Skip to content
2000
  • E-ISSN:

Abstract

Supercapacitors (SCs) are significant because of their unique characteristics, which include long cycle life, high strength, and environmental friendliness. SCs use electrode substances with high specific surface area and thinner dielectrics. Referring to the energy storage mechanism, all kinds of SCs were reviewed in this review paper; a quick synopsis of the materials and technology used for SCs is provided. Materials such as conducting polymers, carbon materials, metal oxides, and their composites are the main focus. The performance of the composites was evaluated using metrics such as energy, cycle performance, power capacitance, and rate capability, which also provides information on the electrolyte materials. To precisely appraise the state of Charge (SoC) in the super SCs cell module, its identical model o is used. It is expected that this model will accurately capture the features of the cell module, specifically its standing-related self-discharge behavior, and the outcomes of parameter identification directly impact its accuracy. Engine downsizing is a result of the requirement to increase fuel efficiency and lower CO and other hazardous pollutant emissions from internal combustion engine cars. However, smaller turbocharged engines have a relatively poor torque capability at low engine speeds. To solve this issue, an electrical torque boost based on SCs may be used to help recover energy during regenerative braking as well as during acceleration and gear changes.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454319839240906162037
2025-01-01
2025-12-23
Loading full text...

Full text loading...

References

  1. HostickaB. MoschytzG. Switched-capacitor filters using FDNR-like super capacitances.IEEE Trans. Circ. Syst.198027656957310.1109/TCS.1980.1084841
    [Google Scholar]
  2. Abdul-AzizMR HassanA Abdel-AtyAA High performance super capacitor based on laser induced graphene for wearable devices.IEEE Access20208200573200580
    [Google Scholar]
  3. JalalN.I. IbrahimR.I. OudahM.K. A review on Supercapacitors: Types and components.J. Phys. Conf. Ser.202119731012015
    [Google Scholar]
  4. ZhaoY XieW FangZ LiuS A parameters identification method of the equivalent circuit model of the supercapacitor cell module based on segmentation optimization.IEEE Access20208928959290610.1109/ACCESS.2020.2993285
    [Google Scholar]
  5. YadlapalliR.T. AllaR.R. KandipatiR. KotapatiA. Super capacitors for energy storage: Progress, applications and challenges.J. Energy Storage20224910419410.1016/j.est.2022.104194
    [Google Scholar]
  6. MorandiA LampasiA CocchiA Characterization and model parameters of large commercial supercapacitor cells.IEEE Access2021920376209010.1109/ACCESS.2021.3053626
    [Google Scholar]
  7. HuangL. GuoG. LiuY. ChangQ. XieY. Reduced graphene oxide-ZnO nanocomposites for flexible supercapacitors.J. Disp. Technol.20128737337610.1109/JDT.2011.2173158
    [Google Scholar]
  8. WangJ. TaylorB. SunZ. HoweD. Experimental characterization of a supercapacitor-based electrical torque-boost system for downsized ICE vehicles.IEEE Trans. Vehicular Technol.200756636743681
    [Google Scholar]
  9. WuZ.S. FengX. ChengH.M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage.Natl. Sci. Rev.20141227729210.1093/nsr/nwt003
    [Google Scholar]
  10. ChenW. BeidaghiM. PenmatsaV. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors.IEEE Trans. Nanotechnol.201096734740
    [Google Scholar]
  11. LiuN. GaoY. Recent progress in micro‐supercapacitors with in‐plane interdigital electrode architecture.Small20171345170198910.1002/smll.201701989 28976109
