Skip to content
2000
image of Ionic Liquids as Green Solvents for Sustainable Approaches

Abstract

The rising demand for environment friendly alternatives in chemical processing has made ionic liquids (ILs) a promising class of green solvents. ILs are liquid at room temperature due to the compound's asymmetry, which lowers the lattice energy of the crystalline structure and, consequently, the melting points of salts. ILs possess a long shelf life. Despite certain limitations in toxicity data and large-scale implementation, they hold immense promise as green solvents due to their excellent thermal stability, negligible or lower vapour pressure, tunable solvating capacity, density and viscosity control, product recovery ability, recycling capabilities, decreased evaporation, and reduced risk of environmental contamination compared to traditional organic solvents. Their high capacity to dissolve a variety of substrates, particularly highly polar ones, is noteworthy. ILs are employed as useful solvent systems in chemical reactions, extractions, separations, electroanalytical applications, and chemical sensing, among other uses. The applications of ILs range across organic synthesis, nanoparticle fabrication, biomass processing, catalysis, metal ion remediation, and biofuel extraction, highlighting their role in a sustainable chemical industry. ILs also play an increasing role in biotechnological and pharmaceutical fields, providing biocompatible media for enzymatic reactions and drug delivery. Advancing the design and developing environment-friendly synthesis methods are important steps toward unlocking the potential of ILs in promoting sustainable development and supporting a circular economy. The current review article presents an overview of ILs as green solvents for sustainable approaches, where the structure, properties, synthesis, applications, regulatory considerations and environmental policies, limitations, sustainable industrial applications, and technological scalability of ILs are discussed.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454411267250903061714
2025-09-16
2025-11-16
Loading full text...

Full text loading...

References

  1. Zhuo Y. Cheng H.L. Zhao Y.G. Cui H.R. Ionic liquids in pharmaceutical and biomedical applications: A review. Pharmaceutics 2024 16 1 151 10.3390/pharmaceutics16010151 38276519
    [Google Scholar]
  2. Mirhadi E. Kesharwani P. Jha S.K. Karav S. Sahebkar A. Utilizing ionic liquids as eco-friendly and sustainable carriers for delivering nucleic acids: A review on the revolutionary advancement in nano delivery systems. Int. J. Biol. Macromol. 2024 283 Pt 2 137582 10.1016/j.ijbiomac.2024.137582 39542300
    [Google Scholar]
  3. Wei L. Wang L. Cui Z. Liu Y. Du A. Multifunctional applications of ionic liquids in polymer materials: A brief review. Molecules 2023 28 9 3836 10.3390/molecules28093836 37175245
    [Google Scholar]
  4. Le Bideau J. Viau L. Vioux A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 2011 40 2 907 925 10.1039/C0CS00059K 21180731
    [Google Scholar]
  5. de Marco B.A. Rechelo B.S. Tótoli E.G. Kogawa A.C. Salgado H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J. 2019 27 1 1 8 10.1016/j.jsps.2018.07.011 30627046
    [Google Scholar]
  6. Bagheri A.R. Aramesh N. Hasnain M.S. Nayak A.K. Varma R.S. Greener fabrication of metal nanoparticles using plant materials: A review. Chemical Physics Impact 2023 7 100255 10.1016/j.chphi.2023.100255
    [Google Scholar]
  7. Marr P.C. Marr A.C. Ionic liquid gel materials: Applications in green and sustainable chemistry. Green Chem. 2016 18 1 105 128 10.1039/C5GC02277K
