Skip to content
2000
image of An Overview of Synthesis and Characterization Techniques of Biopolymer Composites

Abstract

Over the past few decades, there has been a growing interest in biopolymer-based composites to reduce the reliance on petroleum-based plastics and promote a clean, pollution-free environment because of the unique properties of biopolymers, such as biocompatibility, biodegradability, and ease of processing. Biopolymers are natural polymers produced chemically or biosynthesized by living organisms. Generally, biopolymers exhibit suboptimal mechanical properties, short fatigue life, low chemical resistance, restricted durability, and constrained processing capabilities. These properties can be modified by adding fillers or nanofillers to overcome the shortcomings and create biocomposites or bionanocomposites. Biopolymer-based composites are commonly referred to as “green composites” as they can be degraded by the action of environmental factors, such as air, light, heat, or microorganisms. Thus, researchers have made numerous efforts to develop environmentally friendly composite goods with improved performance. Herein, we summarize various approaches for the synthesis of biopolymer composites, characterization techniques, applications, and recent advances in the synthesis of environmentally friendly and biodegradable biopolymer composites and nanocomposites.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454378828250526070036
2025-07-04
2025-09-27
Loading full text...

Full text loading...

References

  1. Haraguchi K. Biocomposites. In: Kobayashi S, Müllen K, Eds.Encyclopedia of Polymeric Nanomaterials. Kobayashi S. Müllen K. Berlin, Heidelberg Springer 2014 10.1007/978‑3‑642‑36199‑9_316‑1
    [Google Scholar]
  2. John M. Thomas S. Biofibres and biocomposites. Carbohydr. Polym. 2008 71 3 343 364 10.1016/j.carbpol.2007.05.040
    [Google Scholar]
  3. Baranwal J. Barse B. Fais A. Delogu G.L. Kumar A. Biopolymer: A Sustainable material for food and medical applications. Polymers 2022 14 5 983 10.3390/polym14050983 35267803
    [Google Scholar]
  4. Mohanty A.K. Misra M. Drzal L.T. Natural fibers, biopolymers, and biocomposites. 1st Edition Boca Raton CRC Press 2005 896 10.1201/9780203508206
    [Google Scholar]
  5. Wang K. Gao H. Wang J. Modular assembly for multicell structures with designable energy absorption characteristics. Mech. Adv. Mater. Structures 2024 31 29 11147 11157 10.1080/15376494.2024.2301923
    [Google Scholar]
  6. Goyal G Kumar A Sharma D. 12 recent applications of rapid prototyping with 3D printing: A review" 3D printing technologies:Digital manufacturing, artificial intelligence, industry 40. Berlin, Boston: De Gruyter 2024 245 58 10.1515/9783111215112‑012
    [Google Scholar]
  7. Goyal G. Kumar A. Gupta A. “16 Recent developments in 3D printing: a critical analysis and deep dive into innovative real-world applications” 3D printing technologies: Digital manufacturing, artificial intelligence, industry 40. Berlin, Boston De Gruyter 2024 335 352 10.1515/9783111215112‑016
    [Google Scholar]
  8. Mazuki N.F. Saadiah M.A. Fuzlin A.F. Khan N.M. Samsudin A.S. Biopolymers in nutraceuticals and functional foods. The Royal Society of Chemistry 2022 1 35
    [Google Scholar]
  9. Hasirci V. Yilgor P. Endogan T. Eke G. Hasirci N. Comprehensive Biomaterials. Oxford Elsevier 2011 349 371 10.1016/B978‑0‑08‑055294‑1.00034‑9
    [Google Scholar]
