Skip to content
2000
  • E-ISSN:

Abstract

The study of the characteristics of materials with a size range of 1-100 nm is referred to as nanoscience. Nanotechnology deals with manipulating the molecular structure of materials to modify their inherent properties and acquire new properties with novel use. The principles of nanotechnology can be incorporated with superconductivity as well as in semiconductors. Superconductivity is a promising physical property of materials, and it has been an intriguing and stimulating subject of research due to its practical application in several fields. The development of new technologies depends on novel materials. One such material is hybrid superconductor/semiconductor nanomaterial, which has now been recognized as an exciting material for different applications due to its exceptional physical and chemical properties. There is a report on implementing capable superconductors in induced proximity of a substantial energy difference in semiconductors when strong magnetic fields are present. It is among one of the objectives for applications of superconductor/semiconductor hybrid nanomaterials in quantum information technologies in the future. These materials have numerous applications in different fields such as photoinduced superconductors, amplifiers, electric grids, SQUID, quantum computing devices, magnetometers, and various smart technologies including electronics, and the energy sector. These superconductor/semiconductor hybrid nanomaterials could be considered as the foundation of next-generation technology. This mini review aims to compile the fabrication techniques and properties of these hybrid nanomaterials and their potential applications as well as promising avenues of future aspects.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454338136241007034237
2025-01-01
2025-12-08
Loading full text...

Full text loading...