    [Google Scholar]
  8. Sharma P. Sharma S. Kumar H. Introduction to ionic liquids, applications and micellization behaviour in presence of different additives. J. Mol. Liq. 2024 393 123447 10.1016/j.molliq.2023.123447
    [Google Scholar]
  9. Dar A.A. Chen Z. Zhang G. Sustainable extraction of critical minerals from waste batteries: A green solvent approach in resource recovery. Batteries 2025 11 2 51 10.3390/batteries11020051
    [Google Scholar]
  10. Ražić S. Gadžurić S. Trtić-Petrović T. Ionic liquids in green analytical chemistry—are they that good and green enough? Anal. Bioanal. Chem. 2024 416 9 2023 2029 10.1007/s00216‑023‑05045‑3 37989846
    [Google Scholar]
  11. Pereira J. Souza R. Moreira A. Moita A. An overview of the ionic liquids and their hybrids operating in electrochemical cells and capacitors. Ionics 2024 30 8 4343 4385 10.1007/s11581‑024‑05626‑x
    [Google Scholar]
  12. Shamshina J.L. Rogers R.D. Ionic liquids: New forms of active pharmaceutical ingredients with unique, tunable properties. Chem. Rev. 2023 123 20 11894 11953 10.1021/acs.chemrev.3c00384 37797342
    [Google Scholar]
  13. Jeon J. Kang S. Koo B. Kim H. Hong S.T. Lee H. Long-life potassium metal batteries enabled by anion-derived solid electrolyte interphase using concentrated ionic liquid electrolytes. J. Colloid Interface Sci. 2024 670 617 625 10.1016/j.jcis.2024.05.135 38781652
    [Google Scholar]
  14. Jhanji I. The role of ionic liquids in green solvent chemistry: Properties and applications. Inter Res J Eng Appl Sci 2023 11 4 57 67 10.55083/irjeas.2023.v11i04009
    [Google Scholar]
  15. Bystrzanowska M. Pena-Pereira F. Marcinkowski Ł. Tobiszewski M. How green are ionic liquids? – A multicriteria decision analysis approach. Ecotoxicol. Environ. Saf. 2019 174 455 458 10.1016/j.ecoenv.2019.03.014 30852310
    [Google Scholar]
  16. Clarke C.J. Tu W.C. Levers O. Bröhl A. Hallett J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018 118 2 747 800 10.1021/acs.chemrev.7b00571 29300087
    [Google Scholar]
  17. Kaur G. Kumar H. Singla M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022 351 118556 10.1016/j.molliq.2022.118556
    [Google Scholar]
  18. Flieger J. Flieger M. Ionic liquids toxicity—benefits and threats. Int. J. Mol. Sci. 2020 21 17 6267 10.3390/ijms21176267 32872533
    [Google Scholar]
  19. Feldmann C. Ruck M. Ionic liquids - Designer solvents for the synthesis of new compounds and functional materials. Z. Anorg. Allg. Chem. 2017 643 1 2 10.1002/zaac.201700001
    [Google Scholar]
  20. Choi O.K. Lim H.C. Cho Y. Room-temperature ionic liquids as candidate materials for produced water desalination: Experiments and molecular dynamic analysis. Desalination 2023 557 116608 10.1016/j.desal.2023.116608
    [Google Scholar]
  21. Somers A. Howlett P. MacFarlane D. Forsyth M. A review of ionic liquid lubricants. Lubricants 2013 1 1 3 21 10.3390/lubricants1010003
    [Google Scholar]
  22. Greer A.J. Jacquemin J. Hardacre C. Industrial applications of ionic liquids. Molecules 2020 25 21 5207 10.3390/molecules25215207 33182328
    [Google Scholar]
  23. Chen Y. Han X. Liu Z. Thermal decomposition and volatility of ionic liquids: Factors, evaluation and strategies. J. Mol. Liq. 2022 366 120336 10.1016/j.molliq.2022.120336
    [Google Scholar]
  24. Rothe M. Müller E. Denk P. Kunz W. Ionic liquids based on the concept of melting point lowering due to ethoxylation. Molecules 2021 26 13 4034 10.3390/molecules26134034 34279374
    [Google Scholar]
