Skip to content
2000
  • E-ISSN:

Abstract

3D printing and additive manufacturing are interchangeable terms. Additive manufacturing builds models layer by layer using a variety of laser-based or sophisticated printing processes. While this was one of the earliest techniques for 3D printing, the field now widely uses a number of other patented methods. The objective is to analyze the success rate of 3D printing in healthcare. The medical industry has found 3D printing to be highly beneficial in recent years. The application of 3D printing technology allows for greater customization of the therapeutic process, which enhances treatment safety, accuracy, and precision. On the other hand, the disclosure of new materials for 3D printing occurs frequently. For some producers, the right materials might just be a few months or years away. However, printing certain materials may be difficult or impossible. Excellent results are not always possible with 3D printers. Nonetheless, we can conclude that 3D printing represents one of the most advanced techniques in healthcare.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454329211241015103118
2025-01-01
2025-12-17
Loading full text...

Full text loading...

References

  1. From Prosthetic Legs to Cranial Implants: How the MHS is using 3D Tech2021 Available from: https://health.mil/News/Articles/2021/11/08/From-Prosthetic-Legs-to-Cranial-Implants-How-the-MHS-is-using-3D-Tech?type=Fact+Sheets
  2. Engineering.com Chinese Dr. creates 3D printed skull implant2013 Available from: https://www.engineering.com/chinese-dr-creates-3d-printedskull-implant/
  3. Independent 3D printed pelvis helps man with rare bone cancer keep walking2014 Available from: https://www.independent.co.uk/news/uk/home-news/3dprinted-pelvis-helps-man-with-rare-bone-cancer-keepwalking-9119473.html
  4. BasgulC. YuT. MacDonaldD.W. SiskeyR. MarcolongoM. KurtzS.M. Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication.J. Mater. Res.201833142040205110.1557/jmr.2018.178 30555210
    [Google Scholar]
  5. TrenfieldS.J. AwadA. GoyanesA. 3D printing pharmaceuticals: Drug development to frontline care.Trends Pharmacol. Sci.2018395440451
    [Google Scholar]
  6. ManeroA. SmithP. SparkmanJ. Implementation of 3D printing technology in the field of prosthetics: Past, present, and future.Int. J. Environ. Res. Public Health2019169164110.3390/ijerph16091641 31083479
    [Google Scholar]
  7. WohlersTT CaffreyT Wohlers report 2014: 3D printing and additive manufacturing state of the industry: Annual worldwide progress report.Wohlers AssociatesFort Collins, Colorado2014
    [Google Scholar]
  8. CrennM.J. RohmanG. FromentinO. BenoitA. Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: Mechanical characterization.Dent. Mater. J.202241111011610.4012/dmj.2021‑151 34866117
    [Google Scholar]
  9. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.2958 25093879
    [Google Scholar]
  10. LuD. LiT. YuW. Expert consensus on the design, manufacture, materials, and clinical application of customized three-dimensional printing scoliosis orthosis.Digit. Med.20228210.4103/digm.digm_34_21
    [Google Scholar]
  11. WangD.D. QianZ. VukicevicM. 3D printing, computational modeling, and artificial intelligence for structural heart disease.JACC Cardiovasc. Imaging2021141416010.1016/j.jcmg.2019.12.022 32861647
    [Google Scholar]
  12. CalderheadR.G. The photobiological basics behind light-emitting diode (LED) phototherapy.Laser Ther.20071629710810.5978/islsm.16.97
    [Google Scholar]