References

  1. NasrollahzadehM. SajadiS.M. SajjadiM. IssaabadiZ. An introduction to nanotechnology.In: Interface Science and Technology.Elsevier2019Vol. 28127
    [Google Scholar]
  2. AshaA.B. NarainR. Nanomaterials properties.In: Polymer Science and Nanotechnology.Elsevier202034335910.1016/B978‑0‑12‑816806‑6.00015‑7
    [Google Scholar]
  3. GilioliE. DelmonteD. Synthesis and characterization of new superconductors materials.Crystals202010864910.3390/cryst10080649
    [Google Scholar]
  4. Van de VoordeM. TulinskiM. JurczykM. Engineered nanomaterials: A discussion of the major categories of nanomaterials.In: Metrology and standardization of nanotechnology.Wiley2017497410.1002/9783527800308.ch3
    [Google Scholar]
  5. TernaA.D. ElemikeE.E. MbonuJ.I. OsafileO.E. EzeaniR.O. The future of semiconductors nanoparticles: Synthesis, properties and applications.Mater. Sci. Eng. B202127211536310.1016/j.mseb.2021.115363
    [Google Scholar]
  6. LeeE.J.H. JiangX. HouzetM. AguadoR. LieberC.M. De FranceschiS. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures.Nat. Nanotechnol.201491798410.1038/nnano.2013.267 24336403
    [Google Scholar]
  7. De FranceschiS. KouwenhovenL. SchönenbergerC. WernsdorferW. Hybrid superconductor–quantum dot devices.Nat. Nanotechnol.201051070371110.1038/nnano.2010.173 20852639
    [Google Scholar]
  8. IbabeA. GómezM. SteffensenG.O. Joule spectroscopy of hybrid superconductor–semiconductor nanodevices.Nat. Commun.2023141287310.1038/s41467‑023‑38533‑2 37208316
    [Google Scholar]
  9. ElalailyT. BerkeM. KedvesM. Signatures of gate-driven out-of-equilibrium superconductivity in Ta/InAs nanowires.ACS Nano20231765528553510.1021/acsnano.2c10877 36912466
    [Google Scholar]
  10. DasP. GangulyS. MargelS. GedankenA. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications.Nanoscale Adv.20213246762679610.1039/D1NA00447F 36132370
    [Google Scholar]
  11. DasP. GangulyS. RosenkranzA. MXene/0D nanocomposite architectures: Design, properties and emerging applications.Materials Today Nano20232410042810.1016/j.mtnano.2023.100428
    [Google Scholar]
  12. SudhaP.N. SangeethaK. VijayalakshmiK. BarhoumA. Nanomaterials history, classification, unique properties, production and market.In: Emerging Applications of Nanoparticles and Architecture Nanostructures.Elsevier201834138410.1016/B978‑0‑323‑51254‑1.00012‑9
    [Google Scholar]
  13. SalehT.A. Nanomaterials: Classification, properties, and environmental toxicities.Environ. Technol. Innov.20202010106710.1016/j.eti.2020.101067
    [Google Scholar]
  14. Alkaçİ.M. ÇerçiB. TimuralpC. ŞenF. 2 - Nanomaterials and their classification.In: Nanomaterials for Direct Alcohol Fuel Cells.Elsevier2021173310.1016/B978‑0‑12‑821713‑9.00011‑1
    [Google Scholar]
  15. BaigN. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions.Compos., Part A Appl. Sci. Manuf.202316510736210.1016/j.compositesa.2022.107362
    [Google Scholar]
  16. ZhangY. Review of physical properties and preparation of nano-superconducting materials.Adv. Mat. Res.2013816-817656910.4028/www.scientific.net/AMR.816‑817.65
    [Google Scholar]
  17. SalemS.S. HammadE.N. MohamedA.A. El-DougdougW. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications.Biointerface Res. Appl. Chem.20221314110.33263/BRIAC131.041
    [Google Scholar]
  18. GüniatL. CaroffP. Fontcuberta i MorralA. Vapor phase growth of semiconductor nanowires: Key developments and open questions.Chem. Rev.2019119158958897110.1021/acs.chemrev.8b00649 30998006
    [Google Scholar]
  19. JiaG. PangY. NingJ. BaninU. JiB. Heavy‐metal‐free colloidal semiconductor nanorods: Recent advances and future perspectives.Adv. Mater.20193125e190078110.1002/adma.201900781 31063615
    [Google Scholar]
  20. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mater. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  21. ShengliC. ZiyuX. GangX. Photoelectrochemical sensors based on heterogeneous nanostructures for in vitro diagnostics.Biosens. Bioelectron. X202211100200
    [Google Scholar]
  22. TakanoY. Focus on superconductivity in semiconductors.Sci. Technol. Adv. Mater.20089404030110.1088/1468‑6996/9/4/040301 27878012
    [Google Scholar]
  23. SuhailA. SainiA. BeniwalS. BagM. Tunable optoelectronic properties of CsPbBr3 Perovskite nanocrystals for photodetectors applications.J. Phys. Chem. C202312734172981730610.1021/acs.jpcc.3c04856
    [Google Scholar]
  24. DekaM.J. DuttaP. SarmaS. MedhiO.K. TalukdarN.C. ChowdhuryD. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor.Heliyon20195698510.1016/j.heliyon.2019.e01985 31338457
    [Google Scholar]
  25. FrenkelN. ScharfE. LubinG. Two biexciton types coexisting in coupled quantum dot molecules.ACS Nano20231715149901500010.1021/acsnano.3c03921 37459645
    [Google Scholar]
  26. Dones LassalleC.Y. KelmJ.E. DempseyJ.L. Characterizing the semiconductor nanocrystal surface through chemical Reactivity.Acc. Chem. Res.202356131744175510.1021/acs.accounts.3c00125 37307510
    [Google Scholar]
  27. DekaM.J. Recent advances in fluorescent 0D carbon nanomaterials as artificial nanoenzymes for optical sensing applications.Int. Nano Lett.202313111410.1007/s40089‑022‑00381‑1
    [Google Scholar]
