Skip to content
2000
image of Revolutionizing Forensic Science: The Role of Nanotechnology in Crime Detection and Analysis

Abstract

Nanotechnology, through its manipulation of materials at the nanoscale, is revolutionizing forensic science by advancing evidence detection, interpretation, and identification. This study explores its application across key areas, including chemical warfare detection, forensic toxicology, fibre and hair analysis, bloodstain analysis, and document examination. Nanotechnology enables the development of highly sensitive nanosensors for detecting trace chemicals, enhances the identification of molecular signatures in fibres and hair, and improves the sensitivity and accuracy of toxicological analyses. In bloodstain analysis, nanoparticles amplify trace detection, while in document examination, nanotech techniques aid in identifying forgeries and alterations. These innovations highlight the transformative impact of nanotechnology on forensic science.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454362761250323165325
2025-04-08
2025-08-13
Loading full text...

Full text loading...

References

  1. Pandya A. Shukla R.K. New perspective of nanotechnology: role in preventive forensic. Egypt. J. Forensic Sci. 2018 8 1 11
    [Google Scholar]
  2. Tambo F. Ablateye D.N.O. A review on the role of emerging revolutionary nanotechnology in forensic investigations. J. Appl. Nat. Sci. 2020 12 4 582 591 10.31018/jans.v12i4.2415
    [Google Scholar]
  3. Bhatt P.V. Nanotechnology and taggant technology in forensic science. Wiley 2020 10.1002/9783527827688.ch14
    [Google Scholar]
  4. Ganesh E. Application of nanotechnology in forensic science. Jmpas 2016 4 5 3306 3312
    [Google Scholar]
  5. Prasad V. Lukose S. Prasad L. Emerging forensic applications of nanotechnology. Int J Eng Allied Sci 2016 2 1 8
    [Google Scholar]
  6. Paikrao H.M. Applications of nanotechnology in forensic science. Engineered nanomaterials for innovative therapies and biomedicine. Springer 2022 257 276 10.1007/978‑3‑030‑82918‑6_11
    [Google Scholar]
  7. Chen Y. Forensic applications of nanotechnology. J. Chin. Chem. Soc. (Taipei) 2011 58 6 828 835 10.1002/jccs.201190129
    [Google Scholar]
  8. Chakraborty D. Rajan G. Isaac R. A splendid blend of nanotechnology and forensic Science. J. Nanotechnol. Eng. Med. 2015 6 1 010801 10.1115/1.4030421
    [Google Scholar]
  9. Prasad V. Lukose S. Agarwal P. Prasad L. Role of nanomaterials for forensic investigation and latent fingerprinting—a review. J. Forensic Sci. 2020 65 1 26 36 10.1111/1556‑4029.14172 31454084
    [Google Scholar]
  10. Singh J. Nanotechnology and its applications in forensic sciences-a boon to legal justice. JPAFMAT 2018 18 1 78 10.5958/0974‑083X.2018.00020.1
    [Google Scholar]
  11. Lodha A. Pandya A. Shukla R. Nanotechnology: an applied and robust approach for forensic investigation. Forensic Res Criminol Int J 2016 2 1 00044
    [Google Scholar]
  12. Kesarwani S. Nano-forensic: New perspective and extensive applications in solving crimes. 2020 10 1 1792 1798
    [Google Scholar]
  13. de Assis A.M.L. Deokaran G.O. Ribeiro A.S. Emerging Trends in Nanotechnology for Forensic Science. Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications 2024 51 70 10.1007/978‑3‑031‑42700‑8_3
    [Google Scholar]