  13. ShirasakiY. SupranG.J. BawendiM.G. BulovićV. Emergence of colloidal quantum-dot light-emitting technologies.Nat. Photonics201371132310.1038/nphoton.2012.328
    [Google Scholar]
  14. KimJ.H. JoD.Y. LeeK.H. White electroluminescent lighting device based on a single quantum dot emitter.Adv. Mater.201628255093509810.1002/adma.201600815 27135303
    [Google Scholar]
  15. ZhangM. HuB. MengL. Ultrasmooth quantum dot micropatterns by a facile controllable liquid-transfer approach: Low-cost fabrication of high-performance QLED.J. Am. Chem. Soc.2018140288690869510.1021/jacs.8b02948 29894177
    [Google Scholar]
  16. YangZ. GaoM. WuW. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions.Mater. Today201924699310.1016/j.mattod.2018.09.002
    [Google Scholar]
  17. LiX. HuB. ZhangM. Continuous and controllable liquid transfer guided by a fibrous liquid bridge: Toward high‐performance QLEDs.Adv. Mater.20193151190461010.1002/adma.201904610 31696997
    [Google Scholar]
  18. ChenJ. WangJ. XuX. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites.Nat. Photonics202115323824410.1038/s41566‑020‑00743‑1
    [Google Scholar]
  19. García de ArquerF.P. TalapinD.V. KlimovV.I. ArakawaY. BayerM. SargentE.H. Semiconductor quantum dots: Technological progress and future challenges.Science20213736555eaaz854110.1126/science.aaz8541 34353926
    [Google Scholar]
  20. YangJ. ChoiM.K. YangU.J. Toward full-color electroluminescent quantum dot displays.Nano Lett.2021211263310.1021/acs.nanolett.0c03939 33258610
    [Google Scholar]
  21. MengT. ZhengY. ZhaoD. Ultrahigh-resolution quantum-dot light-emitting diodes.Nat. Photonics202216429730310.1038/s41566‑022‑00960‑w
    [Google Scholar]
  22. DaiX. DengY. PengX. JinY. Quantum‐dot light‐emitting diodes for large‐area displays: Towards the dawn of commercialization.Adv. Mater.20172914160702210.1002/adma.201607022 28256780
    [Google Scholar]
  23. XiangC. CaoW. YangY. QianL. YanX. The dawn of QLED for the FPD industry.Inf. Disp.2018346141710.1002/j.2637‑496X.2018.tb01133.x
    [Google Scholar]
  24. XiangC. WuL. LuZ. High efficiency and stability of ink-jet printed quantum dot light emitting diodes.Nat. Commun.2020111164610.1038/s41467‑020‑15481‑9 32242016
    [Google Scholar]
  25. WeiC. SuW. LiJ. A universal ternary‐solvent‐ink strategy toward efficient inkjet‐printed perovskite quantum dot light‐emitting diodes.Adv. Mater.20223410210779810.1002/adma.202107798 34990514
    [Google Scholar]
  26. BaiW. XuanT. ZhaoH. Microscale perovskite quantum dot light‐emitting diodes (Micro‐PeLEDs) for full‐color displays.Adv. Opt. Mater.20221012220008710.1002/adom.202200087
    [Google Scholar]
  27. YangZ. LinG. BaiJ. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes.Chem. Eng. J.202245013841310.1016/j.cej.2022.138413
    [Google Scholar]
  28. LiuF. ChenD. WangC. Molecular weight dependence of the morphology in P3HT:PCBM solar cells.ACS Appl. Mater. Interfaces2014622198761988710.1021/am505283k 25350382
    [Google Scholar]
  29. NiZ. WangH. DongH. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems.Nat. Chem.201911327127710.1038/s41557‑018‑0200‑y 30692659
    [Google Scholar]
  30. AwadA. TrenfieldS.J. GoyanesA. GaisfordS. BasitA.W. Reshaping drug development using 3D printing.Cardiovasc Imaging201823815471555 29803932
    [Google Scholar]
  31. ChenY. ZhangJ. LiuX. Noninvasive in vivo 3D bioprinting.Sci. Adv.2020623eaba740610.1126/sciadv.aba7406 32537512
    [Google Scholar]
