Skip to content
2000
image of An Overview of the Phytochemical Pharmacology and Potential

Abstract

Natural materials are gaining popularity in pharmaceuticals and food applications, and they have the potential to alleviate the significant environmental problems generated traditional materials. The genus, particularly Roxb., is expanding due to its prominence in culinary and traditional medicinal sectors. species are esteemed for their rich nutritional value and the discovery of new bioactive compounds exhibiting antioxidative, antimicrobial, anti-inflammatory, and anticancer actions. This study offers a meticulous examination of the traditional uses, ethnopharmacology, phytochemistry, and pharmacological attributes of (Roxb.). We also delve into the species' bioavailability and health benefits by emphasising the nutritional composition, bioactive components, and biological properties. Given the sparse existing data, this review sought to spotlight the potential of the substances present in this species in functional foods and pharmaceutical arenas. Distinguished by its red flower lobes, greenish-blue rhizome, and other notable features, it has long been employed in traditional medicine for ailments ranging from wounds to asthma, attributable to its disinfectant, expectorant, and tonic properties. Advanced gas chromatography-mass spectrometry (GC-MS) techniques have discerned various phytochemicals from the plant, leading to revelations about its diverse pharmacological potentials, including antioxidative, antimicrobial, anti-inflammatory, and anticancer activities. In the context of the COVID-19 pandemic, (Roxb.) has stood out as a promising botanical candidate, with ten of its compounds, such as curcumenol and β-pinene, displaying notable efficacy against COVID-19 antigens. Thus, while Roxb. has already proven its worth in traditional oriental medicine, current findings underscore its potential as a potent therapeutic resource, especially concerning COVID-19, and advocate for intensified research into its pharmaceutical applications.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454336697250205160913
2025-02-11
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cms/10.2174/0126661454336697250205160913/BMS-CMS-2024-HT39-6067-1.html?itemId=/content/journals/cms/10.2174/0126661454336697250205160913&mimeType=html&fmt=ahah

References

  1. Lamers J. van der Meer T. Testerink C. How plants sense and respond to stressful environments. Plant Physiol. 2020 182 4 1624 1635 10.1104/pp.19.01464 32132112
    [Google Scholar]
  2. Machín A. Fontánez K. Arango J.C. One-dimensional (1D) nanostructured materials for energy applications. Materials 2021 14 10 2609 10.3390/ma14102609 34067754
    [Google Scholar]
  3. Barbinta-Patrascu M.E. Bita B. Negut I. From nature to technology: Exploring the potential of plant-based materials and modified plants in biomimetics, bionics, and green innovations. Biomimetics 2024 9 7 390 10.3390/biomimetics9070390 39056831
    [Google Scholar]
  4. Yit K.H. Zainal-Abidin Z. Antimicrobial potential of natural compounds of zingiberaceae plants and their synthetic analogues: A scoping review of in vitro and in silico approaches. Curr. Top. Med. Chem. 2024 24 13 1158 1184 10.2174/0115680266294573240328050629 38584545
    [Google Scholar]
  5. Rachkeeree A. Kantadoung K. Suksathan R. Puangpradab R. Page P.A. Sommano S.R. Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Front. Nutr. 2018 5 3 10.3389/fnut.2018.00003 29450200
    [Google Scholar]
  6. Sidik N.J. Agha H.M. Alkamil A.A. Alsayadi M.M.S. Mohammed A.A. A review of the botany, phytochemical, and pharmacological properties of galangal In: Natural and Artificial Flavoring Agents and Food Dyes. Academic Press 2018 351 96 10.1016/B978‑0‑12‑811518‑3.00011‑9
    [Google Scholar]
  7. Sari A.P. Supratman U. Phytochemistry and biological activities of Curcuma aeruginosa (Roxb.). Indones J Chem 2022 22 1 576 598 10.22146/ijc.70101
    [Google Scholar]
  8. Atun S. Arianingrum R. Aznam N. Ab Malek S.N. Isolation of sesquiterpenes lactone from Curcuma aeruginosa rhizome and the cytotoxic activity against human cancer cell lines. Int J Pharmacogn Phytochem Res 2016 8 1168 1172
    [Google Scholar]
