Skip to content
2000
image of Advances in Solar Photovoltaic Cooling Techniques: A Comprehensive Review

Abstract

The demand for efficient and sustainable energy sources has intensified research in the field of solar cell technology. As solar cells convert sunlight into electricity, they inherently generate heat, impacting their performance and lifespan. This comprehensive review explores recent advances in cooling techniques for solar cells, presenting an in-depth analysis of traditional and innovative approaches. The review covers passive methods such as radiative cooling and phase change materials, as well as active cooling technologies including liquid cooling systems, thermoelectric cooling, and microchannel heat exchangers. Hybrid systems that integrate passive and active cooling are also discussed, showcasing successful case studies. The paper highlights the significance of computational modeling and simulation in predicting cooling performance and evaluates materials advancements for improved heat dissipation. Environmental sustainability and the impact of cooling techniques are assessed, providing insights into eco-friendly solutions. The review concludes with a discussion of current challenges, emerging trends, and future perspectives in the dynamic field of solar cell cooling. The research highlights several advantages of the cooling methods analyzed. Passive cooling techniques are noted for their energy efficiency and minimal maintenance requirements, making them adaptable to a broad range of environments. Active cooling technologies, on the other hand, enable precise temperature regulation, thereby optimizing solar cell performance and extending their operational lifespan. Hybrid cooling systems merge the benefits of passive and active methods, achieving an optimal balance for effective thermal management.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454362395250324174942
2025-04-14
2025-09-27
Loading full text...

Full text loading...

References

  1. Dada M. Popoola P. Recent advances in solar photovoltaic materials and systems for energy storage applications: A review. Beni. Suef Univ. J. Basic Appl. Sci. 2023 12 1 1 5
    [Google Scholar]
  2. Chen R. Wang J. Liu Z. Ren F. Liu S. Zhou J. Wang H. Meng X. Zhang Z. Guan X. Liang W. Troshin P.A. Qi Y. Han L. Chen W. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 2023 8 8 839 849 10.1038/s41560‑023‑01288‑7
    [Google Scholar]
  3. Hasan M.M. Hossain S. Mofijur M. Kabir Z. Badruddin I.A. Yunus Khan T.M. Jassim E. Harnessing solar power: A review of photovoltaic innovations, solar thermal systems, and the dawn of energy storage solutions. Energies 2023 16 18 6456 10.3390/en16186456
    [Google Scholar]
  4. Satpute N.S. Mehare C.M. Tiwari A. Swart H.C. Dhoble S.J. Synthesis and luminescence characterization of downconversion and downshifting phosphor for efficiency enhancement of solar cells: Perspectives and challenges. ACS Appl. Electron. Mater. 2022 4 7 3354 3391 10.1021/acsaelm.2c00595
    [Google Scholar]
  5. Dawn S. Tiwari P.K. Goswami A.K. Mishra M.K. Recent developments of solar energy in India: Perspectives, strategies and future goals. Renew. Sustain. Energy Rev. 2016 62 215 235 10.1016/j.rser.2016.04.040
    [Google Scholar]
  6. Verma M. Gautam S. Photovoltaic efficiency enhancement via magnetism. J. Magn. Magn. Mater. 2023 588 171436 10.1016/j.jmmm.2023.171436
    [Google Scholar]
  7. Matakgane M. Mokoena T.P. Mhlongo M.R. Recent trends of oxides heterostructures based upconversion phosphors for improving power efficiencies of solar cells: A review. Inorg. Chem. Commun. 2023 156 111202 10.1016/j.inoche.2023.111202
    [Google Scholar]
  8. Murugan S. Lee E.C. Recent Advances in the synthesis and application of vacancy-ordered halide double perovskite materials for solar cells: A promising alternative to lead-based perovskites. Materials (Basel) 2023 16 15 5275 10.3390/ma16155275 37569980
    [Google Scholar]
  9. Vinayagamoorthi R. Bhargav P.B. Ahmed N. Balaji C. Aravinth K. Krishnan A. Govindaraj R. Ramasamy P. Recycling of End of Life Photovoltaic Solar Panels and Recovery of Valuable Components: A Comprehensive Review and Experimental Validation. J. Environ. Chem. Eng. 2023 ••• 111715
    [Google Scholar]
  10. Jathar L.D. Ganesan S. Awasarmol U. Nikam K. Shahapurkar K. Soudagar M.E.M. Fayaz H. El-Shafay A.S. Kalam M.A. Bouadila S. Baddadi S. Tirth V. Nizami A.S. Lam S.S. Rehan M. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environ. Pollut. 2023 326 121474 10.1016/j.envpol.2023.121474 36965686
    [Google Scholar]
  11. Bilen K. Erdoğan İ. Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Sol. Energy 2023 262 111829 10.1016/j.solener.2023.111829
    [Google Scholar]
  12. Kumar C.M.S. Singh S. Gupta M.K. Nimdeo Y.M. Raushan R. Deorankar A.V. Kumar T.M.A. Rout P.K. Chanotiya C.S. Pakhale V.D. Nannaware A.D. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023 55 102905 10.1016/j.seta.2022.102905
    [Google Scholar]
  13. Almeshaiei E. Al-Habaibeh A. Mina N. Akib S. Rapid evaluation of the design and manufacture of cooling systems of photovoltaic solar panels. Int. J. Interact. Desig. Manufact. (IJIDeM) 2023 17 1 197 214 10.1007/s12008‑022‑01161‑z
    [Google Scholar]
  14. Nazir S. Ali A. Aftab A. Muqeet H.A. Mirsaeidi S. Zhang J.M. Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review. Energies 2023 16 13 4959 10.3390/en16134959
    [Google Scholar]
  15. Chanchangi Y.N. Adu F. Ghosh A. Sundaram S. Mallick T.K. Nigeria’s energy review: Focusing on solar energy potential and penetration. Environ. Dev. Sustain. 2023 25 7 5755 5796 10.1007/s10668‑022‑02308‑4 35437423
    [Google Scholar]
  16. Maghrabie H.M. Mohamed A.S.A. Fahmy A.M. Abdel Samee A.A. Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. Case Stud. Therm. Eng. 2023 42 102741 10.1016/j.csite.2023.102741