  10. Bahrami M. Abenojar J. Martínez M.Á. Recent progress in hybrid biocomposites: Mechanical properties, water absorption, and flame retardancy. Materials 2020 13 22 5145 10.3390/ma13225145 33203190
    [Google Scholar]
  11. Lau K. Ho M. Au-Yeung C. Cheung H. Biocomposites: Their multifunctionality. Int. J. Smart Nano Mater. 2010 1 1 13 27 10.1080/19475411003589780
    [Google Scholar]
  12. Chang B.P. Mohanty A.K. Misra M. Studies on durability of sustainable biobased composites: A review. RSC Advances 2020 10 31 17955 17999 10.1039/C9RA09554C 35517220
    [Google Scholar]
  13. Cardon L.K. Ragaert K.J. De Santis R. Gloria A. Design and fabrication methods for biocomposites. In:Biomedical Composites. 2nd ed Woodhead Publishing 2017 17 36 10.1016/B978‑0‑08‑100752‑5.00002‑0
    [Google Scholar]
  14. Chieng B. Ibrahim N. Then Y. Loo Y. Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties. Molecules 2014 19 10 16024 16038 10.3390/molecules191016024 25299820
    [Google Scholar]
  15. Aumnate C. Soatthiyanon N. Makmoon T. Potiyaraj P. Polylactic acid/kenaf cellulose biocomposite filaments for melt extrusion based-3D printing. Cellulose 2021 28 13 8509 8525 10.1007/s10570‑021‑04069‑1
    [Google Scholar]
  16. Prasad A. Sankar M.R. Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffolds fabrication. Mater. Today Proc. 2017 4 2 898 907 10.1016/j.matpr.2017.01.101
    [Google Scholar]
  17. Avila-Martin Preliminary modeling study of a tape casting system for thermoplastic starch film forming. Biol Life Sci 2023 28 1 4 10.3390/blsf2023028004
    [Google Scholar]
  18. Obasi H.C. Chaudhry A.A. Ijaz K. Akhtar H. Malik M.H. Development of biocomposites from coir fibre and poly (caprolactone) by solvent casting technique. Polym. Bull. 2018 75 5 1775 1787 10.1007/s00289‑017‑2122‑z
    [Google Scholar]
  19. Tarique J. Sapuan S.M. Khalina A. Ilyas R.A. Zainudin E.S. Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. Int. J. Biol. Macromol. 2022 213 1 10 10.1016/j.ijbiomac.2022.05.104 35594940
    [Google Scholar]
  20. Hietala M Rollo P Kekäläinen K Oksman K Extrusion processing of green biocomposites: Compounding, fibrillation efficiency, and fiber dispersion. J Appl Polym Sci 2014 131 6 app.39981 10.1002/app.39981
    [Google Scholar]
  21. Pérez-Fonseca A.A. Martín Del Campo A.S. Robledo-Ortíz J.R. González-López M.E. Compatibilization strategies for PLA biocomposites: a comparative study between extrusion-injection and dry blending-compression molding. Compos. Interfaces 2022 29 3 274 292 10.1080/09276440.2021.1939951
    [Google Scholar]
  22. Pacheco Ada Polymeric materials obtained by extrusion and injection molding from lignocellulosic agroindustrial biomass. Polymers 2023 15 20 4046 10.3390/polym15204046
    [Google Scholar]
  23. Majrashi M.A.A. Bairwan R.D. Mushtaq R.Y. Khalil H.P.S.A. Badr M.Y. Alissa M. Abdullah C.K. Ali B.A. Rizg W.Y. Hosny K.M. (2024) Novel enhancement of interfacial interaction and properties in biodegradable polymer composites using green chemically treated spent coffee ground microfiller International Journal of biological macromolecules 266 Pt 2 131333 10.1016/j.ijbiomac.2024.131333
    [Google Scholar]
  24. Raghunathan S. Kandasamy S. Balakrishna Pillai A. Synthesis of biocomposites from microalgal peptide incorporated polycaprolactone/κ- carrageenan nanofibers and their antibacterial and wound healing property. Int. J. Pharm. 2024 655 124052 Advance online publication [http://dx.doi.org/10.1016/j.ijpharm.2024.124052 38552751