  32. ShinY.J. ShafranekR.T. TsuiJ.H. WalcottJ. NelsonA. KimD.H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.Acta Biomater.2021119758810.1016/j.actbio.2020.11.006 33166713
    [Google Scholar]
  33. NagarajanN. Dupret-BoriesA. KarabulutE. ZorlutunaP. VranaN.E. Enabling personalized implant and controllable biosystem development through 3D printing.Biotechnol. Adv.201836252153310.1016/j.biotechadv.2018.02.004 29428560
    [Google Scholar]
  34. TibbitsS. 4D printing: Multi-material shape change.Archit. Des.201484111612110.1002/ad.1710
    [Google Scholar]
  35. GuillemotF. MironovV. NakamuraM. Bioprinting is coming of age: Report from the international conference on bioprinting and biofabrication in Bordeaux (3B’09).Biofabrication20102101020110.1088/1758‑5082/2/1/010201 20811115
    [Google Scholar]
  36. JeongH.J. NamH. JangJ. LeeS.J. 3D bioprinting strategies for the regeneration of functional tubular tissues and organs.Bioengineering (Basel)2020723210.3390/bioengineering7020032 32244491
    [Google Scholar]
  37. CuiH. NowickiM. FisherJ.P. ZhangL.G. 3D bioprinting for organ regeneration.Adv. Healthc. Mater.201761160111810.1002/adhm.201601118 27995751
    [Google Scholar]
  38. ParkJ. LakesR.S. Biomaterials: An introduction.3rd EdNew York, USASpringer2007
    [Google Scholar]
  39. AdamovicD. RisticB. ZivicF. Review of existing biomaterials - Method of material selection for specific applications in orthopedics.In: Biomaterials in Clinical Practice.ChamSpringer2018479910.1007/978‑3‑319‑68025‑5_3
    [Google Scholar]
  40. Rezvani GhomiE. KhaliliS. Nouri KhorasaniS. Esmaeely NeisianyR. RamakrishnaS. Wound dressings: Current advances and future directions.J. Appl. Polym. Sci.2019136274773810.1002/app.47738
    [Google Scholar]
  41. Marjanović-BalabanŽ. JelićD. Polymeric biomaterials in clinical practice.In: Biomaterials in Clinical Practice.ChamSpringer201810111710.1007/978‑3‑319‑68025‑5_4
    [Google Scholar]
  42. ÖzcanM. HämmerleC. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls.Materials (Basel)2012591528154510.3390/ma5091528
    [Google Scholar]
  43. PilliarR.M. Modern metal processing for improved load-bearing surgical implants.Biomaterials19911229510010.1016/0142‑9612(91)90185‑D 1878463
    [Google Scholar]
  44. OgiharaN. UsuiY. AokiK. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes.Nanomedicine (Lond.)20127798199310.2217/nnm.12.1 22401267
    [Google Scholar]
  45. SáenzA. RiveraE. BrostowW. CastañoV.M. Ceramic biomaterials: An introductory overview.J. Mater. Educ.1999215/6267276
    [Google Scholar]
  46. MaedaH. SeymourL.W. MiyamotoY. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo.Bioconjug. Chem.19923535136210.1021/bc00017a001 1420435
    [Google Scholar]
  47. AngelovaN. HunkelerD. Rationalizing the design of polymeric biomaterials.Trends Biotechnol.1999101740942110.1016/S0167‑7799(99)01356‑6 10481173
    [Google Scholar]
  48. WestJ.L. HubbellJ.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration.Macromolecules199932124124410.1021/ma981296k
    [Google Scholar]
  49. MarkočičE. ŠkergetM. KnezŽ. Solubility and diffusivity of CO2 in poly(l-lactide)-hydroxyapatite and poly(d,l-lactide-co-glycolide)–hydroxyapatite composite biomaterials.J. Supercrit. Fluids20115531046105110.1016/j.supflu.2010.10.001
    [Google Scholar]
  50. PengH.T. MartineauL. ShekP.N. Hydrogel–elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties.J. Mater. Sci. Mater. Med.200718697598610.1007/s10856‑006‑0088‑8 17243001
    [Google Scholar]
  51. SunZ. Patient-specific 3D printing in liver disease.In: Liver Diseases.ChamSpringer2020493501
    [Google Scholar]