    [Google Scholar]
  12. KambojN. PurkaitT. DasM. SarkarS. HazraK.S. DeyR.S. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device.Energy Environ. Sci.20191282507251710.1039/C9EE01458F
    [Google Scholar]
  13. BeidaghiM. GogotsiY. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors.Energy Environ. Sci.20147386788410.1039/c3ee43526a
    [Google Scholar]
  14. XiongG. MengC. ReifenbergerR.G. IrazoquiP.P. FisherT.S. A review of graphene‐based electrochemical microsupercapacitors.Electroanalysis2014261305110.1002/elan.201300238
    [Google Scholar]
  15. FukushimaY. FukumaM. YoshinoK. KishidaS. LeeS.S. A KOH solution electrolyte-type electric double-layer supercapacitor for a wireless sensor network system.IEEE Sens. Lett.2018231410.1109/LSENS.2018.2867192
    [Google Scholar]
  16. Naveen KumarR. JagadaleB.N. BhatJ.S. A lossless image compression algorithm using wavelets and fractional Fourier transform.SN Appl. Sci.20191326610.1007/s42452‑019‑0276‑z
    [Google Scholar]
  17. SignorelliR. KuD.C. KassakianJ.G. SchindallJ.E. Electrochemical double-layer capacitors using carbon nanotube electrode structures.Proc. IEEE200997111837184710.1109/JPROC.2009.2030240
    [Google Scholar]
  18. AugustynV. SimonP. DunnB. Pseudocapacitive oxide materials for high-rate electrochemical energy storage.Energy Environ. Sci.2014751597161410.1039/c3ee44164d
    [Google Scholar]
  19. ShahR. ZhangX. TalapatraS. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals.Nanotechnology2009203939520210.1088/0957‑4484/20/39/395202 19726841
    [Google Scholar]
  20. RoseM.F. MerrymanS.A. Electrochemical capacitor technology for actuator applications.IECEC 96 Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. 11-16 August 1996; Washington, DC, USA. 1996
    [Google Scholar]
  21. FarandaR. A new parameters identification procedure for simplified double layer capacitor two-branch model.Electr. Power Syst. Res.201080436337110.1016/j.epsr.2009.10.024
    [Google Scholar]
  22. GhaiV. ChatterjeeK. AgnihotriP.K. Vertically aligned carbon nanotubes-coated aluminium foil as flexible supercapacitor electrode for high power applications.Carbon Lett202131347348110.1007/s42823‑020‑00176‑4
    [Google Scholar]
  23. ChatterjeeK. BasuS. GuptaN. Modelling of an electrochemical double layer capacitor using cyclic voltammetry.2021 IEEE Electrical Insulation Conference07-28 June 2021; Denver, CO, USA 2021; pp. 355-8.
    [Google Scholar]
  24. ChangT.Y. WangX. EvansD.A. RobinsonS.L. ZhengJ.P. Tantalum oxide–ruthenium oxide hybrid(R) capacitors.J. Power Sources2002110113814310.1016/S0378‑7753(02)00240‑9
    [Google Scholar]
  25. JhaD. KarkariaV.N. KarandikarP.B. DesaiR.S. Statistical modeling of hybrid supercapacitor.J. Energy Storage20224610386910.1016/j.est.2021.103869
    [Google Scholar]
  26. ChenY.M. WuH.C. ChouM.W. LeeK.Y. Online failure prediction of the electrolytic capacitor for LC filter of switching-mode power converters.IEEE Trans. Ind. Electron.200855140040610.1109/TIE.2007.903975
    [Google Scholar]
  27. BrousseT. MarchandR. TabernaP.L. SimonP. TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage.J. Power Sources2006158157157710.1016/j.jpowsour.2005.09.020
    [Google Scholar]
  28. AidaT. MurayamaI. YamadaK. MoritaM. High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode.J. Power Sources2007166246247010.1016/j.jpowsour.2007.01.037
    [Google Scholar]
  29. BakhoumE.G. ChengM.H.M. Tunable ultracapacitor.IEEE Trans. Ind. Electron.201360125613561910.1109/TIE.2013.2238875
    [Google Scholar]