  9. Firdaus S.O. Rahayu D.U.C. Nurhayati L. Ilmiawati A. Wukirsari T. Sesquiterpenes from Indonesian of Curcuma aeruginosa rhizome and its antibacterial activities. Drug Invent Today 2019 11
    [Google Scholar]
  10. Alolga R.N. Wang F. Zhang X. Li J. Tran L.S.P. Yin X. Bioactive compounds from the Zingiberaceae Family with known antioxidant activities for possible therapeutic uses. Antioxidants 2022 11 7 1281 10.3390/antiox11071281 35883772
    [Google Scholar]
  11. Organization WH. Coronavirus disease ( COVID-19) . 2020 Available from:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public?adgroupsurvey={adgroupsurvey }gad_source=1gclid=EAIaIQobChMImpSvhu2_igMVt Y2DBx3A4AQREAAYASAAEgKh3PD_BwE
  12. Elengoe A. Ibrahem K. Allaq A. Alabed A. Sociological impact of covid-19 on people with non-communicable diseases (NCD) and long covid-19 in young children: Sociological impact of covid-19. J. Trop. Life Sci. 2022 12 63 71
    [Google Scholar]
  13. Gupta P.K. Sonewane K. Rajan M. Chauhan N.S. Kumar A. Ayurvedic herbs advised for covid-19 management: Therapeutic potential and clinical relevance. Curr. Tradit. Med. 2023 9 23 36
    [Google Scholar]
  14. Rajan M. Gupta P. Kumar A. Promising antiviral molecules from ayurvedic herbs and spices against COVID-19. Chin. J. Integr. Med. 2021 27 4 243 244 10.1007/s11655‑021‑3331‑8 33544289
    [Google Scholar]
  15. Gajewski A. Kośmider A. Nowacka A. Puk O. Wiciński M. Potential of herbal products in prevention and treatment of COVID-19. Literature review. Biomed. Pharmacother. 2021 143 112150 10.1016/j.biopha.2021.112150 34507112
    [Google Scholar]
  16. Advice WHO Advice for the public on COVID-19–World Health Organization.2020 Available from:[https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
    [Google Scholar]
  17. Mahawer S. Kumar R. Prakash O. A review of phytochemical and pharmacological properties of Alpinia malaccensis (Burm. F.) Roscoe. (Zingiberaceae). Curr. Top. Med. Chem. 2023 23 20 1964 1972 10.2174/1568026623666230522104104 37218200
    [Google Scholar]
  18. Kamazeri T.S.A.T. Samah O.A. Taher M. Susanti D. Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pac. J. Trop. Med. 2012 5 3 202 209 10.1016/S1995‑7645(12)60025‑X 22305785
    [Google Scholar]
  19. Liu Y. Roy S.S. Nebie R.H.C. Zhang Y. Nair M.G. Functional food quality of Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa endemic to Northeastern India. Plant Foods Hum. Nutr. 2013 68 1 72 77 10.1007/s11130‑013‑0333‑5 23359084
    [Google Scholar]
  20. Subositi D. Wahyono S. Study of the genus Curcuma in Indonesia used as traditional herbal medicines. Biodiversitas 2019 20 5 20 10.13057/biodiv/d200527
    [Google Scholar]
  21. Munekata P.E.S. Pateiro M. Zhang W. Health benefits, extraction and development of functional foods with curcuminoids. J. Funct. Foods 2021 79 104392 10.1016/j.jff.2021.104392
    [Google Scholar]
  22. Stohs S.J. Chen O. Ray S.D. Ji J. Bucci L.R. Preuss H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules 2020 25 6 1397 10.3390/molecules25061397 32204372
    [Google Scholar]
  23. Peng Y. Ao M. Dong B. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther. 2021 15 4503 4525 10.2147/DDDT.S327378 34754179
    [Google Scholar]
  24. Hamilton A.E. Gilbert R.J. Curcumin release from biomaterials for enhanced tissue regeneration following injury or disease. Bioengineering 2023 10 2 262 10.3390/bioengineering10020262 36829756
    [Google Scholar]
  25. Oanh P.T. Thanh N.T. Xuyen D.T. Huong L.T. Avoseh O.N. Ogunwande I.A. The rhizome essential oil of Curcuma aeruginosa Roxb.(Zingiberaceae) from Vietnam. Trends Phytochem Res 2018 2 179 184
    [Google Scholar]
  26. George M. Britto S.J. Phytochemicaland antioxidant studies on the essential oil of the rhizome of Curcuma aeruginosa Roxb. Int Res J Pharm 2015 6 8 573 579 10.7897/2230‑8407.068113
    [Google Scholar]
  27. Choudhury D. Ghosal M. Das A.P. Mandal P. Development of single node cutting propagation techniques and evaluation of antioxidant activity of Curcuma aeruginosa Roxburgh rhizome. Int. J. Pharm. Pharm. Sci. 2013 5 227 234
    [Google Scholar]
  28. Hossain C.F. Al-Amin M. Sayem A.S.M. Antinociceptive principle from Curcuma aeruginosa. BMC Complement. Altern. Med. 2015 15 1 191 10.1186/s12906‑015‑0720‑6 26092132