  52. KhosraviF. Nouri KhorasaniS. Rezvani GhomiE. A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance.Mater. Res. Express20196808647010.1088/2053‑1591/ab26d5
    [Google Scholar]
  53. RezwanK. ChenQ.Z. BlakerJ.J. BoccacciniA.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials200627183413343110.1016/j.biomaterials.2006.01.039 16504284
    [Google Scholar]
  54. GodbeyW.T. AtalaA. In vitro systems for tissue engineering.Ann. N. Y. Acad. Sci.20029611102610.1111/j.1749‑6632.2002.tb03041.x 12081857
    [Google Scholar]
  55. RheeS. PuetzerJ.L. MasonB.N. Reinhart-KingC.A. BonassarL.J. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering.ACS Biomater. Sci. Eng.20162101800180510.1021/acsbiomaterials.6b00288 33440478
    [Google Scholar]
  56. TrenfieldS.J. AwadA. MadlaC.M. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare.Expert Opin. Drug Deliv.201916101081109410.1080/17425247.2019.1660318 31478752
    [Google Scholar]
  57. VithaniK. GoyanesA. JanninV. BasitA.W. GaisfordS. BoydB.J. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems.Pharm. Res.2019361410.1007/s11095‑018‑2531‑1 30406349
    [Google Scholar]
  58. AgrawalA. GuptaA.K. Printing technology in pharmaceuticals and biomedical: A review.J. Drug Deliv. Ther.201992-A14
    [Google Scholar]
  59. LiangK. BrambillaD. LerouxJ.C. Is 3D printing of pharmaceuticals a disruptor or enabler?Adv. Mater.2019315180568010.1002/adma.201805680 30506794
    [Google Scholar]
  60. HazeveldA. Huddleston SlaterJ.J.R. RenY. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques.Am. J. Orthod. Dentofacial Orthop.2014145110811510.1016/j.ajodo.2013.05.011 24373661
    [Google Scholar]
  61. D’UrsoP.S. BarkerT.M. EarwakerW.J. Stereolithographic biomodelling in cranio-maxillofacial surgery: A prospective trial.J. Craniomaxillofac. Surg.1999271303710.1016/S1010‑5182(99)80007‑9 10188125
    [Google Scholar]
  62. KozakiewiczM. ElgalalM. LobaP. Clinical application of 3D pre-bent titanium implants for orbital floor fractures.J. Craniomaxillofac. Surg.200937422923410.1016/j.jcms.2008.11.009 19186068
    [Google Scholar]
  63. CuiJ. ChenL. GuanX. YeL. WangH. LiuL. Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities.J. Oral Maxillofac. Surg.20147261138.e11138.e1410.1016/j.joms.2014.02.023 24679954
    [Google Scholar]
  64. WurmG. TomancokB. PogadyP. HollK. TrenklerJ. Cerebrovascular stereolithographic biomodeling for aneurysm surgery.J. Neurosurg.2004100113914510.3171/jns.2004.100.1.0139 14743927
    [Google Scholar]
  65. GrantG.T. LiacourasP. KondorS. Maxillofacial imaging in the trauma patient.Atlas Oral Maxillofac. Surg. Clin. North Am.2013211253610.1016/j.cxom.2012.12.002 23498329
    [Google Scholar]
  66. KonoK. ShintaniA. OkadaH. TeradaT. Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model.Neurol. Med. Chir. (Tokyo)201353534735110.2176/nmc.53.347 23708228
    [Google Scholar]
  67. PaivaW.S. AmorimR. BezerraD.A.F. MasiniM. Application of the stereolithography technique in complex spine surgery.Arq. Neuropsiquiatr.2007652b44344510.1590/S0004‑282X2007000300015 17665012
    [Google Scholar]
  68. ZopfD.A. HollisterS.J. NelsonM.E. OhyeR.G. GreenG.E. Bioresorbable airway splint created with a three-dimensional printer.N. Engl. J. Med.2013368212043204510.1056/NEJMc1206319 23697530
    [Google Scholar]
  69. AkibaT. NakadaT. InagakiT. Simulation of the fissureless technique for thoracoscopic segmentectomy using rapid prototyping.Ann. Thorac. Cardiovasc. Surg.2015211848610.5761/atcs.nm.13‑00322 24633132