    [Google Scholar]
  25. Florez Maria Cazón Patricia Vázquez Manuel Selected biopolymers’ processing and their applications: A review. Polymers 2023 15 3 641 10.3390/polym15030641
    [Google Scholar]
  26. Battegazzore D. Frache A. Carosio F. Layer-by-Layer nanostructured interphase produces mechanically strong and flame retardant bio-composites. Compos., Part B Eng. 2020 200 108310 10.1016/j.compositesb.2020.108310
    [Google Scholar]
  27. Liu S. Yang M. Barton H. Xu W. Designed microbial biosynthesis of hierarchical bone-mimetic biocomposites in 3D-printed soft bioreactors. ACS Appl. Mater. Interfaces 2024 16 5 5513 5521 10.1021/acsami.3c15706
    [Google Scholar]
  28. Guo Y. Qiao D. Zhao S. Liu P. Xie F. Zhang B. Biofunctional chitosan–biopolymer composites for biomedical applications. Mater. Sci. Eng. Rep. 2024 159 100775 10.1016/j.mser.2024.100775
    [Google Scholar]
  29. Rubio-López A. Olmedo A. Díaz-Álvarez A. Santiuste C. Manufacture of compression moulded PLA based biocomposites: A parametric study. Compos. Struct. 2015 131 995 1000 10.1016/j.compstruct.2015.06.066
    [Google Scholar]
  30. Zhao Y Liu B Bi H Yang J Li W Liang H Liang Y Jia Z Shi S Chen M The degradation properties of MgO whiskers/PLLA composite in vitro Int J Mol Sci. 2018 Sep 13 19 9 2740 10.3390/ijms19092740 30217013 PMC6165512
    [Google Scholar]
  31. Nithikarnjanatharn J. Samsalee N. Effect of cassava pulp on physical, mechanical, and biodegradable properties of poly(butylene-succinate)-based biocomposites. Alex. Eng. J. 2022 61 12 10171 10181 10.1016/j.aej.2022.03.052
    [Google Scholar]
  32. Díez-Pascual A.M. Synthesis and applications of biopolymer composites. Int. J. Mol. Sci. 2019 20 9 2321 10.3390/ijms20092321 31083389
    [Google Scholar]
  33. Techawinyutham L. Techawinyutham W. Rangappa S.M. Siengchin S. Lignocellulose based biofiller reinforced biopolymer composites from fruit peel wastes as natural pigment. Int. J. Biol. Macromol. 2024 257 Pt 2 128767 10.1016/j.ijbiomac.2023.128767 38091681
    [Google Scholar]
  34. Xie Zelong 3D bioprinting in tissue engineering for medical applications: The classic and the hybrid. Polymers 2020 12 8 1717 10.3390/polym12081717 32751797
    [Google Scholar]
  35. Park S.B. Lih E. Park K.S. Joung Y.K. Han D.K. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 2017 68 77 105 10.1016/j.progpolymsci.2016.12.003
    [Google Scholar]
  36. Maiti Saptarshi Sustainable fiber‐reinforced composites: A Review. Adv. Sustainable. Syst. 2022 6 11 2200258 10.1002/adsu.202200258
    [Google Scholar]
  37. Kek T. Potočnik P. Misson M. Characterization of biocomposites and glass fiber epoxy composites based on acoustic emission signals, deep feature extraction, and machine learning. Sensors 2022 22 18 6886 10.3390/s22186886 36146236
    [Google Scholar]
  38. Alhijazi M. Zeeshan Q. Qin Z. Safaei B. Asmael M. Finite element analysis of natural fibers composites: A review. Nanotechnol. Rev. 2020 9 1 853 875 10.1515/ntrev‑2020‑0069
    [Google Scholar]
  39. Choubey M. Maity K.P. Sharma A. Finite element modeling of material removal rate in micro-EDM process with and without ultrasonic vibration. Grey Systems. Theory and Application 2020 10 3 311 319 10.1108/GS‑11‑2019‑0047
    [Google Scholar]
  40. Choubey M. Rawat M. A review on various methods to improve process capabilities of electrical discharge machining process. Mater. Today Proc. 2021 47 2756 2764 10.1016/j.matpr.2021.03.169