    [Google Scholar]
  29. Lim T.K. Curcuma aeruginosa edible medicinal and non-medicinal plants. Springer 2016 233 240 10.1007/978‑3‑319‑26065‑5_13
    [Google Scholar]
  30. Hassan M.M. Adhikari-Devkota A. Imai T. Devkota H.P. Zerumbone and kaempferol derivatives from the rhizomes of Zingiber montanum (J. Koenig) link ex A. Dietr. from Bangladesh. Separations 2019 6 2 31 10.3390/separations6020031
    [Google Scholar]
  31. Jose S. Thomas T.D. Comparative phytochemical and antibacterial studies of two indigenous medicinal plants Curcuma caesia Roxb. and Curcuma aeruginosa Roxb. Int J Green Pharm 2014 8 65 71
    [Google Scholar]
  32. Prabhu Kumar K.M. Thomas V.P. Sabu M. Rajendran A. Some important medicinal herbs in the family Zingiberaceae in India. Herb Med 2010 65
    [Google Scholar]
  33. Balaji S. Chempakam B. Anti-bacterial effect of essential oils extracted from selected spices of Zingiberaceae. Nat. Prod. J. 2018 8 1 70 76 10.2174/2210315507666171004161356
    [Google Scholar]
  34. Elkhalifa A.E.O. Al-Shammari E. Adnan M. Development and characterization of novel biopolymer derived from Abelmoschus esculentus L. extract and its antidiabetic potential. Molecules 2021 26 12 3609 10.3390/molecules26123609 34204669
    [Google Scholar]
  35. Maitra J. Shukla V.K. Cross-linking in hydrogels-A review. Am. J. Pol. Sci. 2014 4 25 31
    [Google Scholar]
  36. Zhang Y. Sun B. Wang L. Curcumin-loaded liposomes in gel protect the skin of mice against oxidative stress from photodamage induced by UV irradiation. Gels 2024 10 9 596 10.3390/gels10090596 39330198
    [Google Scholar]
  37. Culibrk R.A. Hahn M.S. The role of chronic inflammatory bone and joint disorders in the pathogenesis and progression of Alzheimer’s disease. Front. Aging Neurosci. 2020 12 583884 10.3389/fnagi.2020.583884 33364931
    [Google Scholar]
  38. Mulholland E.J. Electrospun biomaterials in the treatment and prevention of scars in skin wound healing. Front. Bioeng. Biotechnol. 2020 8 481 10.3389/fbioe.2020.00481 32582653
    [Google Scholar]
  39. Hastuti B. Ibrahim S. Efdi M. Isolation structure and elucidation of flavone from Temu Hitam rhizome (Curcuma aeruginosa Roxb.). J. Chem. Pharm. Res. 2016 8 302 304
    [Google Scholar]
  40. Woelansari E.D. Puspitasari A. Effect of rimpang temu giring (Curcuma Heyneana Val. & V. Zijp.) and rimpang temu hitam (Curcuma aeruginosa Roxb.) boiled water on the mortality of fasciola hepatica worm in vitro. Folia Medica Indonesiana 2013 49 62
    [Google Scholar]
  41. Moelyono Moektiwardoyo W. Tjitraresmi A. Susilawati Y. Iskandar Y. Halimah E. Zahryanti D. The potential of dewa leaves (Gynura pseudochina (L) DC) and temu ireng rhizomes (Curcuma aeruginosa Roxb.) as medicinal herbs for dengue fever treatment. Procedia Chem. 2014 13 134 141 10.1016/j.proche.2014.12.017
    [Google Scholar]
  42. Indrawati I. Rossiana N. Diresna D.S. Bioprospecting of bacterial endophytes from Curcuma aeruginosa, Curcuma xanthorrhiza and Curcuma zedoariaas antibacterial against pathogenic bacteria. IOP Conf. Ser. Earth Environ. Sci. ••• 197 012009 10.1088/1755‑1315/197/1/012009
    [Google Scholar]
  43. Suphrom N. Pumthong G. Khorana N. Waranuch N. Limpeanchob N. Ingkaninan K. Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia 2012 83 5 864 871 10.1016/j.fitote.2012.03.017 22465508
    [Google Scholar]
  44. Trimanto T. Dwiyanti D. Indriyani S. Morphology, anatomy and histochemical tests of rhizomes of Curcuma aeruginosa Roxb; Curcuma longa L. and Curcuma heyneana Valeton and Zijp. BERITA BIOLOGI 2018 17 2 123 133 10.14203/beritabiologi.v17i2.3086
    [Google Scholar]
  45. Rungsihirunrat K. Sihanat A. Theanphong O. Assessment of phylogenetic relationship among twenty Curcuma species in Thailand using amplified fragment length polymorphism marker. J. Adv. Pharm. Technol. Res. 2020 11 3 134 141 10.4103/japtr.JAPTR_24_20 33102197
    [Google Scholar]
  46. Fauziah M. Tanaman Obat Keluarga (Revisi). Niaga Swadaya 2007
    [Google Scholar]
  47. Hariana H.A. Tumbuhan Obat & Khasiatnya 3. Niaga Swadaya 2008
    [Google Scholar]
  48. Anu S. Dan M. Taxonomic significance on comparative petiole anatomy of twelve species of Curcuma L. (Zingiberaceae) from SOUTH INDIA. Plant Arch. 2020 09725210 20