    [Google Scholar]
  70. AkibaT. NakadaT. InagakiT. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma.Ann. Thorac. Cardiovasc. Surg.2015211878910.5761/atcs.nm.13‑00342 24633133
    [Google Scholar]
  71. HenryS. McAllisterD.V. AllenM.G. PrausnitzM.R. Microfabricated microneedles: A novel approach to transdermal drug delivery.J. Pharm. Sci.199887892292510.1021/js980042+ 9687334
    [Google Scholar]
  72. DavisS.P. LandisB.J. AdamsZ.H. AllenM.G. PrausnitzM.R. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force.J. Biomech.20043781155116310.1016/j.jbiomech.2003.12.010 15212920
    [Google Scholar]
  73. KaushikS. HordA.H. DensonD.D. Lack of pain associated with microfabricated microneedles.Anesth. Analg.200192250250410.1213/00000539‑200102000‑00041 11159258
    [Google Scholar]
  74. BoehmR.D. MillerP.R. HayesS.L. Monteiro-RiviereN.A. NarayanR.J. Modification of microneedles using inkjet printing.AIP Adv.20111202213910.1063/1.3602461 22125759
    [Google Scholar]
  75. BoehmR.D. MillerP.R. SinghR. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles.Biofabrication20124101100210.1088/1758‑5082/4/1/011002 22287512
    [Google Scholar]
  76. LiangK. CarmoneS. BrambillaD. LerouxJ.C. 3D printing of a wearable personalized oral delivery device: A first-in-human study.Sci. Adv.201845eaat254410.1126/sciadv.aat2544 29750201
    [Google Scholar]
  77. BoehmR.D. MillerP.R. DanielsJ. StafslienS. NarayanR.J. Inkjet printing for pharmaceutical applications.Mater. Today201417524725210.1016/j.mattod.2014.04.027
    [Google Scholar]
  78. AlhijjajM. BeltonP. QiS. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.Eur. J. Pharm. Biopharm.201610811112510.1016/j.ejpb.2016.08.016 27594210
    [Google Scholar]
  79. KhaledS.A. BurleyJ.C. AlexanderM.R. RobertsC.J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.Int. J. Pharm.20144611-210511110.1016/j.ijpharm.2013.11.021 24280018
    [Google Scholar]
  80. MaroniA. MelocchiA. PariettiF. FoppoliA. ZemaL. GazzanigaA. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery.J. Control. Release2017268101810.1016/j.jconrel.2017.10.008 29030223
    [Google Scholar]
  81. GeninaN. BoetkerJ.P. ColomboS. HarmankayaN. RantanenJ. BohrA. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing.J. Control. Release2017268404810.1016/j.jconrel.2017.10.003 28993169
    [Google Scholar]
  82. KyobulaM. AdedejiA. AlexanderM.R. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.J. Control. Release201726120721510.1016/j.jconrel.2017.06.025 28668378
    [Google Scholar]
  83. SadiaM. ArafatB. AhmedW. ForbesR.T. AlhnanM.A. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets.J. Control. Release201826935536310.1016/j.jconrel.2017.11.022 29146240
    [Google Scholar]
  84. GoyanesA. Robles MartinezP. BuanzA. BasitA.W. GaisfordS. Effect of geometry on drug release from 3D printed tablets.Int. J. Pharm.2015494265766310.1016/j.ijpharm.2015.04.069 25934428
    [Google Scholar]
  85. JamrózW. SzafraniecJ. KurekM. JachowiczR. 3D printing in pharmaceutical and medical applications – Recent achievements and challenges.Pharm. Res.201835917610.1007/s11095‑018‑2454‑x 29998405
    [Google Scholar]
  86. SkowyraJ. PietrzakK. AlhnanM.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing.Eur. J. Pharm. Sci.201568111710.1016/j.ejps.2014.11.009 25460545
    [Google Scholar]
  87. LiQ. WenH. JiaD. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing.Int. J. Pharm.2017525151110.1016/j.ijpharm.2017.03.066 28377316
    [Google Scholar]