    [Google Scholar]
  17. Wen X. Shen Q. Zheng W. Zhang H. AI-driven solar energy generation and smart grid integration a holistic approach to enhancing renewable energy efficiency. Int. J. Innovat. Res. Enginee. Manage. 2024 11 4 55 66 10.55524/ijirem.2024.11.4.8
    [Google Scholar]
  18. Siecker J. Kusakana K. Numbi B.P. A review of solar photovoltaic systems cooling technologies. Renew. Sustain. Energy Rev. 2017 79 192 203 10.1016/j.rser.2017.05.053
    [Google Scholar]
  19. Mishra A Barat B Balaji S Singh Y Senthil R. A review of advanced cooling methodologies for solar photovoltaic and thermoelectric hybrid energy systems. Ener. Syst. 2023 1 622 10.1007/s12667‑023‑00622‑y
    [Google Scholar]
  20. Frankhauser O. Publicly Traded Partnerships for Electricity Generators: Why Amending IRC Section 7704 Is Good for the Power Industry. Hous. Bus. & Tax LJ. 2016 17 254
    [Google Scholar]
  21. Alami A.H. Olabi A.G. Mdallal A. Rezk A. Radwan A. Rahman S.M.A. Shah S.K. Abdelkareem M.A. Concentrating solar power (CSP) technologies: Status and analysis. International Journal of Thermofluids 2023 18 100340 10.1016/j.ijft.2023.100340
    [Google Scholar]
  22. Said Z. Ahmad F.F. Radwan A.M. Hachicha A.A. New thermal management technique for PV module using Mist/PCM/Husk: An experimental study. J. Clean. Prod. 2023 401 136798 10.1016/j.jclepro.2023.136798
    [Google Scholar]
  23. Obaideen K. Olabi A.G. Al Swailmeen Y. Shehata N. Abdelkareem M.A. Alami A.H. Rodriguez C. Sayed E.T. Solar energy: Applications, trends analysis, bibliometric analysis and research contribution to sustainable development goals (SDGs). Sustainability (Basel) 2023 15 2 1418 10.3390/su15021418
    [Google Scholar]
  24. Wen S.B. Bhaskar A. The shockley–queisser efficiency limit of solar thermophotovoltaic (STPV) cells using different photovoltaic cells and a radiation shield considering the étendue of solar radiation. Energies 2023 16 20 7085 10.3390/en16207085
    [Google Scholar]
  25. Chavali R.V.K. Wilcox J.R. Ray B. Gray J.L. Alam M.A. Correlated nonideal effects of dark and light I–V characteristics in a-Si/c-Si heterojunction solar cells. IEEE J. Photovolt. 2014 4 3 763 771 10.1109/JPHOTOV.2014.2307171
    [Google Scholar]
  26. Marques Lameirinhas R.A. P Correia V Bernardo C. N Torres J.P. Veiga H.I. Mendonça Dos Santos P. Modelling the effect of defects and cracks in solar cells’ performance using the d1MxP discrete model. Sci. Rep. 2023 13 1 12490 10.1038/s41598‑023‑39769‑0 37528136
    [Google Scholar]
  27. Peike C. Hädrich I. Weiß K.A. Dürr I. Ise F. Overview of PV module encapsulation materials. Photovolt. Int. 2013 19 85 92
    [Google Scholar]
  28. Lin L. Ravindra N.M. Temperature dependence of CIGS and perovskite solar cell performance: An overview. SN Appl. Sci. 2020 2 8 1361 10.1007/s42452‑020‑3169‑2
    [Google Scholar]
  29. Zhang S.T. Guc M. Salomon O. Wuerz R. Izquierdo-Roca V. Pérez-Rodríguez A. Kessler F. Hempel W. Hildebrandt T. Schneider N. Effective module level encapsulation of CIGS solar cells with Al2O3 thin film grown by atomic layer deposition. Sol. Energy Mater. Sol. Cells 2021 222 110914 10.1016/j.solmat.2020.110914
    [Google Scholar]
  30. Ghamsari-Yazdel F. Gharibshahian I. Sharbati S. Thin oxide buffer layers for avoiding leaks in CIGS solar cells; a theoretical analysis. J. Mater. Sci. Mater. Electron. 2021 32 6 7598 7608 10.1007/s10854‑021‑05476‑7
    [Google Scholar]
  31. Strevel N. Trippel L. Kotarba C. Khan I. Improvements in CdTe module reliability and long-term degradation through advances in construction and device innovation. Photovolt. Int. 2013 22 66 74
    [Google Scholar]
  32. Meng Q. Chen Y. Xiao Y.Y. Sun J. Zhang X. Han C.B. Gao H. Zhang Y. Yan H. Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 2021 32 10 12784 12792 10.1007/s10854‑020‑03029‑y
    [Google Scholar]
  33. Wu S. Li C. Lien S.Y. Gao P. Temperature Matters: Enhancing Performance and Stability of Perovskite Solar Cells through Advanced Annealing Methods. Chemistry (Basel) 2024 6 1 207 236 10.3390/chemistry6010010
    [Google Scholar]
  34. Sun C. Zou Y. Qin C. Zhang B. Wu X. Temperature effect of photovoltaic cells: A review. Adv. Compos. Hybrid Mater. 2022 5 4 2675 2699 10.1007/s42114‑022‑00533‑z
    [Google Scholar]
  35. Hussien A. Eltayesh A. El-Batsh H.M. Experimental and numerical investigation for PV cooling by forced convection. Alex. Eng. J. 2023 64 427 440 10.1016/j.aej.2022.09.006
    [Google Scholar]
  36. Lv S. Ren J. Zhang Q. Zhang B. Lai Y. Yang J. Chang Z. Zhan Z. Design, fabrication and performance analysis of a cost-effective photovoltaic interface seawater desalination hybrid system for co-production of electricity and potable water. Appl. Energy 2023 336 120811 10.1016/j.apenergy.2023.120811
    [Google Scholar]
  37. Lim S. Han S. Kim D. Min J. Choi J. Park T. Key factors affecting the stability of CsPbI3 perovskite quantum dot solar cells: A comprehensive review. Adv. Mater. 2023 35 4 2203430 10.1002/adma.202203430 35700966
    [Google Scholar]
  38. Patil M. Sidramappa A. Shetty S.K. Hebbale A.M. Experimental study of solar PV/T panel to increase the energy conversion efficiency by air cooling. Mater. Today Proc. 2023 92 309 313 10.1016/j.matpr.2023.05.007
    [Google Scholar]
  39. Srivastava V. Chauhan R.K. Lohia P. Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: Theoretical study. J. Opt. 2023 52 3 1218 1225 10.1007/s12596‑022‑00946‑5
    [Google Scholar]
  40. PraveenKumar S. Agyekum E.B. Kumar A. Velkin V.I. Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation. Energy 2023 266 126415 10.1016/j.energy.2022.126415
    [Google Scholar]