    [Google Scholar]
  49. Devkota H.P. Paudel K.R. Hassan M.M. Bioactive compounds from Zingiber montanum and their pharmacological activities with focus on zerumbone. Appl. Sci. 2021 11 21 10205 10.3390/app112110205
    [Google Scholar]
  50. Akarchariya N. Sirilun S. Julsrigival J. Chansakaowa S. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa Roxb., Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza Roxb. collected in Thailand. Asian Pac. J. Trop. Biomed. 2017 7 10 881 885 10.1016/j.apjtb.2017.09.009
    [Google Scholar]
  51. Silalahi M. Curcuma longa L. Zingiberaceae. Ethnobotany of the Mountain Regions of Southeast Asia 2020 1 7
    [Google Scholar]
  52. Palaniyandi K. Wang S. Chen F. Chinese medicinal herbs as source of rational anticancer therapy. Medicinal Plants-Recent Advances in Research and Development. Singapore Springer 2016 327 362 10.1007/978‑981‑10‑1085‑9_14
    [Google Scholar]
  53. Nair K.P. Turmeric: origin and history Turmeric (Curcuma longa L) and Ginger (Zingiber officinale Rosc)-World’s Invaluable Medicinal Spices. Springer 2019 1 6 10.1007/978‑3‑030‑29189‑1
    [Google Scholar]
  54. Vani S. Thomas S. Mani B. Micropropagation and in vitro studies in Hedychium J Koenig (Zingiberaceae) micropropagation of medicinal plants. Bentham Science Publishers 2024 115 145 10.2174/9789815196146124010008
    [Google Scholar]
  55. Uma E. Muthukumar T. Comparative root morphological anatomy of Zingiberaceae. Syst. Biodivers. 2014 12 2 195 209 10.1080/14772000.2014.894593
    [Google Scholar]
  56. Erbay M.Ş. Sarı A. Plants used in traditional treatment against hemorrhoids in Turkey. Marmara Pharm. J. 2018 22 2 110 132 10.12991/mpj.2018.49
    [Google Scholar]
  57. Roxburgh W. Descriptions of several of the monandrous plants of india belonging to scitamineae. Asiat Res 1810 11 350
    [Google Scholar]
  58. Monograf herba Malaysia. Malaysian herbal monograph 2015
  59. Alqahtani M.S. Alqahtani A. Kazi M. Wound-healing potential of curcumin loaded lignin nanoparticles. J. Drug Deliv. Sci. Technol. 2020 60 102020 10.1016/j.jddst.2020.102020
    [Google Scholar]
  60. Prasad S. Aggarwal B.B. Turmeric, the golden spice. In: Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. CRC Press/Taylor Francis 2011. 2011 10.1201/b10787‑14
    [Google Scholar]
  61. Anasamy T. Abdul A.B. Sukari M.A. Abdelwahab S.I. Mohan S. Kamalidehghan B. A phenylbutenoid dimer, cis-3-(3′, 4′-dimethoxyphenyl)-4-[(E)-3′′′, 4′′′-dimethoxystyryl]cyclohex-1-ene, exhibits apoptogenic properties in T-acute lymphoblastic leukemia cells via induction of p53-independent mitochondrial signalling pathway. Evid. Based Complement. Alternat. Med. 2013 2013
    [Google Scholar]
  62. Awin T Mediani A Maulidiani Phytochemical profiles and biological activities of Curcuma species subjected to different drying methods and solvent systems: NMR-based metabolomics approach. Ind. Crops Prod. 2016 94 342 352 10.1016/j.indcrop.2016.08.020
    [Google Scholar]
  63. Jain K. Sood S. Gowthamarajan K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz. J. Infect. Dis. 2013 17 5 579 591 10.1016/j.bjid.2013.03.004 23906771
    [Google Scholar]
  64. Mehla J. Gupta P. Pahuja M. Diwan D. Diksha D. Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sci. 2020 10 12 964 10.3390/brainsci10120964 33321899
    [Google Scholar]
  65. Wegener M. Evaluation and identification of the native Zingiberaceae specie in Mijen, Central Java Indonesia. IOP Conf. Ser. Earth Environ. Sci. ••• 4572020 012025 10.1088/1755‑1315/457/1/012025
    [Google Scholar]
  66. Khumaida N. Syukur M. Bintang M. Nurcholis W. Phenolic and flavonoid content in ethanol extract and agro-morphological diversity of Curcuma aeruginosa accessions growing in West Java, Indonesia. Biodiversitas 2019 20 3 656 663 10.13057/biodiv/d200306
    [Google Scholar]
  67. Pujimulyani D. Windrayahya S. Irnawati I. The effects of media and blanching time on the antioxidative properties of Curcuma aeruginosa Roxb. Indones. J. Pharm. 2022 10.22146/ijp.3634
    [Google Scholar]
  68. Fuloria S. Mehta J. Chandel A. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 2022 13 820806 10.3389/fphar.2022.820806 35401176