  25. Cindioğlu A. Issiaka Ibrahim A.S. Sönmez Ö. Microwave-assisted esterification of oleic acid using pyrrolidonium-based bronsted-acidic ionic liquids catalyst. Fuel 2025 382 133791 10.1016/j.fuel.2024.133791
    [Google Scholar]
  26. Rogers R.D. Seddon K.R. Ionic liquids: Industrial applications for green chemistry. Green Chem. 2015 5 209 216
    [Google Scholar]
  27. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999 99 8 2071 2084 10.1021/cr980032t 11849019
    [Google Scholar]
  28. Handy S.T. Zhang X. Organic synthesis in ionic liquids: The Stille coupling. Org. Lett. 2001 3 2 233 236 10.1021/ol0068849 11430042
    [Google Scholar]
  29. Domínguez de María P. Maugeri Z. Ionic liquids in biotransformations: From proof-of-concept to emerging deep-eutectic-solvents. Curr. Opin. Chem. Biol. 2011 15 2 220 225 10.1016/j.cbpa.2010.11.008 21112808
    [Google Scholar]
  30. Hough W.L. Smiglak M. Rodríguez H. The third evolution of ionic liquids: Active pharmaceutical ingredients. New J. Chem. 2007 31 8 1429 1436 10.1039/b706677p
    [Google Scholar]
  31. Kudłak B. Owczarek K. Namieśnik J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ. Sci. Pollut. Res. Int. 2015 22 16 11975 11992 10.1007/s11356‑015‑4794‑y 26040266
    [Google Scholar]
  32. MacFarlane D.R. Ionic liquids: From laboratory curiosity to industrial reality. Chem. Commun. 2009 11 1306 1318
    [Google Scholar]
  33. Zhao H. Wu Y. Cost-effective synthesis of ionic liquids: A review. J. Chem. Technol. Biotechnol. 2017 92 2175 2186
    [Google Scholar]
  34. Liu T. Liu Y. Zhang X. Wu Y. Economic and environmental analysis of ionic liquid synthesis at industrial scale. Ind. Eng. Chem. Res. 2018 57 10668 10676
    [Google Scholar]
  35. Rogers R.D. Seddon K.R. Chemistry. Ionic liquids--solvents of the future? Science 2003 302 5646 792 793 10.1126/science.1090313 14593156
    [Google Scholar]
  36. Kähäri T. Koivisto J. Environmental impact of ionic liquids: A review. Environ. Sci. Technol. 2015 49 1524 1535
    [Google Scholar]
  37. Zhang Y. Cao Y. Wang H. Multi-interactions in ionic liquids for natural product extraction. Molecules 2020 26 1 98 10.3390/molecules26010098 33379318
    [Google Scholar]
  38. Blanchard L.A. Marsh K.N. Advances in ionic liquid research: A comprehensive review. Huaxue Jinzhan 2021 73 1191 1210
    [Google Scholar]
  39. Seddon K.R. Kroon M.C. Schilling K.A. Economic viability of ionic liquids: A case study of energy applications. J. Chem. Technol. Biotechnol. 2010 85 1101 1110
    [Google Scholar]
  40. Hu X. Zhang Y. Wang J. Wang Y. Biodegradability and ecotoxicity of ionic liquids: A review. J. Chem. Technol. Biotechnol. 2010 85 1797 1809
    [Google Scholar]
  41. Kötz J. Carabineiro S.A.C. Environmental impact of ionic liquids: Biodegradability and toxicity. Environ. Sci. Technol. 2015 49 12292 12303
    [Google Scholar]
  42. Jastorff B. Kroschwald S. Krossing I. Biodegradability of ionic liquids: How to determine the biodegradability of ionic liquids. Green Chem. 2005 7 9 621 629
    [Google Scholar]
  43. El-Nagar R.A. Khalil N.A. Atef Y. Nessim M.I. Ghanem A. Evaluation of ionic liquids based imidazolium salts as an environmentally friendly corrosion inhibitors for carbon steel in HCl solutions. Sci. Rep. 2024 14 1 1889 10.1038/s41598‑024‑52174‑5 38253588
    [Google Scholar]
  44. Kaliyannan G.V. Palanisamy S.V. Priyanka E.B. Thangavel S. Sivaraj S. Rathanasamy R. Investigation on sol-gel based coatings application in energy sector – A review. Mater. Today Proc. 2021 45 1138 1143 10.1016/j.matpr.2020.03.484
    [Google Scholar]