  41. Acar A. Namli L. Ozbas E. An experimental investigation on passive cooling of the photovoltaic panel using CuO nanofluid in a two-phase closed thermosyphon. J. Therm. Anal. Calorim. 2023 148 18 9609 9618 10.1007/s10973‑023‑12343‑6
    [Google Scholar]
  42. Al Miaari A. Ali H.M. Technical method in passive cooling for photovoltaic panels using phase change material. Case Stud. Therm. Eng. 2023 49 103283 10.1016/j.csite.2023.103283
    [Google Scholar]
  43. Kumar R. Montero F.J. Rehman T. Lamba R. Vashishtha M. Upadhyaya S. Radiative cooling system integrated with heat sink for the thermal management of photovoltaic modules under extreme climate conditions. J. Therm. Anal. Calorim. 2023 148 17 9099 9112 10.1007/s10973‑023‑12291‑1
    [Google Scholar]
  44. Mariam E. Ramasubramanian B. Sumedha Reddy V. Dalapati G.K. Ghosh S. Pa T.S. Chakrabortty S. Motapothula M.R. Kumar A. Ramakrishna S. Krishnamurthy S. Emerging trends in cooling technologies for photovoltaic systems. Renew. Sustain. Energy Rev. 2024 192 114203 10.1016/j.rser.2023.114203
    [Google Scholar]
  45. Ghasemi M. Yuan S. Fan J. Jia B. Wen X. Challenges in the development of metal-halide perovskite single crystal solar cells. J. Mater. Chem. A Mater. Energy Sustain. 2023 11 8 3822 3848 10.1039/D2TA08827D
    [Google Scholar]
  46. Mohammad A. Mahjabeen F. Revolutionizing solar energy with ai-driven enhancements in photovoltaic technology. BULLET: Jurnal Multidis. Ilmu. 2023 2 4 1174 1187
    [Google Scholar]
  47. Li X. Aftab S. Abbas A. Hussain S. Aslam M. Kabir F. Abd-Rabboh H.S.M. Hegazy H.H. Xu F. Ansari M.Z. Advances in mixed 2D and 3D perovskite heterostructure solar cells: A comprehensive review. Nano Energy 2023 118 108979 10.1016/j.nanoen.2023.108979
    [Google Scholar]
  48. Yang M. Zhong H. Li T. Wu B. Wang Z. Sun D. Phase change material enhanced radiative cooler for temperature-adaptive thermal regulation. ACS Nano 2023 17 2 1693 1700 10.1021/acsnano.2c11916 36633491
    [Google Scholar]
  49. Xiang B. Xu P. Li R. Zhang R. Phase change material-based film toward enhanced radiative cooling and mitigation of overcooling. ACS Appl. Polym. Mater. 2023 6 1 515 523
    [Google Scholar]
  50. Tao S. Han J. Xu Y. Fang Z. Ni Y. Fang L. Lu C. Xu Z. Mechanically switchable multifunctional device for regulating passive radiative cooling and solar heating. ACS Appl. Mater. Interfaces 2023 15 13 17123 17133 10.1021/acsami.2c21961 36971527
    [Google Scholar]
  51. Zhang C. Wang N. Xu H. Fang Y. Yang Q. Talkhoncheh F.K. Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins. Energy 2023 263 125669 10.1016/j.energy.2022.125669
    [Google Scholar]
  52. Xu Z. Kong Q. Qu H. Wang C. Cooling characteristics of solar photovoltaic panels based on phase change materials. Case Stud. Therm. Eng. 2023 41 102667 10.1016/j.csite.2022.102667
    [Google Scholar]
  53. Paliwal M.K. Jakhar S. Sharma V. Nano-enhanced phase change materials for energy storage in photovoltaic thermal management systems: A bibliometric and thematic analysis. Int. J. Thermofl. 2023 17 100310 10.1016/j.ijft.2023.100310
    [Google Scholar]
  54. Khoshnazm M.J. Marzban A. Azimi N. Performance enhancement of photovoltaic panels integrated with thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement. Energy 2023 267 126556 10.1016/j.energy.2022.126556
    [Google Scholar]
  55. Shittu S. Li G. Akhlaghi Y.G. Ma X. Zhao X. Ayodele E. Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renew. Sustain. Energy Rev. 2019 109 24 54 10.1016/j.rser.2019.04.023
    [Google Scholar]
  56. Khanalizadeh A. Razi Astaraei F. Heyhat M.M. Vaziri Rad M.A. Experimental investigation of a PV/T system containing a TEG section between water-based heat exchanger and air-based heat sink. Therm. Sci. Eng. Prog. 2023 42 101909 10.1016/j.tsep.2023.101909
    [Google Scholar]
  57. Jayathunga D.S. Karunathilake H.P. Narayana M. Witharana S. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renew. Sustain. Energy Rev. 2024 189 113904 10.1016/j.rser.2023.113904
    [Google Scholar]
  58. Jiao C. Li Z. An updated review of solar cooling systems driven by photovoltaic–thermal collectors. Energies 2023 16 14 5331 10.3390/en16145331
    [Google Scholar]
  59. Tang J. Ni H. Peng R.L. Wang N. Zuo L. A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power Sources 2023 562 232785 10.1016/j.jpowsour.2023.232785
    [Google Scholar]
  60. Huang L. Zheng Y. Xing L. Hou B. Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications. Therm. Sci. Eng. Prog. 2023 45 102064 10.1016/j.tsep.2023.102064
    [Google Scholar]
  61. Kaiprath J. VV KK. A review on solar photovoltaic-powered thermoelectric coolers, performance enhancements, and recent advances. Int. J. Air-Conditio. Refrigera. 2023 31 1 6 10.1007/s44189‑023‑00022‑y
    [Google Scholar]
  62. Greppi M. Fabbri G. Integrated apparatus for supporting and cooling a photovoltaic panel. Invention Disclosure 2024 4 100019 10.1016/j.inv.2023.100019
    [Google Scholar]
  63. Botero-Valencia J. Sanin-Villa D. Valencia-Aguirre J. A simple method for harvesting thermoelectric energy in home and industrial appliances heat cycle using peltier cells. EUREKA: Physics and Engineering 2023 5 46 55 10.21303/2461‑4262.2023.003102
    [Google Scholar]
  64. Chen X. Huang Y. Chen Z. Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell. Sol. Energy 2023 258 351 360 10.1016/j.solener.2023.04.006
    [Google Scholar]
  65. Numan N.F. Mahdi M.M. Ahmed M.K. Thermoelectric refrigerator driven by a solar panels using electrical control the refrigeration system (on, off). AIP Confe. Procee. 2023 2834 1 1 6
    [Google Scholar]
  66. Alktranee M. Bencs P. Experimental comparative study on using different cooling techniques with photovoltaic modules. J. Therm. Anal. Calorim. 2023 148 9 3805 3817 10.1007/s10973‑022‑11940‑1
