 2045 10.1007/s11814‑023‑1419‑x
    [Google Scholar]
  14. Jinendra U. Kumar J. Nagabhushana B.M. Raghu A.V. Bilehal D. Facile synthesis of CoFe 2 O 4 nanoparticles and application in removal of malachite green dye. Green Mater. 2019 7 3 137 142 10.1680/jgrma.18.00054
    [Google Scholar]
  15. Khan W.A. Arain M.B. Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem. Toxicol. 2020 145 111704 10.1016/j.fct.2020.111704 32853698
    [Google Scholar]
  16. Elemo G.N. Yusuf A.S. Aderoju T.A. Adebayo O.K. Heavy metal leaching in foods cooked with stainless-steel pots and locally made alloy pots. Eur. J. Adv. Chem. Res. 2021 2 4 6 9 10.24018/ejchem.2021.2.4.76
    [Google Scholar]
  17. Valadez-Vega C. Zúñiga-Pérez C. Quintanar-Gómez S. Morales-González J.A. Madrigal-Santillán E. Villagómez-Ibarra J.R. Sumaya-Martínez M.T. García-Paredes J.D. Lead, cadmium and cobalt (Pb, Cd, and Co) leaching of glass-clay containers by pH effect of food. Int. J. Mol. Sci. 2011 12 4 2336 2350 10.3390/ijms12042336 21731445
    [Google Scholar]
  18. Han Y. Ryu K. Song N. Seo J. Kang I. Chung H.J. Park R. Potential migration and health risks of heavy metals and metalloids in take-out food containers in South Korea. Int. J. Environ. Res. Public Health 2024 21 2 139 10.3390/ijerph21020139 38397630
    [Google Scholar]
  19. Ollor O.A. Awa J.O. Aleru C.P. Agi V.N. Wachukwu C.K. Cooking pots: A source of heavy metal contamination of food and water. J. Adv. Microbiol. 2022 22 9 16 24 10.9734/jamb/2022/v22i930484
    [Google Scholar]
  20. Arora M. Kiran B. Rani S. Rani A. Kaur B. Mittal N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008 111 4 811 815 10.1016/j.foodchem.2008.04.049
    [Google Scholar]
  21. Garg V. Arora A. Prakash A. A review on bioremediation using nanobiotechnology and microbial heavy metal resistance mechanisms. Current Materials Science: Formerly. Recent Pat. Mater. Sci. 2024 17 4 289 303
    [Google Scholar]
  22. Alabi O Afolabi AT Cookware as source of toxic metals: An overview: Heavy metal leaching from cookware. Kashmir J Sci. 2024 3 2
    [Google Scholar]
  23. Samarghandian S. Shirazi F.M. Saeedi F. Roshanravan B. Pourbagher-Shahri A.M. Khorasani E.Y. Farkhondeh T. Aaseth J.O. Abdollahi M. Mehrpour O. A systematic review of clinical and laboratory findings of lead poisoning: Lessons from case reports. Toxicol. Appl. Pharmacol. 2021 429 115681 10.1016/j.taap.2021.115681 34416225
    [Google Scholar]
  24. Bondy S.C. Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 2014 315 1 7 10.1016/j.tox.2013.10.008 24189189
    [Google Scholar]
  25. Ayaz A. Inan-Eroglu E. Is aluminum exposure a risk factor for neurological disorders? J. Res. Med. Sci. 2018 23 1 51 10.4103/jrms.JRMS_921_17 30057635
    [Google Scholar]
  26. Ogidi M. Sridhar M.K. Coker A.O. A follow-up study health risk assessment of heavy metal leachability from household cookwares. J Food Sci Toxicol. 2017 1 1 3
    [Google Scholar]
  27. Yedjou C.G. Tchounwou P.B. Oxidative stress in human leukemia (HL-60), human liver carcinoma (HepG2), and human (Jurkat-T) cells exposed to arsenic trioxide. Met Ions Biol Med. 2006 9 298 303
    [Google Scholar]
  28. de Carvalho Machado C. Dinis-Oliveira R.J. Clinical and forensic signs resulting from exposure to heavy metals and other chemical elements of the periodic table. J. Clin. Med. 2023 12 7 2591 10.3390/jcm12072591 37048674
    [Google Scholar]
  29. Council N. Arsenic in drinking water. Ottawa, ON, Canada National Research Council 1999
    [Google Scholar]