    [Google Scholar]
  69. Yu X. Zhao M. Liu F. Zeng S. Hu J. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products. Food Res. Int. 2013 51 1 397 403 10.1016/j.foodres.2012.12.044
    [Google Scholar]
  70. Saini S. Nanda S. Dhiman A. GCMS analysis of bioactives of Piper betle Linn. Leaf. Curr. Bioact. Compd. 2020 16 1 24 32 10.2174/1573407215666190417153613
    [Google Scholar]
  71. Rahayu DUC Sugita P Antibacterial activity of curcumenol from rhizomes of Indonesian Curcuma aeruginosa (Zingiberaceae). Rasayan J Chem 2018 11 762 5 10.31788/RJC.2018.1122076
    [Google Scholar]
  72. Boutsada P. Giang V.H. Linh T.M. Sesquiterpenoids from the rhizomes of Curcuma aeruginosa. Vietnam J. Chem. 2018 56 6 721 725 10.1002/vjch.201800077
    [Google Scholar]
  73. Simoh S. Zainal A. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction. Asian Pac. J. Trop. Biomed. 2015 5 5 412 417 10.1016/S2221‑1691(15)30378‑6
    [Google Scholar]
  74. Allaq A.A. Aziyah Abdul-Aziz, Abdul-Aziz A, Alkamil AMA, Elengoe A, Yahya EB. Epidemiological studies of the novel coronavirus (covid-19) in LIBYA. Pakistan Journal of Biotechnology 2021 18 1-2 7 16 10.34016/pjbt.2021.18.1.7
    [Google Scholar]
  75. Nurcholis W. GC-MS analysis of rhizome ethanol extracts from Curcuma aeruginosa accessions and their efficiency activities as anticancer agent. Biodiversitas (Surak) 2021 22
    [Google Scholar]
  76. Theanphong O. Mingvanish W. Kirdmanee C. Chemical constituents and biological activities of essential oil from Curcuma aeruginosa Roxb. rhizome. Bull Heal Sci Technol 2015 13 6 16
    [Google Scholar]
  77. Wahyuni W.T. Batubara I. Tambunan D.Y. Antibacterial and teeth biofilm degradation activity of Curcuma aeruginosa essential oil. J. Biol. Sci. (Faisalabad, Pak.) 2017 17 2 84 90 10.3923/jbs.2017.84.90
    [Google Scholar]
  78. Dosoky N.S. Setzer W.N. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 2018 10 9 1196 10.3390/nu10091196 30200410
    [Google Scholar]
  79. Vj D. Sivakumar S.R. George M. Francis S. GC–MS analysis of bioactive compounds present in different extracts of rhizome of Curcuma aeruginosa Roxb. J. Drug Deliv. Ther. 2019 9 2-s 13 19 10.22270/jddt.v9i2‑s.2589
    [Google Scholar]
  80. Jani N.A. Rokman F.A. Iberahim R. Khamis S. Composition and bioactivities of the rhizomes essential oil of Curcuma aeruginosa. Gading J Sci Technol 2021 4 66 74
    [Google Scholar]
  81. Santhoshkumar R. Yusuf A. Chemotaxonomic studies on rhizome extract compositions of twenty Curcuma species from South India. Biochem. Syst. Ecol. 2019 84 21 25 10.1016/j.bse.2019.03.005
    [Google Scholar]
  82. Abdul Aziz J. Saidi N.B. Ridzuan R. Chemical profiling of Curcuma aeruginosa Roxb. essential oil and their antimicrobial activity against pathogenic microbes. J. Essent. Oil-Bear. Plants 2021 24 5 1059 1071 10.1080/0972060X.2021.1971570
    [Google Scholar]
  83. Zohmachhuana A. Malsawmdawngliana, Lalnunmawia F, Mathipi V, Lalrinzuali K, Kumar NS. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomed. Pharmacother. 2022 150 113039 10.1016/j.biopha.2022.113039 35658209
    [Google Scholar]
  84. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  85. Rodrigues L.B. Oliveira Brito Pereira Bezerra Martins A. Cesário F.R.A.S. Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: In vivo mouse models. Chem. Biol. Interact. 2016 257 14 25 10.1016/j.cbi.2016.07.026 27474066
    [Google Scholar]
  86. Roy R. Tiwari M. Donelli G. Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018 9 1 522 554 10.1080/21505594.2017.1313372 28362216
    [Google Scholar]
  87. Triastuti A. Indrati O. Hayati F. Development of microemulsion containing Plantago major extracts: Formulation and evaluation of topical anti-inflammatory activities. MESMAP-5: Cappadocia, Turkey, April 2019
    [Google Scholar]
  88. Reanmongkol W. Subhadhirasakul S. Khaisombat N. Fuengnawakit P. Jantasila S. Khamjun A. Investigation the antinociceptive, antipyretic and anti-inflammatory activities of Curcuma aeruginosa Roxb. extracts in experimental animals. Songklanakarin J. Sci. Technol. 2006 28 999 1008
    [Google Scholar]
  89. Paramita S. Ismail S. Marliana E. Moerad E.B. Anti-inflammatory activities of Curcuma aeruginosa with membrane stabilization and carrageenan-induced paw oedema test. Eurasian J Biosci 2019 13 2389 2394