    [Google Scholar]
  67. Bosu I. Mahmoud H. Ookawara S. Hassan H. Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: A comprehensive review. Sol. Energy 2023 259 188 228 10.1016/j.solener.2023.05.006
    [Google Scholar]
  68. Xue T. Wan Y. Huang Z. Chen P. Lin J. Chen W. Liu H. A Comprehensive Review of the Applications of Hybrid Evaporative Cooling and Solar Energy Source Systems. Sustainability (Basel) 2023 15 24 16907 10.3390/su152416907
    [Google Scholar]
  69. Brown S. Beausoleil-Morrison I. Experimental performance of a full-scale solar thermal system designed to meet residential heating demands with passive solar energy. Sol. Energy 2023 264 112044 10.1016/j.solener.2023.112044
    [Google Scholar]
  70. Samykano M. Hybrid photovoltaic thermal systems: Present and future feasibilities for Industrial and building applications. Buildings 2023 13 8 1950 10.3390/buildings13081950
    [Google Scholar]
  71. Rashid F.L. Eleiwi M.A. Mohammed H.I. Ameen A. Ahmad S. A review of using solar energy for cooling systems: Applications, challenges, and effects. Energies 2023 16 24 8075 10.3390/en16248075
    [Google Scholar]
  72. Li W. Dong M. Fan L. John J.J. Chen Z. Fan S. Nighttime radiative cooling for water harvesting from solar panels. ACS Photonics 2021 8 1 269 275 10.1021/acsphotonics.0c01471
    [Google Scholar]
  73. Mahian O. Ghafarian S. Sarrafha H. Kasaeian A. Yousefi H. Yan W.M. Phase change materials in solar photovoltaics applied in buildings: An overview. Sol. Energy 2021 224 569 592 10.1016/j.solener.2021.06.010
    [Google Scholar]
  74. Singh D. Chaubey H. Parvez Y. Monga A. Srivastava S. Performance improvement of solar PV module through hybrid cooling system with thermoelectric coolers and phase change material. Sol. Energy 2022 241 538 552 10.1016/j.solener.2022.06.028
    [Google Scholar]
  75. Sheikholeslami M. Khalili Z. Investigation of solar Photovoltaic cell utilizing hybrid nanofluid confined jet and helical fins for improving electrical efficiency in existence of thermoelectric module. Appl. Therm. Eng. 2023 234 121329 10.1016/j.applthermaleng.2023.121329
    [Google Scholar]
  76. Khalili Z. Sheikholeslami M. Investigation of innovative cooling system for photovoltaic solar unit in existence of thermoelectric layer utilizing hybrid nanomaterial and Y-shaped fins. Sustain Cities Soc. 2023 93 104543 10.1016/j.scs.2023.104543
    [Google Scholar]
  77. Alzahrani M. Baig H. Shanks K. Mallick T. Estimation of the performance limits of a concentrator solar cell coupled with a micro heat sink based on a finite element simulation. Appl. Therm. Eng. 2020 176 115315 10.1016/j.applthermaleng.2020.115315
    [Google Scholar]
  78. Sharma A. Sharma A. Averbukh M. Jately V. Azzopardi B. An effective method for parameter estimation of a solar cell. Electronics (Basel) 2021 10 3 312 10.3390/electronics10030312
    [Google Scholar]
  79. Hernandez-Perez J.G. Carrillo J.G. Bassam A. Flota-Banuelos M. Patino-Lopez L.D. A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation. Renew. Energy 2020 147 1209 1220 10.1016/j.renene.2019.09.088
    [Google Scholar]
  80. Ghaith F. Siddiqui T. Nour M. Design of solar-powered cooling systems using concentrating photovoltaic/thermal systems for residential applications. Energies 2024 17 18 4558 10.3390/en17184558
    [Google Scholar]
  81. Seyednezhad M. Najafi H. Energy and economic analysis of a novel hybrid photovoltaic-thermoelectric system for building cooling applications. ASME International Mechanical Engineering Congress and Exposition 2019 59438 V006T06A049 10.1115/IMECE2019‑11644
    [Google Scholar]
  82. Rejeb O. Radwan A. Abo-Zahhad E.M. Ghenai C. Serageldin A.A. Ahmed M. El-Shazly A.A.H. Bettayeb M. Abdelrehim O. Numerical analysis of passive cooled ultra-high concentrator photovoltaic cell using optimal heat spreader design. Case Stud. Therm. Eng. 2020 22 100757 10.1016/j.csite.2020.100757
    [Google Scholar]
  83. Mesgarpour M. Heydari A. Wongwises S. Reza Gharib M. Numerical optimization of a new concept in porous medium considering thermal radiation: Photovoltaic panel cooling application. Sol. Energy 2021 216 452 467 10.1016/j.solener.2021.01.035
    [Google Scholar]
  84. Wang Y. Kamari M.L. Haghighat S. Ngo P.T.T. Electrical and thermal analyses of solar PV module by considering realistic working conditions. J. Therm. Anal. Calorim. 2021 144 5 1925 1934 10.1007/s10973‑020‑09752‑2
    [Google Scholar]
  85. Cai Y. Wang L. Wang W.W. Liu D. Zhao F.Y. Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modeling and performance optimization. J. Clean. Prod. 2020 254 120150 10.1016/j.jclepro.2020.120150
    [Google Scholar]
  86. Siah Chehreh Ghadikolaei S. Solar photovoltaic cells performance improvement by cooling technology: An overall review. Int. J. Hydrogen Energy 2021 46 18 10939 10972 10.1016/j.ijhydene.2020.12.164
    [Google Scholar]
  87. Yang X. Zhao Z. Liu Y. Xing R. Sun Y. Simulation of nanofluid-cooled lithium-ion battery during charging: A battery connected to a solar cell. Int. J. Mech. Sci. 2021 212 106836 10.1016/j.ijmecsci.2021.106836
    [Google Scholar]
  88. Pratap Singh A. Kumar A. Akshayveer Singh O.P. Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel. Energy Convers. Manage. 2020 218 113020 10.1016/j.enconman.2020.113020
    [Google Scholar]
  89. Hassan M.A. Abdelaziz O. Best practices and recent advances in hydronic radiant cooling systems – Part II: Simulation, control, and integration. Energy Build. 2020 224 110263 10.1016/j.enbuild.2020.110263
    [Google Scholar]
  90. Bagheri A. Esfandiari N. Honarvar B. Azdarpour A. First principles versus artificial neural network modelling of a solar desalination system with experimental validation. Math. Comput. Model. Dyn. Syst. 2020 26 5 453 480 10.1080/13873954.2020.1788609