  14. Yonar F.C. Nanoscience and forensic genetics. Understanding Crime Through Forensic Sciences 2022 54
    [Google Scholar]
  15. Pandey G. Tharmavaram M. Rawtani D. Kumar S. Agrawal Y. Multifarious applications of atomic force microscopy in forensic science investigations. Forensic Sci. Int. 2017 273 53 63 10.1016/j.forsciint.2017.01.030 28214756
    [Google Scholar]
  16. Sapkal H. Mahakalkar A. Nanotech: A Preventive And Extensive Tool For Forensic Investigation. Sustain. Dev. 2022 ••• 1673
    [Google Scholar]
  17. Hirapure P. Shanaware A. Bionanotechnology in Forensic Science 2024 10.1201/9781003362258‑9
    [Google Scholar]
  18. Valle F. Bianchi M. Tortorella S. Pierini G. Biscarini F. D’Elia M. Nanotechnology for forensic sciences: Analysis of PDMS replica of the case head of spent cartridges by optical microscopy, SEM and AFM for the ballistic identification of individual characteristic features of firearms. Forensic Sci. Int. 2012 222 1-3 288 297 10.1016/j.forsciint.2012.07.005 22840283
    [Google Scholar]
  19. Singh A. Role of Nanotechnology in Latent Fingerprint Development. Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint Development. Springer 2023 1 16 10.1007/978‑981‑99‑4028‑8_1
    [Google Scholar]
  20. Assis A.M.L. Costa C.V. Alves M.S. Melo J.C.S. de Oliveira V.R. Tonholo J. Hillman A.R. Ribeiro A.S. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development. WIREs Forensic Sci. 2023 5 2 e1475 10.1002/wfs2.1475
    [Google Scholar]
  21. Wang M. Li M. Yu A. Zhu Y. Yang M. Mao C. Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences. Adv. Funct. Mater. 2017 27 14 1606243 10.1002/adfm.201606243 29657570
    [Google Scholar]
  22. Xu L. Zhang C. He Y. Su B. Advances in the development and component recognition of latent fingerprints. Sci. China Chem. 2015 58 7 1090 1096 10.1007/s11426‑014‑5294‑5
    [Google Scholar]
  23. Qiu Z. Hao B. Gu X. Wang Z. Xie N. Lam J.W.Y. Hao H. Tang B.Z. A general powder dusting method for latent fingerprint development based on AIEgens. Sci. China Chem. 2018 61 8 966 970 10.1007/s11426‑018‑9280‑1
    [Google Scholar]
  24. Croxton R.S. Baron M.G. Butler D. Kent T. Sears V.G. Development of a GC-MS method for the simultaneous analysis of latent fingerprint components. J. Forensic Sci. 2006 51 6 1329 1333 10.1111/j.1556‑4029.2006.00203.x 17199618
    [Google Scholar]
  25. Yamashita B. Latent print development. The fingerprint sourcebook National Institute of Justice United States of America 2011
    [Google Scholar]
  26. Verma R.K. Nagar V. Aseri V. Mavry B. Pandit P.P. Chopade R.L. Singh A. Singh A. Yadav V.K. Pandey K. Sankhla M.S. Zinc oxide (ZnO) nanoparticles: Synthesis properties and their forensic applications in latent fingerprints development. Mater. Today Proc. 2022 69 36 41 10.1016/j.matpr.2022.08.074
    [Google Scholar]
  27. Rajan R. Green chemistry synthesis of nanostructured Zinc oxide powder using azadirachta indica extract for latent fingermark development. Malaysian J Med Health Sci. 2020 16
    [Google Scholar]
  28. Yang H. Li S. Zhang Q. Wang Z. Li N. Han C. Huo Q. Zhao Z. Combination of electrospray deposition technology of TiO2 nanoparticles and MALDI FTICR MSI for identification of fingerprint morphology and latent components. Talanta 2019 198 310 315 10.1016/j.talanta.2019.02.007 30876566