    [Google Scholar]
  90. Andrina S. Churiyah C. Nuralih N. Anti-inflammatory effect of ethanolic extract of Curcuma aeruginosa Roxb rhizome, Morinda citrifolia fruit and Apium graveolens leaf on lipopplysaccharide-induce RAW 264.7 cell lines. Indones J Cancer Chemoprevent 2017 6 3 84 88 10.14499/indonesianjcanchemoprev6iss3pp84‑88
    [Google Scholar]
  91. Rahaman M.M. Rakib A. Mitra S. The genus curcuma and inflammation: Overview of the pharmacological perspectives. Plants 2020 10 1 63 10.3390/plants10010063 33396698
    [Google Scholar]
  92. Allaq A.A. Sidik N.J. Abdul-Aziz A. Ahmed I.A. Cumin (Cuminum cyminum L.): A review of its ethnopharmacology, phytochemistry. Biomed. Res. Ther. 2020 7 9 4016 4021 10.15419/bmrat.v7i9.634
    [Google Scholar]
  93. Allaq A.A. Sidik N.J. Abdul-Aziz A. Ahmed I.A. Antioxidant, antibacterial, and phytochemical screening of ethanolic crude extracts of Libyan Peganum harmala seeds. J. Pharm. Res. Int. 2021 ••• 74 82 10.9734/jpri/2021/v33i1331268
    [Google Scholar]
  94. Olugbami J.O. Gbadegesin M.A. Odunola O.A. In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. Afr. J. Med. Med. Sci. 2014 43 Suppl. 1 101 109 [PMID: 26681826
    [Google Scholar]
  95. Aryal S. Baniya M.K. Danekhu K. Kunwar P. Gurung R. Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019 8 4 96 10.3390/plants8040096 30978964
    [Google Scholar]
  96. Choi G. Fitriasari E.I. Park C. Electro-mechanochemical gating of a metal-phenolic nanocage for controlled guest-release self-powered patches and injectable gels. ACS Nano 2021 15 9 14580 14586 10.1021/acsnano.1c04276 34499481
    [Google Scholar]
  97. Wei L.S. Wee W. Siong J.Y.F. Syamsumir D.F. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med. Iran. 2011 49 10 670 674 [PMID: 22071643
    [Google Scholar]
  98. Dickinson S.E. Rusche J.J. Bec S.L. The effect of sulforaphane on histone deacetylase activity in keratinocytes: Differences between in vitro and in vivo analyses. Mol. Carcinog. 2015 54 11 1513 1520 10.1002/mc.22224 25307283
    [Google Scholar]
  99. Kciuk M. Yahya E.B. Mohamed M.M.I. Insights into the role of LncRNAs and miRNAs in glioma progression and their potential as novel therapeutic targets. Cancers 2023 15 13 3298 10.3390/cancers15133298 37444408
    [Google Scholar]
  100. Salmanton-García J. Sprute R. Stemler J. COVID-19–associated pulmonary aspergillosis, March–August 2020. Emerg. Infect. Dis. 2021 27 4 1077 1086 10.3201/eid2704.204895 33539721
    [Google Scholar]
  101. Mao R. Liang J. Shen J. Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol. Hepatol. 2020 5 5 425 427 10.1016/S2468‑1253(20)30076‑5 32171057
    [Google Scholar]
  102. Walls A.C. Park Y.J. Tortorici M.A. Wall A. McGuire A.T. Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020 181 2 281 292.e6 10.1016/j.cell.2020.02.058
    [Google Scholar]
  103. Fazalul Rahiman S.S. Al-Amin M. Mohtar N. Potential inhibitors isolated from Curcuma aeruginosa against dengue virus type 2 (DENV-2) NS2B-NS3 protease activity. J Biol Active Prod Nat 2024 14 1 64 79 10.1080/22311866.2024.2316637
    [Google Scholar]
  104. Nicoliche T. Bartolomeo C.S. Lemes R.M.R. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci. Rep. 2024 14 1 10696 10.1038/s41598‑024‑61662‑7 38730068
    [Google Scholar]
  105. Thimmulappa R.K. Mudnakudu-Nagaraju K.K. Shivamallu C. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021 7 2 e06350 10.1016/j.heliyon.2021.e06350 33655086
    [Google Scholar]
  106. Day C.J. Bailly B. Guillon P. Multidisciplinary approaches identify compounds that bind to human ACE2 or SARS-CoV-2 spike protein as candidates to block SARS-CoV-2–ACE2 receptor interactions. MBio 2021 12 2 e03681 e20 10.1128/mBio.03681‑20 33785634
    [Google Scholar]
  107. Rosal R.J.Z. Paderes M.C. Inhibiting SARS-CoV-2 viral entry by targeting spike: ACE2 interaction with O -modified quercetin derivatives. RSC Med Chem 2024 15 9 3212 3222 10.1039/D4MD00286E 39165908
    [Google Scholar]
  108. Gordon C.J. Tchesnokov E.P. Woolner E. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020 295 20 6785 6797 10.1074/jbc.RA120.013679 32284326
    [Google Scholar]