    [Google Scholar]
  91. Marinić-Kragić I. Nižetić S. Grubišić-Čabo F. Čoko D. Analysis and optimization of passive cooling approach for free-standing photovoltaic panel: Introduction of slits. Energy Convers. Manage. 2020 204 112277 10.1016/j.enconman.2019.112277
    [Google Scholar]
  92. Layeni A.T. Waheed M.A. Adewumi B.A. Bolaji B.O. Nwaokocha C.N. Giwa S.O. Computational modelling and simulation of the feasibility of a novel dual purpose solar chimney for power generation and passive ventilation in buildings. Sci. Afr. 2020 8 e00298 10.1016/j.sciaf.2020.e00298
    [Google Scholar]
  93. Khan S.U.D. Almutairi Z.A. Al-Zaid O.S. Khan S.U.D. Development of low concentrated solar photovoltaic system with lead acid battery as storage device. Curr. Appl. Phys. 2020 20 4 582 588 10.1016/j.cap.2020.02.005
    [Google Scholar]
  94. Zayed M.E. Aboelmaaref M.M. Chazy M. Design of solar air conditioning system integrated with photovoltaic panels and thermoelectric coolers: Experimental analysis and machine learning modeling by random vector functional link coupled with white whale optimization. Therm. Sci. Eng. Prog. 2023 44 102051 10.1016/j.tsep.2023.102051
    [Google Scholar]
  95. Shrivastava A. Prakash Arul Jose J. Dilip Borole Y. Saravanakumar R. Sharifpur M. Harasi H. Abdul Razak R.K. Afzal A. A study on the effects of forced air-cooling enhancements on a 150 W solar photovoltaic thermal collector for green cities. Sustain. Energy Technol. Assess. 2022 49 101782 10.1016/j.seta.2021.101782
    [Google Scholar]
  96. Zandi S. Saxena P. Gorji N.E. Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 2020 197 105 110 10.1016/j.solener.2019.12.050
    [Google Scholar]
  97. Sohani A. Rezapour S. Sayyaadi H. Comprehensive performance evaluation and demands’ sensitivity analysis of different optimum sizing strategies for a combined cooling, heating, and power system. J. Clean. Prod. 2021 279 123225 10.1016/j.jclepro.2020.123225
    [Google Scholar]
  98. Siddiqui M.U. Siddiqui O.K. Alquaity A.B.S. Ali H. Arif A.F.M. Zubair S.M. A comprehensive review on multi-physics modeling of photovoltaic modules. Energy Convers. Manage. 2022 258 115414 10.1016/j.enconman.2022.115414
    [Google Scholar]
  99. Tamer T. Gürsel Dino I. Meral Akgül C. Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey. Renew. Sustain. Energy Rev. 2022 162 112396 10.1016/j.rser.2022.112396
    [Google Scholar]
  100. Sharma S. Sood Y.R. Sharma N.K. Bajaj M. Zawbaa H.M. Turky R.A. Kamel S. Modeling and sensitivity analysis of grid-connected hybrid green microgrid system. Ain Shams Eng. J. 2022 13 4 101679 10.1016/j.asej.2021.101679
    [Google Scholar]
  101. Ma T. Guo Z. Shen L. Liu X. Chen Z. Zhou Y. Zhang X. Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution. Appl. Energy 2021 298 117205 10.1016/j.apenergy.2021.117205
    [Google Scholar]
  102. Kumar M. Mohammed Niyaz H. Gupta R. Challenges and opportunities towards the development of floating photovoltaic systems. Sol. Energy Mater. Sol. Cells 2021 233 111408 10.1016/j.solmat.2021.111408
    [Google Scholar]
  103. Zhou Y. Zheng S. Liu Z. Wen T. Ding Z. Yan J. Zhang G. Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations: A state-of-the-art review. Renew. Sustain. Energy Rev. 2020 130 109889 10.1016/j.rser.2020.109889
    [Google Scholar]
  104. Kandeal A.W. Thakur A.K. Elkadeem M.R. Elmorshedy M.F. Ullah Z. Sathyamurthy R. Sharshir S.W. Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. J. Clean. Prod. 2020 273 122772 10.1016/j.jclepro.2020.122772
    [Google Scholar]
  105. Al-Shahri O.A. Ismail F.B. Hannan M.A. Lipu M.S.H. Al-Shetwi A.Q. Begum R.A. Al-Muhsen N.F.O. Soujeri E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021 284 125465 10.1016/j.jclepro.2020.125465
    [Google Scholar]
  106. Bouaichi A. Logerais P.O. El Amrani A. Ennaoui A. Messaoudi C. Comprehensive analysis of aging mechanisms and design solutions for desert-resilient photovoltaic modules. Sol. Energy Mater. Sol. Cells 2024 267 112707 10.1016/j.solmat.2024.112707
    [Google Scholar]
  107. Sun Z. Shi T. Wang Y. Li J. Liu H. Wang X. Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage. Sol. Energy Mater. Sol. Cells 2022 236 111539 10.1016/j.solmat.2021.111539
    [Google Scholar]
  108. Venkatesh T. Manikandan S. Selvam C. Harish S. Performance enhancement of hybrid solar PV/T system with graphene based nanofluids. Int. Commun. Heat Mass Transf. 2022 130 105794 10.1016/j.icheatmasstransfer.2021.105794
    [Google Scholar]
  109. Wang X. Yao C. Wang F. Li Z. Cellulose‐based nanomaterials for energy applications. Small 2017 13 42 1702240 10.1002/smll.201702240 28902985
    [Google Scholar]
  110. Ejaz A. Jamil F. Ali H.M. A novel thermal regulation of photovoltaic panels through phase change materials with metallic foam-based system and a concise comparison: An experimental study. Sustain. Energy Technol. Assess. 2022 49 101726 10.1016/j.seta.2021.101726
    [Google Scholar]
  111. Mu B. Li M. Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage. Sol. Energy 2019 188 230 238 10.1016/j.solener.2019.05.082
    [Google Scholar]
  112. Liao H. Chen W. Liu Y. Wang Q. A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos. Sci. Technol. 2020 189 108010 10.1016/j.compscitech.2020.108010
    [Google Scholar]
  113. Zhang Y. Hao N. Lin X. Nie S. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr. Polym. 2020 234 115888 10.1016/j.carbpol.2020.115888 32070508
    [Google Scholar]
  114. Fu H. Zhang Y. Liu X. Han H. Kondo H. Zhou H. Flexible highly thermal conductive hybrid film for efficient radiative cooling. Sol. Energy Mater. Sol. Cells 2024 266 112660 10.1016/j.solmat.2023.112660
    [Google Scholar]
