Skip to content
2000
image of Strain-dependent Electronic and Optical Properties of Bulk and 
Monolayer β-GeX2 (X = S, Se)

Abstract

Introduction

Monoclinic β-GeSe exhibits strong in-plane anisotropy, a wide direct bandgap, and strain-tunable properties, making it a promising material for ultraviolet photodetection and optoelectronic applications. This mini-review examines the strain engineering of β-GeX (X = S, Se), with a focus on its electronic and optical properties.

Methods

Density functional theory (DFT) calculations provide insights into the structural, electronic, and optical characteristics of bulk and monolayer β-GeX. The impact of biaxial strain on the band structure, dielectric function, absorption, and refractive index is examined.

Results

Tensile strain narrows the bandgap in monolayer β-GeX, while compressive strain induces a direct-to-indirect transition. The static dielectric constant ε(0) ranges from 2.16 (compressive) to 4.65 (tensile), with the absorption peak shifting from 6.25 eV (compressive) to 7.07 eV (tensile). The refractive index n(0) extends from 1.47 to 2.15, while the plasma frequency ω shifts between 7.33 eV (compressive) and 8.91 eV (tensile). These findings are discussed with respect to current and future applications in optoelectronic devices.

Discussion

Strain engineering in monolayer β-GeX offers a powerful tool to modulate its properties for next-generation optoelectronics. Further experimental research is needed to fully explore the capabilities of strain-engineered β-GeX materials for advanced devices.

Conclusion

Strain engineering enhances the tunability of β-GeX properties, demonstrating promising potential for optoelectronic applications. This study summarizes key findings and encourages further research, including the investigation of strain effects in other novel 2D materials to enhance device performance.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454384578250825055630
2025-09-02
2025-11-16
Loading full text...

Full text loading...