  109. Das S. Sarmah S. Lyndem S. Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2021 39 9 3347 3357 [PMID: 32362245
    [Google Scholar]
  110. Li D. Luan J. Zhang L. Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochem. Biophys. Res. Commun. 2021 538 72 79 10.1016/j.bbrc.2020.11.083 33276953
    [Google Scholar]
  111. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  112. Elfiky A.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J. Biomol. Struct. Dyn. 2021 39 9 3194 3203 32340551
    [Google Scholar]
  113. Pastick K.A. Okafor E.C. Wang F. Lofgren S.M. Skipper C.P. Nicol M.R. Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect. Dis. 2020 7 ofaa130
    [Google Scholar]
  114. Gao K. Song Y.P. Song A. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology. BioData Min. 2020 13 1 19 10.1186/s13040‑020‑00229‑4 33292385
    [Google Scholar]
  115. Chowdhury P. In silico investigation of phytoconstituents from Indian medicinal herb ‘ Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J. Biomol. Struct. Dyn. 2021 39 17 6792 6809 10.1080/07391102.2020.1803968 32762511
    [Google Scholar]
  116. Zhang H Penninger JM Li Y Zhong N Slutsky AS Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target Intensive Care Med 2020 46 4 586 590 10.1007/s00134‑020‑05985‑9 32125455
    [Google Scholar]
  117. Colalto C. Volatile molecules for COVID ‐19: A possible pharmacological strategy? Drug Dev. Res. 2020 81 8 950 968 10.1002/ddr.21716 32779824
    [Google Scholar]
  118. Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J Biomol Struct Dyn 2021 39 9 3204 12 3233816444
    [Google Scholar]
  119. Wang J. Zhang X. Omarini A.B. Li B. Virtual screening for functional foods against the main protease of SARS-CoV-2. J. Food Biochem. 2020 44 e13481
    [Google Scholar]
  120. Mustarichiei R. Levitas J. Arpina J. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer. Med. J. Indones. 2014 23 15 24 10.13181/mji.v23i1.684
    [Google Scholar]
  121. Das U.N. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch. Med. Res. 2020 51 3 282 286 10.1016/j.arcmed.2020.03.004 32229155
    [Google Scholar]
  122. Joshi C. Jadeja V. Zhou H. Molecular mechanisms of palmitic acid augmentation in COVID-19 pathologies. Int. J. Mol. Sci. 2021 22 13 7127 10.3390/ijms22137127 34281182
    [Google Scholar]
  123. Habibzadeh S. Zohalinezhad M.E. Evaluation of the inhibitory activities of ferula gummosa bioactive compounds against the druggable targets of SARS-CoV-2: Molecular docking simulation. Biointerface Res. Appl. Chem. 2022 12 6382 6392
    [Google Scholar]
  124. Verebélyi K. Szabó Á. Réti Z. Szarka G. Villányi Á. Iván B. Highly efficient cationic polymerization of β-pinene, a bio-based, renewable olefin, with TiCl4 catalyst from cryogenic to energy-saving room temperature conditions. Int. J. Mol. Sci. 2023 24 6 5170 10.3390/ijms24065170 36982242
    [Google Scholar]
  125. Kenseth C.M. Huang Y. Zhao R. Synergistic O3 + OH oxidation pathway to extremely low-volatility dimers revealed in β-pinene secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2018 115 33 8301 8306 10.1073/pnas.1804671115 30076229
    [Google Scholar]
  126. Shokry S. Hegazy A. Abbas A.M. Phytoestrogen β-sitosterol exhibits potent in vitro antiviral activity against Influenza A viruses. Vaccines 2023 11 2 228 10.3390/vaccines11020228 36851106
    [Google Scholar]
  127. Yadav P. Chauhan C. Singh S. Banerjee S. Murti K. β-Sitosterol in various pathological conditions: An update. Curr. Bioact. Compd. 2022 18 6 e301221199685 10.2174/1573407218666211230144036
    [Google Scholar]
  128. Bennet S. Kaufmann M. Takami K. Small-molecule metabolome identifies potential therapeutic targets against COVID-19. Sci. Rep. 2022 12 1 10029 10.1038/s41598‑022‑14050‑y 35705626
    [Google Scholar]
  129. Shi D. Yan R. Lv L. The serum metabolome of COVID-19 patients is distinctive and predictive. Metabolism 2021 118 154739 10.1016/j.metabol.2021.154739 33662365
    [Google Scholar]
  130. Sharma A. Kaur I. Targeting glucose metabolism by using bioactive 1-8 cineole for treatment of SARS-CoV: Insights from in-silico studies 2019. J. Biosci. Biotechnol. 2021 10 81 86
    [Google Scholar]