    [Google Scholar]
  29. Babu K.R.V. Renuka C.G. Basavaraj R.B. Darshan G.P. Nagabhushana H. One pot synthesis of TiO2:Eu3+ hierarchical structures as a highly specific luminescent sensing probe for the visualization of latent fingerprints. J. Rare Earths 2019 37 2 134 144 10.1016/j.jre.2018.05.019
    [Google Scholar]
  30. Rajan R. Fluorescent variant of silica nanoparticle powder synthesised from rice husk for latent fingerprint development. Egypt. J. Forensic Sci. 2019 9 1 9
    [Google Scholar]
  31. Singh A. Silver and gold nanoparticles for the development of fingerprints. Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint Development. Springer 2023 47 75 10.1007/978‑981‑99‑4028‑8_4
    [Google Scholar]
  32. Wei S. Cui X. Synthesis of gold nanoparticles immobilized on fibrous nano‐silica for latent fingerprints detection. J. Porous Mater. 2021 28 3 751 762 10.1007/s10934‑020‑01030‑8
    [Google Scholar]
  33. Madhavan A.A. Sharma B.K. Latent fingerprint development with biosynthesized Nano rust. 2019 10.1109/ICASET.2019.8714290
    [Google Scholar]
  34. Bhati K. Tripathy D.B. Role of nanoparticles in latent fingerprinting: an update. Lett. Appl. NanoBioSci 2020 9 1427 1443
    [Google Scholar]
  35. Ansari A.A. Aldajani K.M. AlHazaa A.N. Albrithen H.A. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord. Chem. Rev. 2022 462 214523 10.1016/j.ccr.2022.214523
    [Google Scholar]
  36. Kainth S. Sharma V. Bhagat M. Basu S. Yellow emissive carbon dots in ludox silica matrix with anticancer activity for enhanced imaging of developed sweat latent fingermarks. Mater. Today Chem. 2022 23 100659 10.1016/j.mtchem.2021.100659
    [Google Scholar]
  37. Sharma V. Choudhary S. Mankotia P. Kumari A. Sharma K. Sehgal R. Kumar V. Nanoparticles as fingermark sensors. Trends Analyt. Chem. 2021 143 116378 10.1016/j.trac.2021.116378
    [Google Scholar]
  38. Verma R.K. Aluminum Oxide Nanoparticles or Development of Fingerprint 2023 10.1007/978‑981‑99‑4028‑8_5
    [Google Scholar]
  39. Pradhan P.P. Haranath D. A Luminescent Pathway for Anti-Counterfeiting of Currency and Forensic Applications. Rare Earth: A tribute to the late Mr. Rare Earth. Professor Karl Gschneidner 2024 164 67 142
    [Google Scholar]
  40. Samanta A. Medintz I.L. Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale 2016 8 17 9037 9095 10.1039/C5NR08465B 27080924
    [Google Scholar]
  41. Xia L-Y. Advances in the DNA nanotechnology for the cancer biomarkers analysis: attributes and applications. Seminars in Cancer Biology. Elsevier 2022 10.1016/j.semcancer.2021.12.012
    [Google Scholar]
  42. Mathur D. Medintz I.L. Analyzing DNA nanotechnology: a call to arms for the analytical chemistry community. ACS Publications 2017
    [Google Scholar]
  43. Mereuta L. Asandei A. Dragomir I.S. Bucataru I.C. Park J. Seo C.H. Park Y. Luchian T. Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci. Rep. 2020 10 1 11323 10.1038/s41598‑020‑68258‑x 32647249
    [Google Scholar]
  44. Tan Y.N. Lee K.H. Su X. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Anal. Chem. 2011 83 11 4251 4257 10.1021/ac200525a 21524056
    [Google Scholar]
  45. Huo Y. Qi L. Lv X.J. Lai T. Zhang J. Zhang Z.Q. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens. Bioelectron. 2016 78 315 320 10.1016/j.bios.2015.11.043 26638040