  88. GoyanesA. KobayashiM. Martínez-PachecoR. GaisfordS. BasitA.W. Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets.Int. J. Pharm.2016514129029510.1016/j.ijpharm.2016.06.021 27863674
    [Google Scholar]
  89. GoyanesA. BuanzA.B.M. HattonG.B. GaisfordS. BasitA.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets.Eur. J. Pharm. Biopharm.20158915716210.1016/j.ejpb.2014.12.003 25497178
    [Google Scholar]
  90. TagamiT. FukushigeK. OgawaE. HayashiN. OzekiT. 3D printing factors important for the fabrication of polyvinyl alcohol filament-based tablets.Biol. Pharm. Bull.201740335736410.1248/bpb.b16‑00878 28250279
    [Google Scholar]
  91. FuJ. YinH. YuX. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems.Int. J. Pharm.20185491-237037910.1016/j.ijpharm.2018.08.011 30107218
    [Google Scholar]
  92. LinaresV. CasasM. CaraballoI. Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery.Eur. J. Pharm. Biopharm.201913413814310.1016/j.ejpb.2018.11.021 30476539
    [Google Scholar]
  93. NormanJ. MaduraweR.D. MooreC.M.V. KhanM.A. KhairuzzamanA. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.Adv. Drug Deliv. Rev.2017108395010.1016/j.addr.2016.03.001 27001902
    [Google Scholar]
  94. LepowskyE. TasogluS. 3D printing for drug manufacturing: A perspective on the future of pharmaceuticals.Int. J. Bioprint.20174111910.18063/ijb.v1i1.119 33102905
    [Google Scholar]
  95. JamrozW. KoterbickaJ. KurekM. CzechA. JachowiczR. Application of 3D printing in pharmaceutical technology.Farm. Pol.2017739542548
    [Google Scholar]
  96. WeismanJ.A. NicholsonJ.C. TappaK. JammalamadakaU. WilsonC.G. MillsD.K. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications.Int. J. Nanomedicine20151035737010.2147/IJN.S74811 25624758
    [Google Scholar]
  97. MelocchiA. PariettiF. LoretiG. MaroniA. GazzanigaA. ZemaL. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs.J. Drug Deliv. Sci. Technol.20153036036710.1016/j.jddst.2015.07.016
    [Google Scholar]
  98. CharoenyingT. PatrojanasophonP. NgawhirunpatT. RojanarataT. AkkaramongkolpornP. OpanasopitP. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin.J. Drug Deliv. Sci. Technol.20205510139310.1016/j.jddst.2019.101393
    [Google Scholar]
  99. BeckR.C.R. ChavesP.S. GoyanesA. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems.Int. J. Pharm.20175281-226827910.1016/j.ijpharm.2017.05.074 28583328
    [Google Scholar]
  100. PalmieriG.F. MicheliniS. MartinoP.D. MartelliS. Polymers with pH-dependent solubility: Possibility of use in the formulation of gastroresistant and controlled-release matrix tablets.Drug Dev. Ind. Pharm.200026883784510.1081/DDC‑100101307 10900540
    [Google Scholar]
  101. PilipenkoI. Korzhikov-VlakhV. SharoykoV. pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells.Pharmaceutics201911731710.3390/pharmaceutics11070317 31284414
    [Google Scholar]
  102. LuzuriagaM.A. BerryD.R. ReaganJ.C. SmaldoneR.A. GassensmithJ.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.Lab Chip20181881223123010.1039/C8LC00098K 29536070
    [Google Scholar]
  103. NadgornyM. XiaoZ. ChenC. ConnalL.A. Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer.ACS Appl. Mater. Interfaces2016842289462895410.1021/acsami.6b07388 27696806
    [Google Scholar]
  104. DuttaS. CohnD. Temperature and pH responsive 3D printed scaffolds.J. Mater. Chem. B 20175489514952110.1039/C7TB02368E 32264566
    [Google Scholar]
/content/journals/cms/10.2174/0126661454329211241015103118
Loading
/content/journals/cms/10.2174/0126661454329211241015103118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test