  30. Liu J. Song W. Li Y. Wang Y. Cui Y. Huang J. Wang Q. Wei S. Burden of coronary heart disease and Cancer from dietary exposure to inorganic arsenic in adults in China, 2016. Ann. Glob. Health 2022 88 1 28 10.5334/aogh.3620 35582410
    [Google Scholar]
  31. Schrenk D. Bignami M. Bodin L. Chipman J.K. Del Mazo J. Grasl-Kraupp B. Hogstrand C. Hoogenboom L.R. Leblanc J.C. Nebbia C.S. Nielsen E. Ntzani E. Petersen A. Sand S. Vleminckx C. Wallace H. Barregård L. Benford D. Broberg K. Dogliotti E. Fletcher T. Rylander L. Abrahantes J.C. Gómez Ruiz J.Á. Steinkellner H. Tauriainen T. Schwerdtle T. EFSA Panel on Contaminants in the Food Chain (CONTAM) Update of the risk assessment of inorganic arsenic in food. EFSA J. 2024 22 1 e8488 10.2903/j.efsa.2024.8488 38239496
    [Google Scholar]
  32. Mania M. Rebeniak M. Postupolski J. Food as a source of exposure to nickel. Rocz. Panstw. Zakl. Hig. 2019 70 4 393 399 10.32394/rpzh.2019.0090 31961102
    [Google Scholar]
  33. Khaniki G.J. Khosravi R. Nazmara S. Foroushani A.R. Migration of heavy metals into water and lemon juice stored in cast iron containers. Ann. Food Sci. Technol. 2016 17 2
    [Google Scholar]
  34. Guarneri F. Costa C. Cannavò S.P. Catania S. Bua G.D. Fenga C. Dugo G. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots. Contact Dermat. 2017 76 1 40 48 10.1111/cod.12692 27804135
    [Google Scholar]
  35. Szynal T. Rebeniak M. Mania M. Migration studies of nickel and chromium from ceramic and glass tableware into food simulants. Rocz. Panstw. Zakl. Hig. 2016 67 3 247 252 27546321
    [Google Scholar]
  36. Ekhlasi F. Zendehboodi Z. The effect of water boiled in aluminum cookwares on genomic abnormalities in the meristematic cells of onion root. J. Environ. Health Sustain. Dev. 2021 6 4 1443 1448 10.18502/jehsd.v6i4.8150
    [Google Scholar]
  37. Briffa J. Sinagra E. Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020 6 9 e04691 10.1016/j.heliyon.2020.e04691 32964150
    [Google Scholar]
  38. Zhang J. Cao H. Zhang Y. Zhang Y. Ma J. Wang J. Gao Y. Zhang X. Zhang F. Chu L. Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol. Lett. 2013 218 3 273 280 10.1016/j.toxlet.2013.02.005 23428833
    [Google Scholar]
  39. Martínez C.E. Motto H.L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 2000 107 1 153 158 10.1016/S0269‑7491(99)00111‑6 15093019
    [Google Scholar]
  40. Rehman K. Fatima F. Waheed I. Akash M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018 119 1 157 184 10.1002/jcb.26234 28643849
    [Google Scholar]
  41. Pinar Gumus Z. Soylak M. Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. Trends Analyt. Chem. 2021 143 116417 10.1016/j.trac.2021.116417
    [Google Scholar]
  42. García R Báez AP Atomic Absorption Spectrometry (AAS). Atomic Absorption Spectroscopy InTech 2012 10.5772/25925
    [Google Scholar]
  43. Ghaedi M. Shokrollahi A. Kianfar A.H. Mirsadeghi A.S. Pourfarokhi A. Soylak M. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1,3 propan diimine (BSPDI) loaded on activated carbon. J. Hazard. Mater. 2008 154 1-3 128 134 10.1016/j.jhazmat.2007.10.003 18006226
    [Google Scholar]
  44. Mukherjee A.G. Renu K. Gopalakrishnan A.V. Veeraraghavan V.P. Vinayagam S. Paz-Montelongo S. Dey A. Vellingiri B. George A. Madhyastha H. Ganesan R. Heavy metal and metalloid contamination in food and emerging technologies for its detection. Sustainability 2023 15 2 1195 10.3390/su15021195
    [Google Scholar]
  45. López-López J.A. Borrego-Corchado C. Mánuel M.P. Espada-Bellido E. A simple and economical spectrofluorimetric alternative for Al routine analysis in seafood. Talanta 2018 182 210 217 10.1016/j.talanta.2018.01.092 29501142