    [Google Scholar]
  41. Maity K.P. Choubey M. A review on vibration-assisted EDM, micro-EDM and WEDM. Surf. Rev. Lett. 2019 26 5 1830008 10.1142/S0218625X18300083
    [Google Scholar]
  42. Priya G. Shanthi N. Pavithra S. Sangeetha S. Murugesan S. Shyamalagowri S. Modern analytical approach in biopolymer characterization. Phys Sci Rev 2024 9 3 1149 1170 10.1515/psr‑2022‑0216
    [Google Scholar]
  43. Hayes B.S. Gammon L.M. Optical microscopy of fiber-reinforced composites Optical microscopy of fiberreinforced composites. United States of America ASM International 2010 10.31399/asm.tb.omfrc.9781627083492
    [Google Scholar]
  44. Malheiro V.N. Caridade S.G. Alves N.M. Mano J.F. New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 2010 6 2 418 428 10.1016/j.actbio.2009.07.012 19607943
    [Google Scholar]
  45. Shazali N.A.H. Zaidi N.E. Ariffin H. Characterization and cellular internalization of spherical cellulose nanocrystals (CNC) into normal and cancerous fibroblasts. Materials 2019 12 19 3251 10.3390/ma12193251 31590332
    [Google Scholar]
  46. Zammarano M. Maupin P.H. Sung L.P. Revealing the interface in polymer nanocomposites. ACS Nano 2011 5 4 3391 3399 10.1021/nn102951n 21410222
    [Google Scholar]
  47. Asgharzadeh P. Birkhold A.I. Özdemir B. Reski R. Röhrle O. Biopolymer segmentation from CLSM microscopy images using a convolutional neural network. Proc. Appl. Math. Mech. 2021 20 1 e202000188 10.1002/pamm.202000188
    [Google Scholar]
  48. Spence J.C.H. High-resolution electron microscopy. UK Oxford University Press 2013 10.1093/acprof:oso/9780199668632.001.0001
    [Google Scholar]
  49. Phinichka N. Kaenthong S. Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse. J. Mater. Res. Technol. 2018 7 1 55 65 10.1016/j.jmrt.2017.04.003
    [Google Scholar]
  50. Saari H. Fuentes C. Sjöö M. Rayner M. Wahlgren M. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017 157 558 566 10.1016/j.carbpol.2016.10.003 27987962
    [Google Scholar]
  51. Padil VVT Senan C Wacławek S Černík M Agarwal S Varma RS Bioplastic fibers from gum arabic for greener food wrapping applications. 2019 7 6 5900 11 10.1021/acssuschemeng.8b05896
    [Google Scholar]
  52. Choubey Mayank Maity K.P. Experimental investigation of micro-edm operation in inconel 718. Surf. Rev. Lett. 2021 28 11 2150102 10.1142/S0218625X2150102X
    [Google Scholar]
  53. Yusof Y.M. Shukur M.F. Illias H.A. Kadir M F Z. Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys. Scr. 2014 89 3 035701 10.1088/0031‑8949/89/03/035701
    [Google Scholar]
  54. Saleh T.A. Rana A. Surface-modified biopolymer as an environment-friendly shale inhibitor and swelling control agent. J. Mol. Liq. 2021 342 117275 10.1016/j.molliq.2021.117275
    [Google Scholar]
  55. Teckentrup J. Al-Hammood O. Steffens T. Comparative analysis of different xanthan samples by atomic force microscopy. J. Biotechnol. 2017 257 2 8 10.1016/j.jbiotec.2016.11.032 27919690
    [Google Scholar]
  56. Le Troëdec M. Rachini A. Peyratout C. Influence of chemical treatments on adhesion properties of hemp fibres. J. Colloid Interface Sci. 2011 356 1 303 310 10.1016/j.jcis.2010.12.066 21255789
    [Google Scholar]
  57. Nagalakshmaiah M. kissi NE, Mortha G, Dufresne A. Structural investigation of cellulose nanocrystals extracted from chili left over and their reinforcement in cariflex-IR rubber latex. Carbohydr. Polym. 2016 136 945 954 10.1016/j.carbpol.2015.09.096 26572433
    [Google Scholar]