  45. Sathishkumar T.P. Navaneethakrishnan P. Shankar S. Rajasekar R. Investigation of chemically treated longitudinally oriented snake grass fiber-reinforced isophthallic polyester composites. J. Reinf. Plast. Compos. 2013 32 22 1698 1714 10.1177/0731684413495321
    [Google Scholar]
  46. Xiao J. Li Y. Zhang Y. Liu T. Sustainable ionic liquids from biomass: A review. Chem. Eng. J. 2020 381 122639
    [Google Scholar]
  47. Chiappe C. Marra A. Mele A. Synthesis and applications of ionic liquids derived from natural sugars. Top. Curr. Chem. 2010 295 177 195 10.1007/128_2010_47 21626744
    [Google Scholar]
  48. Zakrewsky M. Lovejoy K.S. Kern T.L. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc. Natl. Acad. Sci. USA 2014 111 37 13313 13318 10.1073/pnas.1403995111 25157174
    [Google Scholar]
  49. Welton T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004 248 21-24 2459 2477 10.1016/j.ccr.2004.04.015
    [Google Scholar]
  50. Itoh T. Ionic liquids as tools to improve enzymatic organic synthesis. Chem. Rev. 2017 117 15 10567 10607 10.1021/acs.chemrev.7b00158 28745876
    [Google Scholar]
  51. Lew A. Krutzik P.O. Hart M.E. Chamberlin A.R. Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem. 2002 4 2 95 105 10.1021/cc010048o 11886281
    [Google Scholar]
  52. Oh Y. Guo Z. Applicability of machine learning techniques in predicting specific heat capacity of complex nanofluids. Heat Transf. Res. 2024 55 3 39 60 10.1615/HeatTransRes.2023049494
    [Google Scholar]
  53. Dupont J. Scholten J.D. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev. 2010 39 5 1780 1804 10.1039/b822551f 20419219
    [Google Scholar]
  54. Swatloski R.P. Spear S.K. Holbrey J.D. Rogers R.D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 2002 124 18 4974 4975 10.1021/ja025790m 11982358
    [Google Scholar]
  55. El Seoud O. Nawaz H. Arêas E. Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: An overview. Molecules 2013 18 1 1270 1313 10.3390/molecules18011270 23337297
    [Google Scholar]
  56. Pinkert A. Marsh K.N. Pang S. Staiger M.P. Ionic liquids and their interaction with cellulose. Chem. Rev. 2009 109 12 6712 6728 10.1021/cr9001947 19757807
    [Google Scholar]
  57. Davis J.H. Task-specific ionic liquids. Chem. Lett. 2004 33 1072 1077 10.1246/cl.2004.1072
    [Google Scholar]
  58. Sawant A.D. Raut D.G. Darvatkar N.B. Salunkhe M.M. Recent developments of task-specific ionic liquids in organic synthesis. Green Chem. Lett. Rev. 2011 4 1 41 54 10.1080/17518253.2010.500622
    [Google Scholar]
  59. Zhou X. Liu B. Luo F. Zhang W. Song H. Novel Brønsted-acidic ionic liquids based on benzothiazolium cations as catalysts for esterification reactions. J. Serb. Chem. Soc. 2011 76 12 1607 1615 10.2298/JSC110102144Z
    [Google Scholar]
  60. Ge X. Yannai S. Rennert G. Gruener N. Fares F.A. 3,3′-Diindolylmethane induces apoptosis in human cancer cells. Biochem. Biophys. Res. Commun. 1996 228 1 153 158 10.1006/bbrc.1996.1631 8912651
    [Google Scholar]
  61. Keller A.N. Kelkar P. Baldea M. Stadtherr M.A. Brennecke J.F. Thermophysical property prediction of anion-functionalized ionic liquids for CO2 capture. J. Mol. Liq. 2024 393 123634 10.1016/j.molliq.2023.123634
    [Google Scholar]
  62. Gong K. Fang D. Wang H.L. Zhou X.L. Liu Z.L. The one-pot synthesis of 14-alkyl- or aryl-14H-dibenzo[a,j]] xanthenes catalyzed by task-specific ionic liquid. Dyes Pigments 2009 80 1 30 33 10.1016/j.dyepig.2008.02.011
    [Google Scholar]
  63. Sandhu J.S. Recent advances in ionic liquids: Green unconventional solvents of this century: Part II. Green Chem. Lett. Rev. 2011 4 4 311 320 10.1080/17518253.2011.572295
    [Google Scholar]