    [Google Scholar]
  46. Ferreira S.L.C. Lemos V.A. Silva L.O.B. Queiroz A.F.S. Souza A.S. da Silva E.G.P. dos Santos W.N.L. das Virgens C.F. Analytical strategies of sample preparation for the determination of mercury in food matrices — A review. Microchem. J. 2015 121 227 236 10.1016/j.microc.2015.02.012
    [Google Scholar]
  47. Lorenc W. Hanć A. Sajnóg A. Barałkiewicz D. LC/ICP‐MS and complementary techniques in bespoke and nontargeted speciation analysis of elements in food samples. Mass Spectrom. Rev. 2022 41 1 32 50 10.1002/mas.21662 32997814
    [Google Scholar]
  48. Hwang I.M. Lee H.M. Lee H.W. Jung J.H. Moon E.W. Khan N. Kim S.H. Determination of toxic elements and arsenic species in salted foods and sea salt by ICP–MS and HPLC–ICP–MS. ACS Omega 2021 6 30 19427 19434 10.1021/acsomega.1c01273 34368530
    [Google Scholar]
  49. Yaseen T. Sun D.W. Cheng J.H. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends Food Sci. Technol. 2017 62 177 189 10.1016/j.tifs.2017.01.012
    [Google Scholar]
  50. Lorenz B. Wichmann C. Stöckel S. Rösch P. Popp J. Cultivation-free Raman spectroscopic investigations of bacteria. Trends Microbiol. 2017 25 5 413 424 10.1016/j.tim.2017.01.002 28188076
    [Google Scholar]
  51. Jones R.R. Hooper D.C. Zhang L. Wolverson D. Valev V.K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 2019 14 1 231 10.1186/s11671‑019‑3039‑2 31300945
    [Google Scholar]
  52. Wu Y. Jiang T. Wu Z. Yu R. Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg2+. Biosens. Bioelectron. 2018 99 646 652 10.1016/j.bios.2017.08.041 28843197
    [Google Scholar]
  53. Cecchini M.P. Turek V.A. Demetriadou A. Britovsek G. Welton T. Kornyshev A.A. Wilton-Ely J.D.E.T. Edel J.B. Heavy metal sensing using self‐assembled nanoparticles at a liquid–liquid interface. Adv. Opt. Mater. 2014 2 10 966 977 10.1002/adom.201400211
    [Google Scholar]
  54. Ndokoye P. Ke J. Liu J. Zhao Q. Li X. L-cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media. Langmuir 2014 30 44 13491 13497 10.1021/la503553y 25338810
    [Google Scholar]
  55. Cheng T. Xu Y. Zhang S. Zhu W. Qian X. Duan L. A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell. J. Am. Chem. Soc. 2008 130 48 16160 16161 19006390
    [Google Scholar]
  56. Yin J. Wu T. Song J. Zhang Q. Liu S. Xu R. Duan H. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem. Mater. 2011 23 21 4756 4764 10.1021/cm201791r
    [Google Scholar]
  57. Tian A. Liu Y. Gao J. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification. Talanta 2017 171 185 189 10.1016/j.talanta.2017.04.049 28551127
    [Google Scholar]
  58. Ji W. Wang Y. Tanabe I. Han X. Zhao B. Ozaki Y. Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: Application in selective determination of chromium( vi ) in water. Chem. Sci. 2015 6 1 342 348 10.1039/C4SC02618G 28694937
    [Google Scholar]
  59. Fan M. Andrade G.F.S. Brolo A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020 1097 1 29 10.1016/j.aca.2019.11.049 31910948
    [Google Scholar]
  60. Mishra G. Sharma V. Mishra R. Electrochemical aptasensors for food and environmental safeguarding: A review. Biosensors 2018 8 2 28 10.3390/bios8020028 29570679
    [Google Scholar]
  61. Guo W. Zhang C. Ma T. Liu X. Chen Z. Li S. Deng Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnology 2021 19 1 166 10.1186/s12951‑021‑00914‑4 34074287
    [Google Scholar]
  62. Lavecchia R. Medici F. Patterer S. Zuorro A. Lead removal from water by adsorption on spent coffee grounds. Chem. Eng. Trans. 2016 47 295 300
    [Google Scholar]