  115. Lu X. Liang B. Sheng X. Yuan T. Qu J. Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 2020 208 110391 10.1016/j.solmat.2019.110391
    [Google Scholar]
  116. Ouyang Y. Bai L. Tian H. Li X. Yuan F. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos., Part A Appl. Sci. Manuf. 2022 152 106685 10.1016/j.compositesa.2021.106685
    [Google Scholar]
  117. Lin X. Chen X. Weng L. Hu D. Qiu C. Liu P. Zhang Y. Fan M. Sun W. Guo X. In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage. Sol. Energy Mater. Sol. Cells 2022 242 111762 10.1016/j.solmat.2022.111762
    [Google Scholar]
  118. Du G. Lai X. Hu J. Zhang Z. Construction of high thermal conductive boron Nitrid@Chitosan aerogel/ paraffin composite phase change material. Sol. Energy Mater. Sol. Cells 2022 240 111532 10.1016/j.solmat.2021.111532
    [Google Scholar]
  119. Akkala S.R. Kaviti A.K. ArunKumar T, Sikarwar VS. Progress on suspended nanostructured engineering materials powered solar distillation-a review. Renew. Sustain. Energy Rev. 2021 143 110848 10.1016/j.rser.2021.110848
    [Google Scholar]
  120. Elnozahy A. Abd-Elbary H. Abo-Elyousr F.K. Efficient energy harvesting from PV Panel with reinforced hydrophilic nano-materials for eco-buildings. Energy and Built Environment 2024 5 3 393 403 10.1016/j.enbenv.2022.12.001
    [Google Scholar]
  121. Elshazly E. El-Rehim A. El-Mahallawi I. Comparison of dust and high-temperature effects on mono and poly photovoltaic panels. IOP Conf. Ser.: Mater. Sci. Eng. 2021 1172 012019 10.1088/1757‑899X/1172/1/012019
    [Google Scholar]
  122. Uthirapathy C. Swaminathan G. Mathivanan A. Kumar S.D. Manikandan G. Madhesh D. Experimental investigation of solar steam generator using nanocoating. Mater. Today Proc. 2020 33 428 434 10.1016/j.matpr.2020.04.854
    [Google Scholar]
  123. Armstrong M. Sivasubramanian M. Selva Palam N. Adam Khan M. Rajaganapathy C. A recent examination on the nano coating techniques in heat transfer applications. Mater. Today Proc. 2021 46 7942 7947 10.1016/j.matpr.2021.02.660
    [Google Scholar]
  124. Gao K. Shen H. Liu Y. Zhao Q. Li Y. Liu J. Random inverted pyramid textured polydimethylsiloxane radiative cooling emitter for the heat dissipation of silicon solar cells. Sol. Energy 2022 236 703 711 10.1016/j.solener.2022.03.040
    [Google Scholar]
  125. Glüge J. Scheringer M. Cousins I.T. DeWitt J.C. Goldenman G. Herzke D. Lohmann R. Ng C.A. Trier X. Wangi Z. An overview of the uses of per-and polyfluoroalkyl substances (PFAS)–Electronic supplementary information. Environ. Sci.: Proce. Impac. 2020 1 50 51
    [Google Scholar]
  126. Elsaadawi Y.F. Tayel S.A. Abu El-Maaty A. Mostafa E.M. Hydrophobic nanocoating impacts on the PV panels’ currentvoltage and power-voltage curves. Al-Azhar J. Agricult. Enginee. 2022 4 1 1 9 10.21608/azeng.2022.278933
    [Google Scholar]
  127. Thakur A.K. Sathyamurthy R. Velraj R. Saidur R. Lynch I. Chaturvedi M. Sharshir S.W. Synergetic effect of absorber and condenser nano-coating on evaporation and thermal performance of solar distillation unit for clean water production. Sol. Energy Mater. Sol. Cells 2022 240 111698 10.1016/j.solmat.2022.111698
    [Google Scholar]
  128. Tayel S.A. Abu El-Maaty A.E. Mostafa E.M. Elsaadawi Y.F. Enhance the performance of photovoltaic solar panels by a self-cleaning and hydrophobic nanocoating. Sci. Rep. 2022 12 1 21236 10.1038/s41598‑022‑25667‑4 36481954
    [Google Scholar]
  129. Idumah C.I. Recently emerging advancements in thermal conductivity and flame retardancy of MXene polymeric nanoarchitectures. Polymer-Plast. Technol. Mater. 2023 62 4 510 546 10.1080/25740881.2022.2121220
    [Google Scholar]
  130. Ali B.M. Akkaş M. The green cooling factor: Eco-innovative heating, ventilation, and air conditioning solutions in building design. Appl. Sci. (Basel) 2023 14 1 195 10.3390/app14010195
    [Google Scholar]
  131. Singh N Sharma RL Yadav K Sustainable development by carbon emission reduction and its quantification: An overview of current methods and best practices. Asian J. Civ. Engine. 2023 1 1 26 10.1007/s42107‑023‑00732‑z
    [Google Scholar]
  132. Nain A Banerjee A Melkania NP Effects of Green Buildings on the Environment. Digi. Cit. Road.: IoT‐Bas. Architect. Sustain. Build. 2021 9 477 507 10.1002/9781119792079.ch15
    [Google Scholar]
  133. Janga B Sun Z Asamani GP Actionable Science for Greenhouse Gas Emission Reduction. Actionable Science of Global Environment Change: From Big Data to Practical Research Cham Springer International Publishing 2023 4 83 110 10.1007/978‑3‑031‑41758‑0_4
    [Google Scholar]
  134. Garg A Dewan A. Green Hospitals. Manual of Hospital Planning and Designing: For Medical Administrators, Architects and Planners Singapore Springer Nature Singapore 2022 48 485 498 10.1007/978‑981‑16‑8456‑2_48
    [Google Scholar]
  135. Chen Z. Song S. Ma B. Li Y. Shao Y. Shi J. Liu M. Jin H. Jing D. Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Sol. Energy Mater. Sol. Cells 2021 230 111233 10.1016/j.solmat.2021.111233
    [Google Scholar]
  136. Fthenakis V. Frischknecht R. Raugei M. Kim H.C. Alsema E. Held M. de Wild-Scholten M. Methodology guidelines on life cycle assessment of photovoltaic electricity. IEA PVPS Task. 2011 Nov 12
    [Google Scholar]
  137. Perrakis G. Tasolamprou A.C. Kenanakis G. Economou E.N. Tzortzakis S. Kafesaki M. Passive radiative cooling impact on commercial crystalline silicon-based photovoltaics. Opt. Expr. 2019 28 13 18548 18565 10.1364/OE.388208
    [Google Scholar]
  138. Kalaiselvan S. Karthikeyan V. Rajesh G. Kumaran A.S. Ramkiran B. Neelamegam P. Solar PV active and passive cooling technologies-a review. 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) Chennai, India, 28-29 Mar 2018, pp. 166-169. 10.1109/ICCPEIC.2018.8525185
    [Google Scholar]