  64. Xu J.M. Wu Q. Zhang Q.Y. Zhang F. Lin X.F. A basic ionic liquid as catalyst and reaction medium: A rapid and simple procedure for aza-Michael addition reactions. Eur. J. Org. Chem. 2007 2007 11 1798 1802 10.1002/ejoc.200600999
    [Google Scholar]
  65. Wang L. Li H. Li P. Task-specific ionic liquid as base, ligand and reaction medium for the palladium-catalyzed Heck reaction. Tetrahedron 2009 65 1 364 368 10.1016/j.tet.2008.10.042
    [Google Scholar]
  66. Yang Z.Z. Zhao Y.N. He L.N. Gao J. Yin Z.S. Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chem. 2012 14 2 519 523 10.1039/c2gc16039k
    [Google Scholar]
  67. Fan M. Huang J. Yang J. Zhang P. Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst. Appl. Energy 2013 108 333 339 10.1016/j.apenergy.2013.03.063
    [Google Scholar]
  68. Ohashi M. Jamieson C.S. Cai Y. An enzymatic Alder-ene reaction. Nature 2020 586 7827 64 69 10.1038/s41586‑020‑2743‑5 32999480
    [Google Scholar]
  69. Zhang S. Zhang H. Zhang Y. Liu C. Market trends and future prospects for ionic liquids. J Chem Eng Ind Biotechnol 2020 56 178 192
    [Google Scholar]
  70. Visser A.E. Swatloski R.P. Reichert W.M. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: Synthesis, characterization, and extraction studies. Environ. Sci. Technol. 2002 36 11 2523 2529 10.1021/es0158004 12075816
    [Google Scholar]
  71. Zhao H. Xia S. Ma P. Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol. 2005 80 10 1089 1096 10.1002/jctb.1333
    [Google Scholar]
  72. Liu Q. Janssen M.H.A. van Rantwijk F. Sheldon R.A. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem. 2005 7 1 39 42 10.1039/b412848f
    [Google Scholar]
  73. Liu X. Liu Y. Zhang X. Energy-efficient synthesis of ionic liquids using microwave-assisted methods. J. Clean. Prod. 2016 135 1181 1190
    [Google Scholar]
  74. Walden P. Molecular weights and electrical conductivity of several fused salts Bull Acad Imp Sc 1914 1800
    [Google Scholar]
  75. Graenacher C. Graenacher C. Cellulose solutions and process of making same. US Patent 1939;2179181 1939
    [Google Scholar]
  76. Ikeuba A.I. Usibe B.E. Sonde C.U. Revisiting the advances on specific industrial applications of ionic liquids for a sustainable green future–a review. Chemistry Africa 2024 7 7 3531 3548 10.1007/s42250‑024‑00953‑y
    [Google Scholar]
  77. Boualem A.D. Argoub K. Benkouider A.M. Yahiaoui A. Toubal K. Viscosity prediction of ionic liquids using NLR and SVM approaches. J. Mol. Liq. 2022 368 120610 10.1016/j.molliq.2022.120610
    [Google Scholar]
  78. Earle M.J. Esperança J.M.S.S. Gilea M.A. The distillation and volatility of ionic liquids. Nature 2006 439 7078 831 834 10.1038/nature04451 16482154
    [Google Scholar]
  79. Hallett J.P. Welton T. The ionic liquid of the future: From fundamentals to applications. J. Chem. Technol. Biotechnol. 2016 91 25 32
    [Google Scholar]
  80. Hu Y. Xing Y. Yue H. Ionic liquids revolutionizing biomedicine: Recent advances and emerging opportunities. Chem. Soc. Rev. 2023 52 20 7262 7293 10.1039/D3CS00510K 37751298
    [Google Scholar]
  81. Yoshizawa M. Xu W. Angell C.A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of DeltapKa from aqueous solutions. J. Am. Chem. Soc. 2003 125 50 15411 15419 10.1021/ja035783d 14664586
    [Google Scholar]
  82. Handa M. Almalki W.H. Shukla R. Active pharmaceutical ingredients (APIs) in ionic liquids: An effective approach for API physiochemical parameter optimization. Drug Discov. Today 2022 27 9 2415 2424 10.1016/j.drudis.2022.06.003 35697283
    [Google Scholar]
  83. Plechkova N.V. Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008 37 1 123 150 10.1039/B006677J 18197338