  63. Guo B. Ji S. Zhang F. Yang B. Gu J. Liang X. Preparation of C 18 -functionalized Fe 3 O 4 @SiO 2 core–shell magnetic nanoparticles for extraction and determination of phthalic acid esters in Chinese herb preparations. J. Pharm. Biomed. Anal. 2014 100 365 368 10.1016/j.jpba.2014.08.027 25213260
    [Google Scholar]
  64. Li Z. Fan R. Hu Z. Li W. Zhou H. Kang S. Zhang Y. Zhang H. Wang G. Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal of Cr(VI). J. Hazard. Mater. 2020 394 122525 10.1016/j.jhazmat.2020.122525 32200242
    [Google Scholar]
  65. Wang D. Zhang X. Bao S. Zhang Z. Fei H. Wu Z. Phase engineering of a multiphasic 1T/2H MoS 2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 6 2681 2688 10.1039/C6TA09409K
    [Google Scholar]
  66. Gupta V.K. Chandra R. Tyagi I. Verma M. Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 2016 478 54 62 10.1016/j.jcis.2016.05.064 27285779
    [Google Scholar]
  67. Gervas C. Mubofu E.B. Mdoe J.E.G. Revaprasadu N. Functionalized mesoporous organo-silica nanosorbents for removal of chromium (III) ions from tanneries wastewater. J. Porous Mater. 2016 23 1 83 93 10.1007/s10934‑015‑0058‑y
    [Google Scholar]
  68. Abolhasani J. Hosseinzadeh Khanmiri R. Babazadeh M. Ghorbani-Kalhor E. Edjlali L. Hassanpour A. Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite. Environ. Monit. Assess. 2015 187 9 554 10.1007/s10661‑015‑4770‑5
    [Google Scholar]
  69. Zhang J. Han J. Wang M. Guo R. Fe 3 O 4 /PANI/MnO 2 core–shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 8 4058 4066 10.1039/C6TA10499A
    [Google Scholar]
  70. Xiong T. Yuan X. Cao X. Wang H. Jiang L. Wu Z. Liu Y. Mechanistic insights into heavy metals affinity in magnetic MnO2@Fe3O4/poly(m-phenylenediamine) core−shell adsorbent. Ecotoxicol. Environ. Saf. 2020 192 110326 10.1016/j.ecoenv.2020.110326 32066004
    [Google Scholar]
  71. Maponya T. Ramohlola K. Kera N. Modibane K. Maity A. Katata-Seru L. Hato M. Influence of magnetic nanoparticles on modified polypyrrole/m-phenylediamine for adsorption of Cr (VI) from aqueous solution. Polymers 2020 12 3 679 10.3390/polym12030679 32204322
    [Google Scholar]
  72. Zhu Y. Murali S. Cai W. Li X. Suk J.W. Potts J.R. Ruoff R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010 22 35 3906 3924 10.1002/adma.201001068 20706983
    [Google Scholar]
  73. Wang H Yuan X Wu Y Chen X Leng L Wang H Li H Zeng G Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J. 2015 262 597 606 10.1016/j.cej.2014.10.020
    [Google Scholar]
  74. Li R. Liu L. Yang F. Polyaniline/reduced graphene oxide/Fe3O4 nano-composite for aqueous Hg(II) removal. Water Sci. Technol. 2015 72 11 2062 2070 10.2166/wst.2015.361 26606101
    [Google Scholar]
  75. Gabris M.A. Jume B.H. Rezaali M. Shahabuddin S. Nodeh H.R. Saidur R. Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb(II) ions from aqueous media: equilibrium and kinetic studies. Environ. Sci. Pollut. Res. Int. 2018 25 27 27122 27132 10.1007/s11356‑018‑2749‑9 30022389
    [Google Scholar]
  76. Tawabini B. Al-Khaldi S. Atieh M. Khaled M. Removal of mercury from water by multi-walled carbon nanotubes. Water Sci. Technol. 2010 61 3 591 598 10.2166/wst.2010.897 20150694
    [Google Scholar]
  77. Hadavifar M. Bahramifar N. Younesi H. Li Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem. Eng. J. 2014 237 217 228
    [Google Scholar]
  78. Vuković G.D. Marinković A.D. Čolić M. Ristić M.Đ. Aleksić R. Perić-Grujić A.A. Uskoković P.S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 2010 157 1 238 248 10.1016/j.cej.2009.11.026
    [Google Scholar]