  139. Sharaf M. Yousef M.S. Huzayyin A.S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ. Sci. Pollut. Res. Int. 2022 29 18 26131 26159 10.1007/s11356‑022‑18719‑9 35076835
    [Google Scholar]
  140. Riva C. Roumpedakis T.C. Kallis G. Rocco M.V. Karellas S. Life cycle analysis of a photovoltaic driven reversible heat pump. Energy Build. 2021 240 110894 10.1016/j.enbuild.2021.110894
    [Google Scholar]
  141. Kepekci H. Asma A. Comparative analysis of heat sink performance using different materials. Am. J. Eng. Res. 2020 9 4 204 210
    [Google Scholar]
  142. Attar M.R. Mohammadi M. Taheri A. Hosseinpour S. Passandideh-Fard M. Haddad Sabzevar M. Davoodi A. Heat transfer enhancement of conventional aluminum heat sinks with an innovative, cost-effective, and simple chemical roughening method. Therm. Sci. Eng. Prog. 2020 20 100742 10.1016/j.tsep.2020.100742
    [Google Scholar]
  143. Ahmed Y.E. Maghami M.R. Pasupuleti J. Danook S.H. Basim Ismail F. Overview of recent solar photovoltaic cooling system approach. Technologies (Basel) 2024 12 9 171 10.3390/technologies12090171
    [Google Scholar]
  144. Alsayegh K.M. Qaisieh A. Hamdan M.O. Abu-Nabah B.A. Impact of various cooling methods on photovoltaic performance: An experimental investigation. J. Therm. Anal. Calorim. 2024 149 14 7651 7664 10.1007/s10973‑024‑13315‑0
    [Google Scholar]
  145. Harmailil I.O. Sultan S.M. Tso C.P. Fudholi A. Mohammad M. Ibrahim A. The state of the art of photovoltaic module cooling techniques and performance assessment methods. Symmetry (Basel) 2024 16 4 412 10.3390/sym16040412
    [Google Scholar]
  146. Mahmud M.A.P. Huda N. Farjana S.H. Lang C. Environmental impacts of solar-photovoltaic and solar-thermal systems with life-cycle assessment. Energies 2018 11 9 2346 10.3390/en11092346
    [Google Scholar]
  147. Meese A.F. Kim D.J. Wu X. Le L. Napier C. Hernandez M.T. Laroco N. Linden K.G. Cox J. Kurup P. McCall J. Greene D. Talmadge M. Huang Z. Macknick J. Sitterley K.A. Miara A. Evans A. Thirumaran K. Malhotra M. Gonzalez S.G. Rao P. Stokes-Draut J. Kim J-H. Opportunities and challenges for industrial water treatment and reuse. ACS ES T Eng. 2022 2 3 465 488 10.1021/acsestengg.1c00282
    [Google Scholar]
  148. Bijlani V.A. Smart city buildings for a resilient, sustainable future. inurban sustainability and energy management of cities for improved health and well-being. Pennsylvania, USA IGI Global 2022 179 202
    [Google Scholar]
  149. Fisher M.D. Scully K.I. Ischay C.P. FY 2022 Idaho National Laboratory Site Sustainability Plan. Idaho Falls, ID (United States) Idaho National Lab. (INL) 2021
    [Google Scholar]
  150. Ismail F.Z. Yaman R. Razali K.N. Formulating an Assessment Tool for the Implementation of Green Initiatives in Library. IOP Conf. Ser.: Earth Environ. Sci. 2022 1067 012021 10.1088/1755‑1315/1067/1/012021
    [Google Scholar]
  151. Asghar S. Zaheer M.U. Asghar S. Gardezi S.S. Green rating assessment of a residential building in Pakistan using LEED’S. Open J. Sci. Technol. 2020 3 2 126 139 10.31580/ojst.v3i2.1474
    [Google Scholar]
  152. Geglio T. Bradley T. Williams T. Zhou S. Watkins D. Minakata D. Water-and energy-efficient appliances for circular water economy: Conceptual framework development and analysis of greenhouse gas emissions and water consumption. ACS ES T Eng. 2022 2 3 409 422 10.1021/acsestengg.1c00243
    [Google Scholar]
  153. Kabir M.S.N. Reza M.N. Chowdhury M. Ali M. Samsuzzaman Ali M.R. Lee K.Y. Chung S-O. Chung S-O. Chung S-O. Technological trends and engineering issues on vertical farms: A review. Horticulturae 2023 9 11 1229 10.3390/horticulturae9111229
    [Google Scholar]
  154. Munagala L. Jothilakshmy N. A comparative analysis of rating systems for sustainability in built environment. IOP Conf. Ser.: Earth Environ. Sci. 2023 1210 012027 10.1088/1755‑1315/1210/1/012027
    [Google Scholar]
  155. De Fonseka T.S. Determination of environmental sustainability practices in the apparel sector of Sri Lanka. Euro. J. Sustai. Develop. Res. 2023 7 4 em0237 10.29333/ejosdr/13816
    [Google Scholar]
  156. Sousa R. Bragança L. da Silva M.V. Oliveira R.S. Challenges and solutions for sustainable food systems: The potential of home hydroponics. Sustainability (Basel) 2024 16 2 817 10.3390/su16020817
    [Google Scholar]
  157. Friedman A. Energy Efficient Dwellings. Fundamentals of Innovative Sustainable Homes Design and Construction Springer Cham 2023 229 260 10.1007/978‑3‑031‑35368‑0_9
    [Google Scholar]
  158. Greer F. Rakas J. Horvath A. Airports and environmental sustainability: A comprehensive review. Environ. Res. Lett. 2020 15 10 103007 10.1088/1748‑9326/abb42a
    [Google Scholar]
  159. Razali K.N. Ismail F.Z. Tool for assessing green initiatives in library or green initiatives in library: Formulating an assessment tool. J. Soci. Transform. Regi. Develop. 2021 3 2 54 65 10.30880/jstard.2021.03.02.007
    [Google Scholar]
  160. Sizirici B. Fseha Y. Cho C.S. Yildiz I. Byon Y.J. A review of carbon footprint reduction in construction industry, from design to operation. Materials (Basel) 2021 14 20 6094 10.3390/ma14206094 34683687
    [Google Scholar]
  161. Ghoddousi S Anderson A Rezaie B Advancing water conseration in cooling towers through energy-water nexus. Eur. J. Sustain. Dev. Res. 2021 10 31224 10.31224/osf.io/7sjfb
    [Google Scholar]
  162. Hammad H. Elhakim Y. Hossam Y. Mahmoud M. Ismail T. Fahim I.S. A proposed framework for measuring direct and indirect carbon emissions in the operational phase of a construction project: A case study. Int. J. Sustain. Eng. 2023 16 1 224 235 10.1080/19397038.2023.2254977
    [Google Scholar]
  163. Zainal B.S. Ker P.J. Mohamed H. Ong H.C. Fattah I.M.R. Rahman S.M.A. Nghiem L.D. Mahlia T.M.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024 189 113941 10.1016/j.rser.2023.113941