  30. Xin-chunQ. Zhi-pingQ. HaidongL. Asymmetric hybrid supercapacitor (AHS)’s modeling based on physical reasoning.2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.06-09 April 2008; Nanjing, China 2008.10.1109/DRPT.2008.4523865
    [Google Scholar]
  31. GaikwadN. GadekarP. KandasubramanianB. KakaF. Advanced polymer-based materials and mesoscale models to enhance the performance of multifunctional supercapacitors.J. Energy Storage20235810633710.1016/j.est.2022.106337
    [Google Scholar]
  32. GuerreroM.A. RomeroE. BarreroF. MilanésM.I. GonzalezE. Supercapacitors: Alternative energy storage systems.Przeglad. Elektrotechniczny.2009851018
    [Google Scholar]
  33. GuerreroM.A. RomeroE. BarreroF. MilanesM.I. GonzalezE. Overview of medium scale energy storage systems.In 2009 Compatibility and Power Electronics. 20-22 May 2009;Badajoz, Spain 2009; pp. 93-100
    [Google Scholar]
  34. SharmaP. KumarV. A brief review on supercapacitor.Pramana Res J2018835055
    [Google Scholar]
  35. DengeN. Study of hybrid super-capacitor.Int Res J Eng Technol201613310121016
    [Google Scholar]
  36. ChengJ. Activated carbon modified by CNTs/Ni-Co oxide as hybrid electrode materials for high performance supercapacitors.IEEE Trans. Nanotechnol.2014133557562
    [Google Scholar]
  37. LaiC.C. LoC.T. Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors.Electrochim. Acta2015183859310.1016/j.electacta.2015.02.143
    [Google Scholar]
  38. Adán-MásA. SilvaT.M. Guerlou-DemourguesL. BourgeoisL. Labrugere-SarrosteC. MontemorM.F. Nickel-cobalt oxide modified with reduced graphene oxide: Performance and degradation for energy storage applications.J. Power Sources2019419122610.1016/j.jpowsour.2019.02.055
    [Google Scholar]
  39. ŠpanerM. Supercapacitor and energy efficiency of battery powered vehicles.University of Maribor2016
    [Google Scholar]
  40. HuA.P. YouY.W. ChenF.Y.B. McCormickD. BudgettD.M. Wireless power supply for ICP devices with hybrid supercapacitor and battery storage.IEEE J. Emerg. Sel. Top. Power Electron.20164127327910.1109/JESTPE.2015.2489226
    [Google Scholar]
  41. KhalidM. A review on the selected applications of battery-supercapacitor hybrid energy storage systems for microgrids.Energies20191223455910.3390/en12234559
    [Google Scholar]
  42. LiZ. ZhuC. JiangJ. SongK. WeiG. 3-kW wireless power transfer system for sightseeing car supercapacitor charge.IEEE Trans. Power Electron.20173253301331610.1109/TPEL.2016.2584701
    [Google Scholar]
  43. TriguiA. HachedS. AmmariA.C. SavariaY. SawanM. Maximizing data transmission rate for implantable devices over a single inductive link: Methodological review.IEEE Rev. Biomed. Eng.201912728710.1109/RBME.2018.2873817 30295628
    [Google Scholar]
  44. WeiL. WuM. YanM. LiuS. CaoQ. WangH. A review on electrothermal modeling of supercapacitors for energy storage applications.IEEE J. Emerg. Sel. Top. Power Electron.2019731677169010.1109/JESTPE.2019.2925336
    [Google Scholar]
  45. LiuS. WeiL. WangH. Review on reliability of supercapacitors in energy storage applications.Appl. Energy202027811543610.1016/j.apenergy.2020.115436
    [Google Scholar]
  46. SharmaK. ShafiP.M. An overview, methods of synthesis and modification of carbon-based electrodes for supercapacitor.J. Energy Storage20225510572710.1016/j.est.2022.105727
    [Google Scholar]
  47. HeX. ZhangX. A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials.J. Energy Storage20225610602310.1016/j.est.2022.106023
    [Google Scholar]
  48. SundriyalS. ShrivastavV. KaurA. Waste office papers as a cellulosic material reservoir to derive highly porous activated carbon for solid-state electrochemical capacitor.IEEE Trans. Nanotechnol.20212048148810.1109/TNANO.2021.3080589