    [Google Scholar]
  84. Transforming our world: The 2030 agenda for sustainable development 2015 Available from: https://sdgs.un.org/2030agenda
  85. Egorova K.S. Gordeev E.G. Ananikov V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 2017 117 10 7132 7189 10.1021/acs.chemrev.6b00562 28125212
    [Google Scholar]
  86. Isosaari P. Srivastava V. Sillanpää M. Ionic liquid-based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies. Sci. Total Environ. 2019 690 604 619 10.1016/j.scitotenv.2019.06.421 31301501
    [Google Scholar]
  87. Berger M.E.M. Assenbaum D. Taccardi N. Spiecker E. Wasserscheid P. Simple and recyclable ionic liquid based system for the selective decomposition of formic acid to hydrogen and carbon dioxide. Green Chem. 2011 13 6 1411 1415 10.1039/c0gc00829j
    [Google Scholar]
  88. Lall S.I. Mancheno D. Castro S. Behaj V. Cohen J.I. Engel R. Polycations. Part X. LIPs, a new category of room temperature ionic liquid based on polyammonium salts. Chem. Commun. 2000 24 24 2413 2414 10.1039/b007443h
    [Google Scholar]
  89. Endres F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. ChemPhysChem 2002 3 2 144 154 10.1002/1439‑7641(20020215)3:2<144:AID‑CPHC144>3.0.CO;2‑# 12503121
    [Google Scholar]
  90. Santos L.M.N.B.F. Canongia Lopes J.N. Coutinho J.A.P. Ionic liquids: First direct determination of their cohesive energy. J. Am. Chem. Soc. 2007 129 2 284 285 10.1021/ja067427b 17212402
    [Google Scholar]
  91. Mikkola J-P.T. Virtanen P.P. Kordás K. Karhu H. Salmi T.O. SILCA—Supported ionic liquid catalysts for fine chemicals. Appl. Catal. A Gen. 2007 328 1 68 76 10.1016/j.apcata.2007.05.030
    [Google Scholar]
  92. König A. Stepanski M. Kuszlik A. Keil P. Weller C. Ultra-purification of ionic liquids by melt crystallization. Chem. Eng. Res. Des. 2008 86 7 775 780 10.1016/j.cherd.2008.04.002
    [Google Scholar]
  93. Bonhôte P. Dias A.P. Papageorgiou N. Kalyanasundaram K. Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996 35 5 1168 1178 10.1021/ic951325x 11666305
    [Google Scholar]
  94. Boamah P.O. Wang L. Shen W. Tang S. Lee H.K. Applications of ionic liquids in the microextraction of pesticides: A mini-review. J Chromatogr Open 2023 4 100090 10.1016/j.jcoa.2023.100090
    [Google Scholar]
  95. Hou Y. Gu Y. Zhang S. Yang F. Ding H. Shan Y. Novel binary eutectic mixtures based on imidazole. J. Mol. Liq. 2008 143 2-3 154 159 10.1016/j.molliq.2008.07.009
    [Google Scholar]
  96. Freire M.G. Neves C.M.S.S. Carvalho P.J. Mutual solubilities of water and hydrophobic ionic liquids. J. Phys. Chem. B 2007 111 45 13082 13089 10.1021/jp076271e 17958353
    [Google Scholar]
  97. Villanueva M. Parajó J.J. Sánchez P.B. García J. Salgado J. Liquid range temperature of ionic liquids as potential working fluids for absorption heat pumps. J. Chem. Thermodyn. 2015 91 127 135 10.1016/j.jct.2015.07.034
    [Google Scholar]
  98. Lim J.R. Chua L.S. Mustaffa A.A. Ionic liquids as green solvent and their applications in bioactive compounds extraction from plants. Process Biochem. 2022 122 292 306 10.1016/j.procbio.2022.10.024
    [Google Scholar]
  99. Constable D.J.C. Curzons A.D. Cunningham V.L. Metrics to ‘green’ chemistry-which are the best? Green Chem. 2002 4 6 521 527 10.1039/B206169B
    [Google Scholar]
  100. Zhu Y. Han C.G. Chen J. Ultra-high performance of ionic thermoelectric-electrochemical gel cells for harvesting low grade heat. Energy Environ. Sci. 2024 17 12 4104 4114 10.1039/D4EE01150C
    [Google Scholar]