    [Google Scholar]
  164. Pushkar S. Strategies for LEED-NC-Certified Projects in Germany and Results of Their Life Cycle Assessment. Buildings 2023 13 8 1970 10.3390/buildings13081970
    [Google Scholar]
  165. Bait O. A critical review on triangular pyramid, weir–type, spherical, and hemispherical solar water distiller conceptions. Sol. Energy 2024 269 112322 10.1016/j.solener.2024.112322
    [Google Scholar]
  166. Akinoglu B.G. Tuncel B. Badescu V. Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustain. Energy Technol. Assess. 2021 46 101287 10.1016/j.seta.2021.101287
    [Google Scholar]
  167. Madurai Elavarasan R. Mudgal V. Selvamanohar L. Wang K. Huang G. Shafiullah G.M. Markides C.N. Reddy K.S. Nadarajah M. Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review. Energy Convers. Manage. 2022 255 115278 10.1016/j.enconman.2022.115278
    [Google Scholar]
  168. Ghosh B.K. Hasanuzzman M. Saad I. Mohamad K.A. Hossain M.K. Photovoltaic technologies photo-thermal challenges: Thin active layer solar cells significance. Optik (Stuttg.) 2023 274 170567 10.1016/j.ijleo.2023.170567
    [Google Scholar]
  169. Mohammad A Mahjabeen F. From silicon to sunlight: Exploring the evolution of solar cell materials. Jurihum: J. Inov. dan Humani. 2023 1 2 316 330
    [Google Scholar]
  170. Tian R. Zhou S. Meng Y. Liu C. Ge Z. Material and device design of flexible perovskite solar cells for next‐generation power supplies. Adv. Mater. 2024 36 37 2311473 10.1002/adma.202311473 38224961
    [Google Scholar]
  171. Bati A.S.R. Zhong Y.L. Burn P.L. Nazeeruddin M.K. Shaw P.E. Batmunkh M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023 4 1 2 10.1038/s43246‑022‑00325‑4
    [Google Scholar]
  172. Shan H. Poredoš P. Zou H. Lv H. Wang R. Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting. Energy 2023 282 129009 10.1016/j.energy.2023.129009
    [Google Scholar]
  173. Perrakis G. Tasolamprou A.C. Kenanakis G. Economou E.N. Tzortzakis S. Kafesaki M. Submicron organic–inorganic hybrid radiative cooling coatings for stable, ultrathin, and lightweight solar cells. ACS Photonics 2022 9 4 1327 1337 10.1021/acsphotonics.1c01935
    [Google Scholar]
  174. Amrillah T. Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review. Sol. Energy 2023 263 111982 10.1016/j.solener.2023.111982
    [Google Scholar]
  175. Manni M. Formolli M. Boccalatte A. Croce S. Desthieux G. Hachem-Vermette C. Kanters J. Ménézo C. Snow M. Thebault M. Wall M. Lobaccaro G. Ten questions concerning planning and design strategies for solar neighborhoods. Build. Environ. 2023 246 110946 10.1016/j.buildenv.2023.110946
    [Google Scholar]
  176. Gao W. Chen Y. Emerging materials and strategies for passive daytime radiative cooling. Small 2023 19 18 2206145 10.1002/smll.202206145 36604963
    [Google Scholar]
  177. Wilson CT Cha H Zhong Y Li AC Lin E El Fil B Design considerations for next-generation sorbent-based atmospheric water-harvesting devices. Device 2023 1 2 100052 10.1016/j.device.2023.100052
    [Google Scholar]
  178. Levchenko I. Ostrikov K.K. Zheng J. Li X. Keidar M. B K Teo K. Scalable graphene production: Perspectives and challenges of plasma applications. Nanoscale 2016 8 20 10511 10527 10.1039/C5NR06537B 26837802
    [Google Scholar]
  179. Pandey AK Said Z Challenges and difficulties in developing nano-enhanced phase change materials and way forward. ACS Appl. Mater. Interfa. 2023 9 48 41887 41897 10.1007/978‑981‑99‑5475‑9_12
    [Google Scholar]
  180. Wang Y. Zhang X. Liu L. Yi M. Shen Z. Li K. Zhu Y. A high-yield and size-controlled production of graphene by optimizing fluid forces. J. Mater. Sci. 2023 58 35 13946 13956 10.1007/s10853‑023‑08897‑3
    [Google Scholar]
  181. Abdolmaleki L. Berardi U. Single and multi-phase change materials used in cooling systems. Int. J. Thermophys. 2022 43 4 61 10.1007/s10765‑022‑02989‑z
    [Google Scholar]
  182. Siow L.T. Lee J.R. Ooi E.H. Lau E.V. Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review. Renew. Sustain. Energy Rev. 2024 193 114288 10.1016/j.rser.2024.114288
    [Google Scholar]
  183. Kumar N. Setshedi K. Masukume M. Ray S.S. Facile scalable synthesis of graphene oxide and reduced graphene oxide: Comparative investigation of different reduction methods. Carbon Letters 2022 32 4 1031 1046 10.1007/s42823‑022‑00335‑9
    [Google Scholar]
  184. Venkateswarlu K. Ramakrishna K. Recent advances in phase change materials for thermal energy storage-a review. J. Braz. Soc. Mech. Sci. Eng. 2022 44 1 6 10.1007/s40430‑021‑03308‑7
    [Google Scholar]
  185. Liu N. Tang Q. Huang B. Wang Y. Graphene synthesis: Method, exfoliation mechanism and large-scale production. Crystals (Basel) 2021 12 1 25 10.3390/cryst12010025
    [Google Scholar]
  186. Sloan M. Biden’s clean energy ambition–an infrastructure imperative. Solar Tod. Magaz. 2022 36 1 1 6
    [Google Scholar]
  187. Hutchins E. Accelerating Clean Energy: A Road Map for Regulatory Reform. Env’t L. Rep. 2024 54 10114
    [Google Scholar]
  188. Tyagi K. Gahtori B. Kumar S. Dhakate S.R. Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation. Sol. Energy 2023 254 195 212 10.1016/j.solener.2023.02.051
    [Google Scholar]
  189. Lelea D. Calinoiu D.G. Trif-Tordai G. Cioabla A.E. Laza I. Popescu F. The hybrid nanofluid/microchannel cooling solution for concentrated photovoltaic cells. AIP Confer. Procee. 2015 1646 1 122 128
    [Google Scholar]
/content/journals/cms/10.2174/0126661454362395250324174942
Loading
/content/journals/cms/10.2174/0126661454362395250324174942
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: sustainability ; passive cooling ; active cooling ; Solar cells ; cooling techniques
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test