    [Google Scholar]
  49. ShrivastavV. SundriyalS. TiwariU.K. KimK.H. DeepA. Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode.Energy202123512135110.1016/j.energy.2021.121351
    [Google Scholar]
  50. AbdelkareemM.A. AbbasQ. MousellyM. AlawadhiH. OlabiA.G. High-performance effective metal–organic frameworks for electrochemical applications.J. Sci. Adv. Mater. Devices20227310046510.1016/j.jsamd.2022.100465
    [Google Scholar]
  51. SinghM. GuptaA. SundriyalS. DubeyP. JainK. DhakateS.R. Activated green carbon-based 2-D nanofabric mats for ultra-flexible all-solid-state supercapacitor.J. Energy Storage20224910419310.1016/j.est.2022.104193
    [Google Scholar]
  52. DubeyP. BhardwajK. KumarR. SundriyalS. MaheshwariP.H. Perylene diimide incorporated activated carbon as a composite electrode for asymmetric supercapacitor.J. Energy Storage20225610605810.1016/j.est.2022.106058
    [Google Scholar]
  53. SundriyalS. ShrivastavV. KaurA. Mansi, Deep A, Dhakate SR. Surface and diffusion charge contribution study of neem leaves derived porous carbon electrode for supercapacitor applications using acidic, basic, and neutral electrolytes.J. Energy Storage20214110300010.1016/j.est.2021.103000
    [Google Scholar]
  54. Marquez-ChinM. SaadatniaZ. NaguibH.E. PopovicM.R. Development of an aerogel-based wet electrode for functional electrical stimulation.IEEE Trans. Neural Syst. Rehabil. Eng.2023314085409510.1109/TNSRE.2023.3324400 37831561
    [Google Scholar]
  55. CooperG. BarkerA.T. HellerB.W. GoodT. KenneyL.P.J. HowardD. The use of hydrogel as an electrode–skin interface for electrode array FES applications.Med. Eng. Phys.201133896797210.1016/j.medengphy.2011.03.008 21482167
    [Google Scholar]
  56. SolomonsC.D. ShanmugasundaramV. Forearm and wrist band for functional electrical stimulation. In 2019 Innovations in Power and Advanced Computing Technologies (i-PACT).IEEE2019Vol. 114
    [Google Scholar]
  57. GangavarapuP.R.Y. LokeshP.C. BhatK.N. NaikA.K. Graphene electrodes as barrier-free contacts for carbon nanotube field-effect transistors.IEEE Trans. Electron Dev.201764104335433910.1109/TED.2017.2741061
    [Google Scholar]
  58. QianL. XieY. ZhangS. ZhangJ. Band engineering of carbon nanotubes for device applications.Matter20203366469510.1016/j.matt.2020.06.014
    [Google Scholar]
  59. KimY.K. LeeY. ShinK.Y. JangJ. Highly omnidirectional and frequency tunable multilayer graphene-based monopole patch antennas.J. Mater. Chem. C Mater. Opt. Electron. Devices20197267915792110.1039/C9TC02454A
    [Google Scholar]
  60. DuW AhmedZ WangQ Structures, properties, and applications of CNT-graphene heterostructures.2D Materials201964042005
    [Google Scholar]
  61. KulkarniM.B. UmapathiR. AyachitN.H. AminabhaviT.M. PogueB.W. Nanosensors in the food industry and agriculture.In: Sustainable Green Nanotechnology.Boca RatonCRC Press202421022710.1201/9781003389408‑12
    [Google Scholar]
  62. KalpanaS. BhatV.S. HegdeG. Niranjana PrabhuT. AnantharamaiahP.N. Hydrothermally synthesized mesoporous Co3O4 nanorods as effective supercapacitor material.Inorg. Chem. Commun.202315411098410.1016/j.inoche.2023.110984
    [Google Scholar]
  63. YueL. ZhaoH. WuZ. Recent advances in electrospun one-dimensional carbon nanofiber structures/] heterostructures as anode materials for sodium ion batteries.J. Mater. Chem. A Mater. Energy Sustain.2020823114931151010.1039/D0TA03963B
    [Google Scholar]
  64. Ait Kaci AzzouK. TerboucheA. Ait Ramdane-TerboucheC. BatailleT. HauchardD. MezaouiD. Supercapacitor electrode based on ternary activated carbon/CuCoO2 hybrid material.Mater. Chem. Phys.202432212952110.1016/j.matchemphys.2024.129521