References

  1. Wang Q.H. Kalantar-Zadeh K. Kis A. Coleman J.N. Strano M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012 7 11 699 712 10.1038/nnano.2012.193 23132225
    [Google Scholar]
  2. Wang Y. Xu N. Li D. Zhu J. Thermal properties of two dimensional layered materials. Adv. Funct. Mater. 2017 27 19 1604134 10.1002/adfm.201604134
    [Google Scholar]
  3. Lin Y.C. Torsi R. Younas R. Recent advances in 2D material theory, synthesis, properties, and applications. ACS Nano 2023 17 11 9694 9747 10.1021/acsnano.2c12759 37219929
    [Google Scholar]
  4. Singh A.K. Kumbhakar P. Krishnamoorthy A. Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides. iScience 2021 24 12 103532 10.1016/j.isci.2021.103532 34917904
    [Google Scholar]
  5. Yan Y. Li J. Li S. Two-dimensional wide-bandgap GeSe 2 vertical ultraviolet photodetectors with high responsivity and ultrafast response speed. Nanoscale Adv. 2022 4 24 5297 5303 10.1039/D2NA00565D 36540128
    [Google Scholar]
  6. Yang Y. Liu S.C. Yang W. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018 140 11 4150 4156 10.1021/jacs.8b01234 29494139
    [Google Scholar]
  7. Zhou X. Hu X. Zhou S. Zhang Q. Li H. Zhai T. Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy. Adv. Funct. Mater. 2017 27 47 1703858 10.1002/adfm.201703858
    [Google Scholar]
  8. Wei Y. Huang L. He J. Healable Structure Triggered by Thermal/Electrochemical Force in Layered GeSe 2 for High Performance Li‐Ion Batteries. Adv. Energy Mater. 2018 8 18 1703635 10.1002/aenm.201703635
    [Google Scholar]
  9. Mukherjee B. Hu Z. Zheng M. Stepped-surfaced GeSe2 nanobelts with high-gain photoconductivity. J. Mater. Chem. 2012 22 47 24882 24888 10.1039/c2jm35006h
    [Google Scholar]
  10. Wang X. Liu B. Wang Q. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Adv. Mater. 2013 25 10 1479 1486 10.1002/adma.201204063 23180449
    [Google Scholar]
  11. Liu S.C. Mi Y. Xue D.J. Investigation of physical and electronic properties of GeSe for photovoltaic applications. Adv. Electron. Mater. 2017 3 11 1700141 10.1002/aelm.201700141
    [Google Scholar]
  12. Xue D.J. Liu S.C. Dai C.M. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J. Am. Chem. Soc. 2017 139 2 958 965 10.1021/jacs.6b11705 27997209
    [Google Scholar]
  13. Yan Y. Xiong W. Li S. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Adv. Opt. Mater. 2019 7 19 1900622 10.1002/adom.201900622
    [Google Scholar]
  14. Wang X. Tan J. Han C. Sub-angstrom characterization of the structural origin for high in-plane anisotropy in 2D GeS2. ACS Nano 2020 14 4 4456 4462 10.1021/acsnano.9b10057 32275386
    [Google Scholar]
  15. Xie H. Wang J. Wang L. Structural evolution and bandgap modulation of layered β-GeSe 2 single crystal under high pressure. Chin. Phys. B 2022 31 7 076101 10.1088/1674‑1056/ac6db8
    [Google Scholar]
  16. Jakšić Z.M. Temperature and pressure dependence of phonon frequencies in GeS 2, GeSe 2, and SnGeS 3. Phys. Status Solidi, B Basic Res. 2003 239 1 131 143 10.1002/pssb.200301810
    [Google Scholar]
  17. Fuentes-Cabrera M. Wang H. Sankey O.F. Phase stability and pressure-induced semiconductor to metal transition in crystalline GeSe 2. J. Phys. Condens. Matter 2002 14 41 9589 9600 10.1088/0953‑8984/14/41/314
    [Google Scholar]
  18. Matsuda O. Light-induced crystallization of germanium diselenide glass and its medium range structures 1991
    [Google Scholar]
  19. Yang Y. Wang X. Liu S.C. Weak interlayer interaction in 2D anisotropic GeSe2. Adv. Sci. (Weinh.) 2019 6 5 1801810 10.1002/advs.201801810 30886804
    [Google Scholar]
  20. Yang Y. Liu S.C. Li Z. Xue D.J. Hu J.S. In-plane anisotropic 2D Ge-based binary materials for optoelectronic applications. Chem. Commun. (Camb.) 2021 57 5 565 575 10.1039/D0CC04476H 33346753
    [Google Scholar]
  21. Popović Z.V. Breitschwerdt A. Optical absorption band edge of single crystal β-GeSe2. Phys. Lett. A 1985 110 7-8 426 428 10.1016/0375‑9601(85)90072‑6
    [Google Scholar]
  22. Wu D. Tian R. Lin P. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022 104 107972 10.1016/j.nanoen.2022.107972
    [Google Scholar]
  23. Mukherjee B. Tok E.S. Sow C.H. Photocurrent characteristics of individual GeSe2 nanobelt with Schottky effects. J. Appl. Phys. 2013 114 13 134302 10.1063/1.4823779
    [Google Scholar]
  24. Cao M. Cheng B. Xiao L. Space charge polarization-induced symmetrical negative resistive switching in individual p-type GeSe 2:Bi superstructure nanobelts for non-volatile memory. J. Mater. Chem. C Mater. Opt. Electron. Devices 2015 3 20 5207 5213 10.1039/C5TC00451A
    [Google Scholar]
  25. Barik A.R. Bapna M. Drabold D.A. Adarsh K.V. Ultrafast light induced unusually broad transient absorption in the sub-bandgap region of GeSe2 thin film. Sci. Rep. 2014 4 1 3686 10.1038/srep03686 24418896
    [Google Scholar]
  26. Yang Y. Liu S.C. Wang X. Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 2019 29 16 1900411 10.1002/adfm.201900411
    [Google Scholar]
  27. Zeng C. Zhang R. Wu L. Wang Q. Chen X. Lu P. Mechanical, electronic and optical properties of bulk and monolayer GeSe 2. Int. J. Mod. Phys. B 2020 34 6 2050034 10.1142/S0217979220500344
    [Google Scholar]
  28. Li Z. Wang X. Shi W. Xing X. Xue D.J. Hu J.S. Strain-engineering the electronic properties and anisotropy of GeSe 2 monolayers. RSC Advances 2018 8 58 33445 33450 10.1039/C8RA06606J 35548125
    [Google Scholar]
  29. Bruker APEX2. Madison, Wisconsin, USA SAINT, Bruker AXS Inc. 2014
    [Google Scholar]
  30. Sheldrick G.M. Allemagne. Madison, Wisconsin, USA University of Gottingen 2014
    [Google Scholar]
  31. Palatinus L. Chapuis G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007 40 4 786 790 10.1107/S0021889807029238
    [Google Scholar]
  32. Petricek V. Dusek M. Palatinus L. Jana2006 Structure determination software programs. Prague, Czech Republic Institute of Physics, University of Prague 2006
    [Google Scholar]
  33. Momma K. Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011 44 6 1272 1276 10.1107/S0021889811038970
    [Google Scholar]
  34. Brandenburg K. Putz H. Diamond. Bonn, Germany Crystal Impact GbR 2006
    [Google Scholar]
  35. Clark S.J. Segall M.D. Pickard C.J. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005 220 5-6 567 570 10.1524/zkri.220.5.567.65075
    [Google Scholar]
  36. Materials Studio CASTEP Manual Accelrys. Available from: http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html 2010
    [Google Scholar]
  37. Perdew J.P. Burke K. Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996 77 18 3865 3868 10.1103/PhysRevLett.77.3865 10062328
    [Google Scholar]
  38. Hamann D.R. Schlüter M. Chiang C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979 43 20 1494 1497 10.1103/PhysRevLett.43.1494
    [Google Scholar]
  39. Pack J.D. Monkhorst H.J. Special points for Brillouin-zone integrations-a reply. Phys. Rev., B, Solid State 1977 16 4 1748 1749 10.1103/PhysRevB.16.1748
    [Google Scholar]
  40. Dittmar G. Schäfer H. Die Kristallstruktur von Germaniumdiselenid. Acta Crystallogr. B 1976 32 9 2726 2728 10.1107/S0567740876008704
    [Google Scholar]
  41. Dittmar G. Schäfer H. Die Kristallstruktur von H.T.-GeS 2. Acta Crystallogr. B 1975 31 8 2060 2064 10.1107/S0567740875006851
    [Google Scholar]
  42. Sekban D.M. Yaylacı E.U. Özdemir M.E. Yaylacı M. Tounsi A. Investigating formability behavior of friction stir-welded high-strength shipbuilding steel using experimental, finite element, and artificial neural network methods. J. Mater. Eng. Perform. 2024 ••• 1 9 10.1007/s11665‑024‑09501‑8
    [Google Scholar]
/content/journals/cms/10.2174/0126661454384578250825055630
Loading
/content/journals/cms/10.2174/0126661454384578250825055630
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test