  79. Rad L.R. Momeni A. Ghazani B.F. Irani M. Mahmoudi M. Noghreh B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem. Eng. J. 2014 256 119 127 10.1016/j.cej.2014.06.066
    [Google Scholar]
  80. Deravanesiyan M. Beheshti M. Malekpour A. The removal of Cr (III) and Co (II) ions from aqueous solution by two mechanisms using a new sorbent (alumina nanoparticles immobilized zeolite)—Equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 2015 209 246 257 10.1016/j.molliq.2015.05.038
    [Google Scholar]
  81. Yurekli Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J. Hazard. Mater. 2016 309 53 64 10.1016/j.jhazmat.2016.01.064 26874311
    [Google Scholar]
  82. al Sadat Shafiof M. Nezamzadeh-Ejhieh A. A comprehensive study on the removal of Cd (II) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: Experimental design, kinetic and thermodynamic aspects. Solid State Sci. 2020 99 106071 10.1016/j.solidstatesciences.2019.106071
    [Google Scholar]
  83. Choi H.Y. Bae J.H. Hasegawa Y. An S. Kim I.S. Lee H. Kim M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 2020 234 115881 10.1016/j.carbpol.2020.115881 32070504
    [Google Scholar]
  84. Abou-Zeid R.E. Dacrory S. Ali K.A. Kamel S. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int. J. Biol. Macromol. 2018 119 207 214 10.1016/j.ijbiomac.2018.07.127 30036619
    [Google Scholar]
  85. Cegłowski M. Gierczyk B. Frankowski M. Popenda Ł. A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React. Funct. Polym. 2018 131 64 74
    [Google Scholar]
  86. Shah L.A. Khan M. Javed R. Sayed M. Khan M.S. Khan A. Ullah M. Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions. J. Clean. Prod. 2018 201 78 87 10.1016/j.jclepro.2018.08.035
    [Google Scholar]
  87. Martín D.M. Faccini M. García M.A. Amantia D. Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng. 2018 6 1 236 245 10.1016/j.jece.2017.11.073
    [Google Scholar]
  88. Sharma A. Sharma P.K. Malviya R. Utilization of polysaccharides and their derivatives in the removal of metal ions: Role and recent advancement. Current Materials Science: Formerly. Recent Pat. Mater. Sci. 2020 13 2 77 96 10.2174/2666145413666200311123054
    [Google Scholar]
  89. Yuan X. An N. Zhu Z. Sun H. Zheng J. Jia M. Lu C. Zhang W. Liu N. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions. Process Saf. Environ. Prot. 2018 119 320 329
    [Google Scholar]
  90. Khalil T.E. Elhusseiny A.F. El-dissouky A. Ibrahim N.M. Functionalized chitosan nanocomposites for removal of toxic Cr (VI) from aqueous solution. React. Funct. Polym. 2020 146 104407 10.1016/j.reactfunctpolym.2019.104407
    [Google Scholar]
  91. Kuila S.B. Ray S.K. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate. Carbohydr. Polym. 2014 101 1154 1165 10.1016/j.carbpol.2013.09.086 24299887
    [Google Scholar]
  92. Zeng T. Yu Y. Li Z. Zuo J. Kuai Z. Jin Y. Wang Y. Wu A. Peng C. III 3D MnO2 nanotubes@reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Mater. Chem. Phys. 2019 231 105 108 10.1016/j.matchemphys.2019.04.019
    [Google Scholar]
  93. Zhu K. Jia H. Wang F. Zhu Y. Wang C. Ma C. Efficient removal of Pb (II) from aqueous solution by modified montmorillonite/carbon composite: Equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data 2017 62 1 333 340 10.1021/acs.jced.6b00676
    [Google Scholar]
/content/journals/cms/10.2174/0126661454375148250713135855
Loading
/content/journals/cms/10.2174/0126661454375148250713135855
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: heavy metals ; health hazards ; leaching ; utensils ; Nanotechnology ; toxicity ; nanomaterials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test