    [Google Scholar]
  65. YiC. ZouJ. YangH. LengX. Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides.Trans. Nonferrous Met. Soc. China201828101980200110.1016/S1003‑6326(18)64843‑5
    [Google Scholar]
  66. GuptaA. SardanaS. DalalJ. Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material.ACS Appl. Energy Mater.2020376434644610.1021/acsaem.0c00684
    [Google Scholar]
  67. VicentiniR. NunesW.G. CostaL.H. Environmentally friendly functionalization of porous carbon electrodes for aqueous-based electrochemical capacitors.IEEE Trans. Nanotechnol.201918738210.1109/TNANO.2018.2878663
    [Google Scholar]
  68. CostaL.H. VicentiniR. Almeida SilvaT. Vilela FrancoD. Morais Da SilvaL. ZaninH. Identification and quantification of the distributed capacitance and ionic resistance in carbon-based supercapacitors using electrochemical techniques and the analysis of the charge-storage dynamics.J. Electroanal. Chem. (Lausanne)202392911714010.1016/j.jelechem.2022.117140
    [Google Scholar]
  69. ZhaiZ. LuY. LiuG. DingW.L. CaoB. HeH. Recent advances in biomass-derived porous carbon materials: Synthesis, composition and applications.Chem. Res. Chin. Univ.202440131910.1007/s40242‑024‑3259‑6
    [Google Scholar]
  70. Da SilvaL.M. CesarR. MoreiraC.M.R. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials.Energy Storage Mater.20202755559010.1016/j.ensm.2019.12.015
    [Google Scholar]
  71. SugawaraS. NoordenZ.A. OkaotoR. MatsumotoS. New carbon material derived from mixture with lubricating oil and sulfuric acid and its electric property for EDLC.2012 IEEE International Conference on Condition Monitoring and Diagnosis23-27 September 2012; Bali, Indonesia. 2012; pp. 350-2.10.1109/CMD.2012.6416451
    [Google Scholar]
  72. HiraiY. OkadaK. KurokawaR. MatsumotoS. SatoY. Electrical property of EDLC and electrochemical interaction between separator and electrolyte.J. Int. Counc. Electr. Eng.201661727710.1080/22348972.2016.1173781
    [Google Scholar]
  73. WeiY. ZhuJ. WangG. High-specific-capacitance supercapacitor based on vanadium oxide nanoribbon.IEEE Trans. Appl. Supercond.20142451410.1109/TASC.2013.2290323
    [Google Scholar]
  74. MajumdarD. MandalM. BhattacharyaS.K. V2O5 and its carbon‐based nanocomposites for supercapacitor applications.ChemElectroChem2019661623164810.1002/celc.201801761
    [Google Scholar]
  75. ThulasiK.M. ManikkothS.T. ParavannoorA. PalantavidaS. BhagiyalakshmiM. VijayanB.K. Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors.J. Electroanal. Chem. (Lausanne)202087811464410.1016/j.jelechem.2020.114644
    [Google Scholar]
  76. RamachandranR. FelixS. SaranyaM. Synthesis of cobalt sulfide–graphene (CoS/G) nanocomposites for supercapacitor applications.IEEE Trans. Nanotechnol.201312698599010.1109/TNANO.2013.2278287
    [Google Scholar]
  77. RamachandranR. SaranyaM. KolluP. RaghupathyB.P.C. JeongS.K. GraceA.N. Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes.Electrochim. Acta201517864765710.1016/j.electacta.2015.08.010
    [Google Scholar]
  78. MengX. DengJ. ZhuJ. BiH. KanE. WangX. Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors.Sci. Rep.2016612171710.1038/srep21717 26880686
    [Google Scholar]
  79. Vilchis-GutiérrezP.G. PachecoM. PachecoJ. Valdivia-BarrientosR. Barrera-DíazC.E. Balderas-HernándezP. Synthesis of boron-doped carbon nanotubes with DC electric arc discharge.IEEE Trans. Plasma Sci.20184683139314410.1109/TPS.2018.2850221
    [Google Scholar]
  80. PachecoM. MonroyM.F. Santana-DiazA. Enhancement of a green supercapacitor with a hydrogel/carbon nanotubes-based electrolyte.IEEE Trans. Nanotechnol.20201971171810.1109/TNANO.2020.3019764