  58. Burla F. Sentjabrskaja T. Pletikapic G. van Beugen J. Koenderink G.H. Particle diffusion in extracellular hydrogels. Soft Matter 2020 16 5 1366 1376 10.1039/C9SM01837A 31939987
    [Google Scholar]
  59. Anderson S.J. Matsuda C. Garamella J. Peddireddy K.R. Robertson-Anderson R.M. McGorty R. Filament rigidity vies with mesh size in determining anomalous diffusion in cytoskeleton. Biomacromolecules 2019 20 12 4380 4388 10.1021/acs.biomac.9b01057 31687803
    [Google Scholar]
  60. Khan H. Yerramilli A.S. D’Oliveira A. Alford T.L. Boffito D.C. Patience G.S. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy— XRD. Can. J. Chem. Eng. 2020 98 6 1255 1266 10.1002/cjce.23747
    [Google Scholar]
  61. Kuznetsov V.M. Sukhodub L.B. Sukhodub L.F. Structural and substructural features of apatite-biopolymer composites: the comparison of data obtained using X-ray diffraction and scanning electron microscopy with electron diffraction. J Nano-Electron Phys 2014 6 4 4
    [Google Scholar]
  62. Singh Pramod K. Synthesis, characterization and application of biopolymer-ionic liquid composite membranes. Synthetuc. Metals. 2010 160 1-2 139 142 10.1016/j.synthmet.2009.10.021
    [Google Scholar]
  63. Schmitt T. Kajave N. Cai H.H. Gu L. Albanna M. Kishore V. In vitro characterization of xeno-free clinically relevant human collagen and its applicability in cell-laden 3D bioprinting. J. Biomater. Appl. 2021 35 8 912 923 10.1177/0885328220959162 32957839
    [Google Scholar]
  64. Benwood C. Chrenek J. Kirsch R.L. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering (Basel) 2021 8 2 27 10.3390/bioengineering8020027 33672626
    [Google Scholar]
  65. Marzi J. Fuhrmann E. Brauchle E. Non-invasive three-dimensional cell analysis in bioinks by raman imaging. ACS Appl. Mater. Interfaces 2022 14 27 30455 30465 10.1021/acsami.1c24463 35777738
    [Google Scholar]
  66. Campanale Claudia Fourier transform infrared spectroscopy to assess the degree of alteration of artificially aged and environmentally weathered microplastics. Polymers 2023 15 4 911 10.3390/polym15040911
    [Google Scholar]
  67. Sutliff B.P. Beaucage P.A. Audus D.J. Orski S.V. Martin T.B. Sorting polyolefins with near-infrared spectroscopy: Identification of optimal data analysis pipelines and machine learning classifiers. Digit Discov 2024 3 11 2341 2355 10.1039/D4DD00235K
    [Google Scholar]
  68. Silva, Santos Michelli dos. Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy as supporting tools in quality control of antiparasitics. Química. Nova 2018 41 3 20170168 10.21577/0100‑4042.20170168
    [Google Scholar]
  69. Bjorn A. Rheological characterization. Biogas 2012 1 63 76
    [Google Scholar]
  70. Kim W.J. Kim S. Huh C. Kim B.K. Kim Y.J. A novel hand-held viscometer applicable for point-of-care. Sens. Actuators B Chem. 2016 234 239 246 10.1016/j.snb.2016.04.126
    [Google Scholar]
  71. Markgraf Wibke Horn Rainer Peth Stephan An approach to rheometry in soil mechanics-structural changes in bentonite, clayey and silty soils. SOIL TILL RES 2006 91 1-2 1 14 10.1016/j.still.2006.01.007
    [Google Scholar]
  72. Hintz C. Bahia H. Simplification of linear amplitude sweep test and specification parameter. Transp. Res. Rec. 2013 2370 1 10 16 10.3141/2370‑02
    [Google Scholar]
/content/journals/cms/10.2174/0126661454378828250526070036
Loading
/content/journals/cms/10.2174/0126661454378828250526070036
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test