    [Google Scholar]
  46. Lodha A. Pandya A. Sutariya P.G. Menon S.K. Melamine modified gold nanoprobe for “on-spot” colorimetric recognition of clonazepam from biological specimens. Analyst (Lond.) 2013 138 18 5411 5416 10.1039/c3an00184a 23807945
    [Google Scholar]
  47. Kanjanawarut R. Su X. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal. Chem. 2009 81 15 6122 6129 10.1021/ac900525k 20337394
    [Google Scholar]
  48. Abdul Rahman S. Saadun R. Azmi N.E. Ariffin N. Abdullah J. Yusof N.A. Sidek H. Hajian R. Label‐Free Dengue Detection Utilizing PNA/DNA Hybridization Based on the Aggregation Process of Unmodified Gold Nanoparticles. J. Nanomater. 2014 2014 1 839286 10.1155/2014/839286
    [Google Scholar]
  49. Klapec D.J. Czarnopys G. Analysis and detection of explosives and explosives residues review: 2010 to 2013. 17th Interpol International Forensic Science Managers Symposium 2013
    [Google Scholar]
  50. Wang J. Yang L. Liu B. Jiang H. Liu R. Yang J. Han G. Mei Q. Zhang Z. Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal. Chem. 2014 86 7 3338 3345 10.1021/ac403409q 24605843
    [Google Scholar]
  51. Huri M.A.M. A review of explosive residue detection from forensic chemistry perspective. Malays. J. Anal. Sci. 2017 21 2 267 282 10.17576/mjas‑2017‑2102‑01
    [Google Scholar]
  52. Abdul-Karim N. Blackman C.S. Gill P.P. Morgan R.M. Matjacic L. Webb R. Ng W.H. Morphological variations of explosive residue particles and implications for understanding detonation mechanisms. Anal. Chem. 2016 88 7 3899 3908 10.1021/acs.analchem.6b00080 26938055
    [Google Scholar]
  53. Castro S.V.F. Cardoso R.M. Santana M.H.P. Richter E.M. Munoz R.A.A. Graphite sheet as a novel material for the collection and electrochemical sensing of explosive residues. Talanta 2019 203 106 111 10.1016/j.talanta.2019.05.048 31202314
    [Google Scholar]
  54. Camesano T.A. Nanotechnology to Aid Chemical and Biological Defense. Springer 2015 10.1007/978‑94‑017‑7218‑1
    [Google Scholar]
  55. Kumar N. Role of nanotechnology in futuristic warfare. Springer Cham 2019 10.1007/978‑3‑030‑29880‑7_8
    [Google Scholar]
  56. Bahru T.B. Ajebe E.G. A review on nanotechnology: analytical techniques use and applications. Int. Res. J. Pure Appl. Chem. 2019 19 4 1 10 10.9734/irjpac/2019/v19i430117
    [Google Scholar]
  57. Nikalje A.P. Nanotechnology and its applications in medicine. Med chem 2015 5 81 89 10.4172/2161‑0444.1000247
    [Google Scholar]
  58. Lad A.N. Pandya A. Agrawal Y.K. Overview of nano-enabled screening of drug-facilitated crime: A promising tool in forensic investigation. Trends Analyt. Chem. 2016 80 458 470 10.1016/j.trac.2015.07.016
    [Google Scholar]
  59. Akçan R. Yıldırım M.Ş. Raman spectroscopy as a novel technology in forensic toxicological analyses. Curr. Anal. Chem. 2021 17 8 1082 1096 10.2174/1573411016999200602124328
    [Google Scholar]
  60. Chen S.Z. Tsai T.L. Chen Y.F. Forensic application of atomic force microscopy—Questioned Document. J. Chin. Chem. Soc. (Taipei) 2012 59 3 283 288 10.1002/jccs.201100739
    [Google Scholar]
  61. Din S.U. Shafique S. Khan F. Nanotech and Document Security 2023 10.4018/978‑1‑6684‑8325‑1.ch012
    [Google Scholar]
/content/journals/cms/10.2174/0126661454362761250323165325
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test