    [Google Scholar]
  81. WuJ. Doping modification of carbon nanotubes and its applications.Highlights Sci Eng Technol202227327333
    [Google Scholar]
  82. LuR. ZhuC. TianL. WangQ. Super-capacitor stacks management system with dynamic equalization techniques.IEEE Trans. Magn.200743125425810.1109/TMAG.2006.887652
    [Google Scholar]
  83. Gallardo-LozanoJ. Romero-CadavalE. Milanes-MonteroM.I. Guerrero-MartinezM.A. Battery equalization active methods.J. Power Sources201424693494910.1016/j.jpowsour.2013.08.026
    [Google Scholar]
  84. UnoM. KukitaA. String-to-battery voltage equalizer based on a half-bridge converter with multistacked current doublers for series-connected batteries.IEEE Trans. Power Electron.20193421286129810.1109/TPEL.2018.2829664
    [Google Scholar]
  85. IzadiY. BeiranvandR. A comprehensive review of battery and supercapacitor cells voltage-equalizer circuits.IEEE Trans. Power Electron.20233812156711569210.1109/TPEL.2023.3310574
    [Google Scholar]
  86. FanS. DuanJ. SunL. ZhangK. A fast modularized multiwinding transformer balancing topology for series-connected supercapacitors.IEEE Trans. Power Electron.20193443255326810.1109/TPEL.2018.2848364
    [Google Scholar]
  87. HussainS.Z. IhrarM. HussainS.B. OhW.C. UllahK. A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes.SN Appl. Sci.20202476410.1007/s42452‑020‑2515‑8
    [Google Scholar]
  88. ŞahinM. BlaabjergF. SangwongwanichA. A comprehensive review on supercapacitor applications and developments.Energies202215367410.3390/en15030674
    [Google Scholar]
  89. BerruetaA UrsuaA MartinIS EftekhariA SanchisP Supercapacitors: Electrical characteristics, modeling, applications, and future trends.IEEE Access2019750869509610.1109/ACCESS.2019.2908558
    [Google Scholar]
  90. SatpathyS. MisraN.K. ShuklaD. GoyalV. BhattacharyyaB.K. YadavC.S. An in-depth study of the electrical characterization of supercapacitors for recent trends in energy storage system.J. Energy Storage20235710619810.1016/j.est.2022.106198
    [Google Scholar]
  91. MaN. YangD. RiazS. WangL. WangK. Aging mechanism and models of supercapacitors: A review.Technologies (Basel)20231123810.3390/technologies11020038
    [Google Scholar]
  92. BullerS. TheleM. DeDonckerR.W.A.A. KardenE. Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications.IEEE Trans. Ind. Appl.200541374274710.1109/TIA.2005.847280
    [Google Scholar]
  93. EckerM. GerschlerJ.B. VogelJ. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data.J. Power Sources201221524825710.1016/j.jpowsour.2012.05.012
    [Google Scholar]
  94. GualousH. Louahlia-GualousH. GallayR. MiraouiA. Supercapacitor thermal modeling and characterization in transient state for industrial applications.IEEE Trans. Ind. Appl.20094531035104410.1109/TIA.2009.2018879
    [Google Scholar]
  95. KreczanikP. VenetP. HijaziA. ClercG. Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current.IEEE Trans. Ind. Electron.20146194895490210.1109/TIE.2013.2293695
    [Google Scholar]
  96. Al SakkaM. GualousH. Van MierloJ. CulcuH. Thermal modeling and heat management of supercapacitor modules for vehicle applications.J. Power Sources2009194258158710.1016/j.jpowsour.2009.06.038
    [Google Scholar]
  97. RocabertJ. Capo-MisutR. Muñoz-AguilarR.S. CandelaJ.I. RodriguezP. Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications.IEEE Trans. Ind. Appl.20195521853186210.1109/TIA.2018.2873534
    [Google Scholar]
/content/journals/cms/10.2174/0126661454319839240906162037
Loading
/content/journals/cms/10.2174/0126661454319839240906162037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test