  28. DeviM. DasP. BoruahP.K. Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots.J. Environ. Chem. Eng.202191310.1016/j.jece.2020.104803
    [Google Scholar]
  29. LeeK. DengG. BootharajuM.S. HyeonT. Synthesis, assembly, and applications of magic-sized semiconductor (CdSe) 13 cluster.Acc. Chem. Res.20235691118112710.1021/acs.accounts.3c00061 37079799
    [Google Scholar]
  30. MimonaM.A. MobarakM.H. AhmedE. KamalF. HasanM. Nanowires: Exponential speedup in quantum computing.Heliyon20241011e3194010.1016/j.heliyon.2024.e31940 38845958
    [Google Scholar]
  31. ParedesP. RauwelE. WraggD.S. Sunlight-Driven photocatalytic degradation of methylene blue with facile one-step synthesized Cu-Cu2O-Cu3N nanoparticle mixtures.Nanomaterials2023138131110.3390/nano13081311 37110901
    [Google Scholar]
  32. LiZ. LiW. ShaoH. Water-Soluble Ag-Sn-S nanocrystals partially coated with ZnS shells for photocatalytic degradation of organic dyes.ACS Appl. Nano Mater.2023664417442710.1021/acsanm.2c05500
    [Google Scholar]
  33. NazimM. KhanA.A.P. AsiriA.M. KimJ.H. Exploring rapid photocatalytic degradation of organic pollutants with porous cuo nanosheets: Synthesis, dye removal, and kinetic studies at room temperature.ACS Omega2021642601261210.1021/acsomega.0c04747 33553878
    [Google Scholar]
  34. XuH. HaoZ. FengW. WangT. LiY. Mechanism of photodegradation of organic pollutants in seawater by TiO2-Based photocatalysts and improvement in their performance.ACS Omega2021645306983070710.1021/acsomega.1c04604 34805697
    [Google Scholar]
  35. GogotsiY. What nano can do for energy storage.ACS Nano2014865369537110.1021/nn503164x 24957279
    [Google Scholar]
  36. ZhengY. ZouY. JiangJ. Synthesis of Gd-doped CuInS2 quantum dots exhibiting photoluminescence and high longitudinal relaxivity.Mater. Lett.2016168868910.1016/j.matlet.2016.01.032
    [Google Scholar]
  37. ShiY. PramanikA. TchounwouC. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.ACS Appl. Mater. Interfaces2015720109351094310.1021/acsami.5b02199 25939643
    [Google Scholar]
  38. ShiY. PanY. ZhongJ. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging.Carbon20159374275010.1016/j.carbon.2015.05.100
    [Google Scholar]
  39. MahmoodA. ParkJ.W. TiO2/CdS nanocomposite stabilized on a magnetic-cored dendrimer for enhanced photocatalytic activity and reusability.J. Colloid Interface Sci.201955580180910.1016/j.jcis.2019.08.036 31421560
    [Google Scholar]
  40. WangJ. YuB. WangW. CaiX. Facile synthesis of carbon dots-coated CuFe2O4 nanocomposites as a reusable catalyst for highly efficient reduction of organic pollutants.Catal. Commun.2019126353910.1016/j.catcom.2019.04.012
    [Google Scholar]
  41. Ahmadian-Fard-FiniS. GhanbariD. Salavati-NiasariM. Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material.Compos., Part B Eng.201916156457710.1016/j.compositesb.2018.12.131
    [Google Scholar]
  42. ZhangM. WangW. ZhouN. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating.Carbon201711875276410.1016/j.carbon.2017.03.085
    [Google Scholar]
  43. KumarV.B. MarcusM. PoratZ. Ultrafine highly magnetic fluorescent γ-Fe2O3/NCD nanocomposites for neuronal manipulations.ACS Omega2018321897190310.1021/acsomega.7b01666 30023817
    [Google Scholar]
  44. YeW. FengZ. XiongD. HeM. Ni-Doped SnO2 Nanoparticles anchored on carbon nanotubes as anode materials for lithium-ion batteries.ACS Appl. Nano Mater.2023618165241653510.1021/acsanm.3c02710
    [Google Scholar]
  45. WernsdorferW. From micro- to nano-SQUIDs: Applications to nanomagnetism.Supercond. Sci. Technol.200922606401310.1088/0953‑2048/22/6/064013
    [Google Scholar]
  46. José Martínez-PérezM. KoelleD. Erratum to: NanoSQUIDs: Basics & recent advances.Phys. Sci. Rev.2018322017900110.1515/psr‑2017‑9001
    [Google Scholar]
  47. LiuC. ZhangY. MückM. An insight into voltage-biased superconducting quantum interference devices.Appl. Phys. Lett.201210122260210.1063/1.4768698
    [Google Scholar]
  48. RussoR. GranataC. WalkeP. VettoliereA. EspositoE. RussoM. NanoSQUID as magnetic sensor for magnetic nanoparticles characterization.J. Nanopart. Res.201113115661566810.1007/s11051‑011‑0330‑2
    [Google Scholar]
  49. OppenlaenderJ. HaeusslerC. FrieschA. Superconducting quantum interference filters operated in commercial miniature cryocoolers.IEEE Trans. Appl. Supercond.200515293693910.1109/TASC.2005.850128
    [Google Scholar]
  50. YaoC. MaY. Superconducting materials: Challenges and opportunities for large-scale applications.iScience202124610254110.1016/j.isci.2021.102541 34136765
    [Google Scholar]
  51. HirschJ.E. MarsiglioF. Nonstandard superconductivity or no superconductivity in hydrides under high pressure.Phys. Rev. B20211031313450510.1103/PhysRevB.103.134505
    [Google Scholar]
  52. BoseS. A review of superconductivity in nanostructures-from nanogranular films to anti-dot arrays.Supercond. Sci. Technol.202336606300310.1088/1361‑6668/acc980
    [Google Scholar]
  53. BrunC. CrenT. RoditchevD. Review of 2D superconductivity: The ultimate case of epitaxial monolayers.Supercond. Sci. Technol.201730101300310.1088/0953‑2048/30/1/013003
    [Google Scholar]
/content/journals/cms/10.2174/0126661454338136241007034237
Loading
/content/journals/cms/10.2174/0126661454338136241007034237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test