  131. Sharma A.D. Eucalyptol (1, 8 cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 corona virus infection by molecular docking studies. Preprints 2020 2020030455
    [Google Scholar]
  132. Papadopoulos C.J. Carson C.F. Chang B.J. Riley T.V. Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and α-terpineol. Appl. Environ. Microbiol. 2008 74 6 1932 1935 10.1128/AEM.02334‑07 18192403
    [Google Scholar]
  133. Mohamed M.E. Tawfeek N. Elbaramawi S.S. Fikry E. Agathis robusta bark essential oil effectiveness against COVID-19: Chemical composition, in silico and in vitro approaches. Plants 2022 11 5 663 10.3390/plants11050663 35270131
    [Google Scholar]
  134. Krishnaveni K. Sabitha M. Murugan M. vNN model cross validation towards accuracy, sensitivity, specificity and kappa performance measures of β-caryophyllene using a restricted-unrestricted applicability domain on artificial intelligence & machine learning approach based in-silico prediction. J. Drug Deliv. Ther. 2022 12 1-S 123 131 10.22270/jddt.v12i1‑S.5222
    [Google Scholar]
  135. Jha N.K. Sharma C. Hashiesh H.M. β-Caryophyllene, a natural dietary CB2 receptor selective cannabinoid can be a candidate to target the trinity of infection, immunity, and inflammation in Covid-19. Front. Pharmacol. 2021 12 590201 10.3389/fphar.2021.590201 34054510
    [Google Scholar]
  136. Sharma R.K. Chakotiya A.S. Phytoconstituents of Zingiber officinale targeting host-viral protein interaction at entry point of sars-COV-2: A molecular docking study. Def. Life Sci. J. 2020 5 4 268 277 10.14429/dlsj.5.15718
    [Google Scholar]
  137. Kasarkar A. Kulkarni D. Dhudade P. Sabu M. New Report on Zingiber montanum (KD Koenig) Link. From Kudal, Dist. Sindhudurg,(MS) India. BioDiscovery 2017 8 270 273
    [Google Scholar]
  138. Grecu M. Minea B. Foia L.G. Short review on the biological activity of cyclodextrin-drug inclusion complexes applicable in veterinary therapy. Molecules 2023 28 14 5565 10.3390/molecules28145565 37513437
    [Google Scholar]
  139. Ahmad A. Rehman M.U. Alkharfy K.M. An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. Eur. Rev. Med. Pharmacol. Sci. 2020 24 7 4030 4034 [PMID: 32329879
    [Google Scholar]
  140. Gayathri K. Bhaskaran M. Selvam C. Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J. Drug Deliv. Sci. Technol. 2023 82 104326 10.1016/j.jddst.2023.104326
    [Google Scholar]
  141. Pawar K.S. Mastud R.N. Pawar S.K. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front. Pharmacol. 2021 12 669362 10.3389/fphar.2021.669362 34122090
    [Google Scholar]
  142. Bertoncini-Silva C. Vlad A. Ricciarelli R. Fassini P.G. Suen V.M.M. Zingg J.M. Enhancing the bioavailability and bioactivity of curcumin for disease prevention and treatment. Antioxidants 2024 13 3 331 10.3390/antiox13030331 38539864
    [Google Scholar]
  143. Wilken R. Veena M.S. Wang M.B. Srivatsan E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011 10 1 12 10.1186/1476‑4598‑10‑12 21299897
    [Google Scholar]
  144. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med. 2003 9 1 161 168 10.1089/107555303321223035 12676044
    [Google Scholar]
  145. Gupta M. Thakur S. Sharma A. Gupta S. Qualitative and quantitative analysis of phytochemicals and pharmacological value of some dye yielding medicinal plants. Orient. J. Chem. 2013 29 2 475 481 10.13005/ojc/290211
    [Google Scholar]
  146. Panknin T.M. Howe C.L. Hauer M. Bucchireddigari B. Rossi A.M. Funk J.L. Curcumin supplementation and human disease: A scoping review of clinical trials. Int. J. Mol. Sci. 2023 24 5 4476 10.3390/ijms24054476 36901908
    [Google Scholar]
  147. Yuandani J.I. Jantan I. Rohani A.S. Sumantri I.B. Immunomodulatory effects and mechanisms of Curcuma species and their bioactive compounds: A review. Front. Pharmacol. 2021 12 643119 10.3389/fphar.2021.643119 33995049
    [Google Scholar]
  148. Paroha S. Dewangan R.P. Dubey R.D. Sahoo P.K. Conventional and nanomaterial-based techniques to increase the bioavailability of therapeutic natural products: A review. Environ. Chem. Lett. 2020 18 6 1767 1778 10.1007/s10311‑020‑01038‑1
    [Google Scholar]
/content/journals/cms/10.2174/0126661454336697250205160913
Loading
/content/journals/cms/10.2174/0126661454336697250205160913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test