  101. Karpitskiy D.A. Bessonova E.A. Shishov A.Y. Kartsova L.A. Handshake of deep eutectic solvent and ionic liquid: Two liquid-liquid microextraction procedures for plant analysis. Talanta 2025 282 126947 10.1016/j.talanta.2024.126947 39342670
    [Google Scholar]
  102. Gadioli A.O. Souza L.M. Pereira E.C. Monteiro S.N. Azevedo A.R.G. Imidazolium-based ionic liquids as corrosion inhibitors for stainless steel in different corrosive media: An overview. J. Mater. Res. Technol. 2024 29 803 823 10.1016/j.jmrt.2024.01.066
    [Google Scholar]
  103. Fraser K.J. MacFarlane D.R. Phosphonium-based ionic liquids: An overview. Aust. J. Chem. 2009 62 4 309 321 10.1071/CH08558
    [Google Scholar]
  104. Zhang Y. Wang C. Geng B. Li Y. Li T. Ren B. Imidazolium-based and pyridinium-based ionic liquids for methyl chloroacetate absorption. J. Mol. Liq. 2025 418 126710 10.1016/j.molliq.2024.126710
    [Google Scholar]
  105. Yamaguchi M. Sato M. Takeoka Y. Rikuakwa M. Yoshizawa-Fujita M. Zwitterion-enhanced performance of pyrrolidinium-based ionic liquid electrolytes as sodium-ion conductors. Electrochim. Acta 2025 527 146269 10.1016/j.electacta.2025.146269
    [Google Scholar]
  106. Ayatollahi S.F. Bahrami M. Ghatee M.H. Electrochemical stability of low viscosity ion-pair electrolytes: Structure and interaction in quaternary ammonium-based Ionic liquid containing bis(trifluoromethylsulfonyl)imide anion and analogue. Electrochim. Acta 2024 501 144762 10.1016/j.electacta.2024.144762
    [Google Scholar]
  107. Hough W.L. Rogers R.D. Ionic liquids then and now: From solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn. 2007 80 12 2262 2269 10.1246/bcsj.80.2262
    [Google Scholar]
  108. Sindhu A. Kumar S. Venkatesu P. Contemporary advancement of cholinium-based ionic liquids for protein stability and long-term storage: Past, present, and future outlook. ACS Sustain. Chem.& Eng. 2022 10 14 4323 4344 10.1021/acssuschemeng.1c08595
    [Google Scholar]
  109. Thompson M.W. Matsumoto R. Sacci R.L. Sanders N.C. Cummings P.T. Scalable screening of soft matter: A case study of mixtures of ionic liquids and organic solvents. J. Phys. Chem. B 2019 123 6 1340 1347 10.1021/acs.jpcb.8b11527 30652873
    [Google Scholar]
  110. Du Y.P. Guo J.S. Wang Z.Q. Zhang Y.C. Zheng Y.Z. Ultra-high-pressure homogenization combined with ionic liquid-organic acid solvent for effective pretreatment of lignocellulose biomass. Int. J. Biol. Macromol. 2025 286 138318 10.1016/j.ijbiomac.2024.138318 39638210
    [Google Scholar]
  111. Ovejero-Pérez A Nakasu PY Hopson C Costa JM Hallett JP Challenges and opportunities on the utilisation of ionic liquid for biomass pretreatment and valorisation. npj Mater Sustain 2024 2 1 7
    [Google Scholar]
  112. Al-Bodour A. Alomari N. Perez-Duran G. Ionic liquids as multidimensional materials: A review from fundamentals to applications. Energy Fuels 2025 39 27 12791 12829 10.1021/acs.energyfuels.5c01280
    [Google Scholar]
  113. Thuy Pham T.P. Cho C.W. Yun Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010 44 2 352 372 10.1016/j.watres.2009.09.030 19854462
    [Google Scholar]
  114. Zhou Z. Li J. Lin H. Li Z. Wang Y. Graph neural networks for predicting properties of ionic liquids: toward green solvent design. J. Phys. Chem. Lett. 2020 11 18 7505 7512
    [Google Scholar]
/content/journals/cms/10.2174/0126661454411267250903061714
Loading
/content/journals/cms/10.2174/0126661454411267250903061714
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: sustainability ; vapour pressure ; ionic liquids ; extraction ; green solvent ; Biocatalysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test